organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Ethoxy-6-{[1-(3-ethoxy-2-hydroxybenzyl)-1H-benzimidazol-2-yl]methyl}phenol nitromethane monosolvate

Kwang Ha

School of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea Correspondence e-mail: hakwang@chonnam.ac.kr

Received 23 May 2012; accepted 24 May 2012

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.004 Å; R factor = 0.064; wR factor = 0.157; data-to-parameter ratio = 18.4.

In the title solvate, C₂₄H₂₄N₂O₄·CH₃NO₂, the benzene ring of the 2-ethoxy-6-methylphenol substituent is approximately perpendicular to the nearly planar benzimidazole ring [maximum deviation = 0.021 (2) Å], making a dihedral angle of 84.32 $(7)^{\circ}$. The benzene ring of the 2-ethoxyphenol group is somewhat inclined to the benzimidazole ring plane by $28.03(5)^{\circ}$. The dihedral angle between the benzene rings is 82.20 (9)°. The compound reveals strong intramolecular O- $H \cdots N$ and $O - H \cdots O$ hydrogen bonds, forming six- and fivemembered rings, respectively. In the crystal, molecules are connected by bifurcated $O-H \cdots (O,O)$ hydrogen bonds, forming chains along the b axis.

Related literature

For the crystal structure of the methoxy derivative of the title compound, see: Al-Douh et al. (2009). For the crystal structure of the title compound as an acetonitrile monosolvate, see: Ha (2012).

 $M_r = 465.50$

Experimental

Crystal data C24H24N2O4·CH3NO2 Monoclinic, $P2_1/c$ a = 7.5151 (7) Å b = 19.6463 (17) Åc = 16.2578 (15) Å $\beta = 99.898 \ (2)^{\circ}$ V = 2364.6 (4) Å³

Data collection

Bruker SMART 1000 CCD	17462 measured reflections
diffractometer	5846 independent reflections
Absorption correction: multi-scan	2523 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2000)	$R_{\rm int} = 0.090$
$T_{\min} = 0.856, \ T_{\max} = 1.000$	

Z = 4

Mo $K\alpha$ radiation

 $0.36 \times 0.20 \times 0.13 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 273 K

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.064$	H atoms treated by a mixture of
$wR(F^2) = 0.157$	independent and constrained
S = 0.95	refinement
5846 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
318 parameters	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1−H1 <i>O</i> ···N1	0.92 (4)	1.75 (4)	2.596 (3)	152 (3)
O3−H3 <i>O</i> ···O4	0.99 (3)	2.27 (3)	2.710 (2)	106 (2)
$O3-H3O\cdots O1^{i}$	0.99 (3)	1.91 (3)	2.819 (2)	151 (2)
$O3-H3O\cdots O2^{i}$	0.99 (3)	2.36 (3)	3.012 (3)	122 (2)

Symmetry code: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030747).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5103).

References

Al-Douh, M. H., Osman, H., Hamid, S. A., Kia, R. & Fun, H.-K. (2009). Acta Cryst. E65, 0913-0914.

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Ha, K. (2012). Acta Cryst. E68, o1398.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1914 [doi:10.1107/S1600536812023665]

2-Ethoxy-6-{[1-(3-ethoxy-2-hydroxybenzyl)-1*H*-benzimidazol-2-yl]methyl}-phenol nitromethane monosolvate

Kwang Ha

S1. Comment

The crystal structures of the related compound, 2-[1-(2-hydroxy-3-methoxybenzyl)-1*H*-benzimidazol-2-yl]-6-methoxyphenol monohydrate, and the title compound as an acetonitrile monosolvate have been reported previously (Al-Douh *et al.*, 2009; Ha, 2012).

The title compound, $C_{24}H_{24}N_2O_4.CH_3NO_2$, contains a disubstituted benzimidazole molecule and a lattice solvent molecule (Fig. 1). The benzene ring (C17–C22) of the 2-ethoxy-6-methylphenol substituent is approximately perpendicular to the nearly planar benzimidazole ring system [maximum deviation = 0.021 (2) Å], making a dihedral angle of 84.32 (7)°. The benzene ring (C8–C13) of the 2-ethoxyphenol group is somewhat inclined to the benzimidazole ring plane by 28.03 (5)°. The dihedral angle between the benzene rings is 82.20 (9)°. The compound reveals strong intramolecular O—H···N and O—H···O hydrogen bonds, forming six- and five-membered rings, respectively (Fig. 2 and Table 1). In the crystal, molecules are connected by bifurcated O—H···(O,O) hydrogen bonds, forming chains along the *b* axis (Fig. 2 and Table 1).

S2. Experimental

1,2-Phenylenediamine (0.7568 g, 6.998 mmol) and 3-ethoxysalicylaldehyde (2.3269 g, 14.003 mmol) in EtOH (20 ml) were stirred for 5 h at room temperature. After evaporation of the solvent, the residue was recrystallized from a mixture of acetone and ether at 188 K, to give an orange powder (1.9139 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from its CH₃NO₂ solution at room temperature.

S3. Refinement

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH₃ and CH₂ groups, respectively, with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$. The hydroxy-H atoms were located from a difference Fourier map and refined freely. A number of reflections, (0 1 1), (0 3 2), ($\overline{5}$ 12 14), (2 11 15), (1 6 19), (2 13 16), (1 4 0) and (3 22 1), were omitted from the final refinement owing to poor agreement.

Figure 1

A structure detail of the title compound, with atom numbering. Displacement ellipsoids are drawn at the 40% probability level for non-H atoms.

Figure 2

A partial view along the *a* axis of the crystal packing of the title compound. Intra- and intermolecular O—H···N and O—H···N hydrogen-bonds are shown as dashed lines.

2-Ethoxy-6-{[1-(3-ethoxy-2-hydroxybenzyl)-1H-benzimidazol- 2-yl]methyl}phenol nitromethane monosolvate

F(000) = 984

 $\theta = 2.8 - 22.7^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 273 K

Block, orange

 $0.36 \times 0.20 \times 0.13 \text{ mm}$

 $D_{\rm x} = 1.308 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2443 reflections

Crystal data

C₂₄H₂₄N₂O₄·CH₃NO₂ $M_r = 465.50$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.5151 (7) Å b = 19.6463 (17) Å c = 16.2578 (15) Å $\beta = 99.898$ (2)° V = 2364.6 (4) Å³ Z = 4

Data collection

Bruker SMART 1000 CCD	17462 measured reflections
diffractometer	5846 independent reflections
Radiation source: fine-focus sealed tube	2523 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.090$
φ and ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 10$
(SADABS; Bruker, 2000)	$k = -26 \rightarrow 23$
$T_{\min} = 0.856, \ T_{\max} = 1.000$	$l = -21 \rightarrow 21$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.064$	Hydrogen site location: inferred from
$wR(F^2) = 0.157$	neighbouring sites
<i>S</i> = 0.95	H atoms treated by a mixture of independent
5846 reflections	and constrained refinement
318 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0503P)^2]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.29$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.1517 (3)	-0.00824 (8)	0.25918 (12)	0.0364 (5)
H1O	0.166 (5)	0.0034 (17)	0.206 (2)	0.105 (14)*
O2	0.1909 (3)	-0.02200 (9)	0.41939 (11)	0.0421 (5)

03	-0.0023(2)	0.36913 (9)	0.19378 (11)	0.0367 (5)
H3O	-0.032 (4)	0.4180 (15)	0.1965 (19)	0.076 (10)*
O4	0.2353 (2)	0.47405 (8)	0.21047 (12)	0.0399 (5)
N1	0.2058 (3)	0.06287 (10)	0.13119 (14)	0.0362 (6)
N2	0.1347 (3)	0.17347 (10)	0.13095 (13)	0.0329 (6)
C1	0.1707 (4)	0.08554 (13)	0.04930 (17)	0.0352 (7)
C2	0.1729 (4)	0.05148 (14)	-0.02530 (18)	0.0424 (8)
H2	0.2012	0.0054	-0.0258	0.051*
C3	0.1320 (4)	0.08766 (15)	-0.09819(18)	0.0475 (8)
H3	0.1329	0.0657	-0.1488	0.057*
C4	0.0889(4)	0 15692 (15)	-0.09826(19)	0.0494 (8)
H4	0.0629	0.1801	-0.1488	0.059*
C5	0.0029 0.0841 (4)	0.1001 0.19139 (14)	-0.02510(19)	0.025 0.0453(8)
С5 H5	0.0545	0.2373	-0.0240	0.054*
115 C6	0.0343	0.2575 0.15445(12)	0.0249	0.034
C0	0.1230(4)	0.13443(13) 0.11(82(12))	0.04652(17) 0.17827(10)	0.0343(7)
C7	0.18/2(3)	0.11083 (12)	0.1/82/(10)	0.0312 (6)
C8	0.2174 (3)	0.11250 (12)	0.26941 (16)	0.0311 (6)
C9	0.1955 (3)	0.04905 (12)	0.30544 (16)	0.0298 (6)
C10	0.2224 (4)	0.04219 (13)	0.39271 (17)	0.0336 (7)
C11	0.2786 (4)	0.09698 (14)	0.44263 (18)	0.0403 (7)
H11	0.2974	0.0924	0.5004	0.048*
C12	0.3074 (4)	0.15947 (14)	0.40681 (18)	0.0433 (8)
H12	0.3477	0.1963	0.4409	0.052*
C13	0.2772 (4)	0.16734 (13)	0.32187 (18)	0.0396 (7)
H13	0.2965	0.2095	0.2989	0.048*
C14	0.2320 (4)	-0.03579 (14)	0.50701 (17)	0.0444 (8)
H14A	0.1562	-0.0085	0.5368	0.053*
H14B	0.3574	-0.0251	0.5285	0.053*
C15	0.1970 (4)	-0.11004 (14)	0.51828 (18)	0.0537 (9)
H15A	0.0730	-0.1201	0.4961	0.080*
H15B	0.2216	-0.1211	0 5766	0.080*
H15C	0 2741	-0.1365	0.4893	0.080*
C16	0.2711 0.0750(4)	0.23959(12)	0.15603(17)	0.0355(7)
H16A	0.0374	0.2351	0.2099	0.043*
HIGA HIGB	-0.0203	0.2530	0.1161	0.043*
C17	0.0293 0.2187 (4)	0.2339 0.20402 (12)	0.16180 (16)	0.043°
C17	0.2107(4)	0.29402(12)	0.10109(10) 0.18154(16)	0.0323(7)
C18	0.1700(4)	0.33914(12)	0.18134(10)	0.0313(0)
C19	0.2982 (4)	0.41196 (13)	0.18991 (16)	0.0335 (6)
C20	0.4/25 (4)	0.39823 (14)	0.1//22 (1/)	0.0408 (7)
H20	0.5579	0.4329	0.1821	0.049*
C21	0.5192 (4)	0.33281 (14)	0.15726 (18)	0.0455 (8)
H21	0.6363	0.3236	0.1491	0.055*
C22	0.3929 (4)	0.28132 (13)	0.14944 (18)	0.0414 (7)
H22	0.4252	0.2376	0.1357	0.050*
C23	0.3662 (4)	0.52643 (13)	0.2358 (2)	0.0467 (8)
H23A	0.4226	0.5401	0.1890	0.056*
H23B	0.4595	0.5098	0.2799	0.056*
C24	0.2705 (4)	0.58586 (14)	0.2663 (2)	0.0598 (10)

H24A	0.1764	0.6012	0.2226	0.090*	
H24B	0.3550	0.6222	0.2820	0.090*	
H24C	0.2187	0.5723	0.3138	0.090*	
05	0.6407 (5)	0.27813 (18)	0.4851 (3)	0.1619 (18)	
O6	0.6611 (6)	0.3759 (2)	0.5301 (2)	0.1664 (18)	
N3	0.6350 (4)	0.3364 (2)	0.4748 (3)	0.0808 (10)	
C25	0.6008 (6)	0.3659 (3)	0.3918 (3)	0.133 (2)	
H25A	0.4821	0.3856	0.3815	0.200*	
H25B	0.6087	0.3311	0.3511	0.200*	
H25C	0.6889	0.4006	0.3877	0.200*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0477 (13)	0.0267 (10)	0.0354 (12)	-0.0027 (8)	0.0084 (10)	-0.0019 (9)
O2	0.0549 (14)	0.0404 (11)	0.0313 (11)	0.0011 (9)	0.0082 (10)	0.0044 (9)
O3	0.0338 (12)	0.0312 (11)	0.0459 (12)	0.0002 (8)	0.0094 (10)	-0.0025 (9)
O4	0.0400 (13)	0.0298 (10)	0.0509 (13)	-0.0062 (9)	0.0106 (10)	-0.0049 (9)
N1	0.0440 (16)	0.0308 (12)	0.0345 (14)	0.0011 (10)	0.0083 (12)	-0.0006 (11)
N2	0.0409 (15)	0.0252 (12)	0.0327 (14)	0.0009 (10)	0.0070 (11)	-0.0007 (10)
C1	0.0424 (18)	0.0322 (15)	0.0321 (16)	-0.0024 (13)	0.0100 (14)	-0.0017 (13)
C2	0.050 (2)	0.0393 (16)	0.0385 (19)	-0.0033 (14)	0.0103 (15)	-0.0039 (14)
C3	0.056 (2)	0.056 (2)	0.0324 (18)	-0.0049 (16)	0.0112 (16)	-0.0025 (15)
C4	0.062 (2)	0.051 (2)	0.0354 (19)	-0.0020 (16)	0.0086 (16)	0.0086 (16)
C5	0.056 (2)	0.0380 (17)	0.042 (2)	0.0000 (14)	0.0088 (16)	0.0043 (15)
C6	0.0391 (18)	0.0341 (16)	0.0310 (16)	-0.0049 (12)	0.0076 (13)	0.0013 (13)
C7	0.0301 (16)	0.0298 (14)	0.0338 (16)	-0.0002 (12)	0.0055 (13)	-0.0008 (13)
C8	0.0299 (16)	0.0268 (14)	0.0360 (16)	0.0012 (11)	0.0045 (13)	-0.0028 (12)
C9	0.0280 (16)	0.0285 (14)	0.0326 (16)	0.0019 (11)	0.0047 (12)	-0.0041 (12)
C10	0.0323 (17)	0.0324 (15)	0.0366 (18)	0.0021 (12)	0.0070 (13)	0.0027 (13)
C11	0.0438 (19)	0.0438 (17)	0.0326 (16)	0.0002 (14)	0.0044 (14)	-0.0019 (14)
C12	0.048 (2)	0.0406 (17)	0.0402 (19)	-0.0014 (14)	0.0052 (15)	-0.0089 (14)
C13	0.0437 (19)	0.0324 (16)	0.0424 (19)	-0.0016 (13)	0.0065 (15)	-0.0027 (13)
C14	0.047 (2)	0.0526 (19)	0.0332 (18)	0.0012 (14)	0.0060 (15)	0.0065 (14)
C15	0.067 (2)	0.053 (2)	0.0408 (19)	0.0023 (16)	0.0111 (17)	0.0124 (15)
C16	0.0391 (18)	0.0275 (14)	0.0405 (17)	0.0010 (12)	0.0088 (14)	-0.0017 (12)
C17	0.0357 (18)	0.0303 (14)	0.0314 (16)	0.0014 (12)	0.0071 (13)	0.0018 (12)
C18	0.0308 (17)	0.0352 (15)	0.0271 (15)	-0.0006 (12)	0.0028 (12)	0.0027 (12)
C19	0.0369 (18)	0.0338 (15)	0.0291 (16)	-0.0024 (13)	0.0041 (13)	0.0001 (12)
C20	0.0394 (19)	0.0452 (17)	0.0384 (17)	-0.0081 (14)	0.0080 (14)	0.0010 (14)
C21	0.0402 (19)	0.0466 (18)	0.052 (2)	0.0019 (15)	0.0148 (16)	-0.0008 (15)
C22	0.043 (2)	0.0357 (16)	0.0463 (19)	0.0018 (14)	0.0101 (15)	-0.0004 (13)
C23	0.042 (2)	0.0415 (17)	0.055 (2)	-0.0142 (14)	0.0040 (16)	-0.0075 (15)
C24	0.059 (2)	0.0447 (19)	0.077 (3)	-0.0144 (16)	0.016 (2)	-0.0212 (17)
O5	0.123 (3)	0.078 (2)	0.279 (5)	-0.026 (2)	0.018 (3)	0.051 (3)
O6	0.212 (5)	0.166 (4)	0.118 (3)	-0.030 (3)	0.021 (3)	-0.050 (3)
N3	0.067 (2)	0.074 (3)	0.098 (3)	-0.0158 (19)	0.006 (2)	0.000 (2)
C25	0.085 (4)	0.232 (6)	0.083 (4)	0.034 (4)	0.017 (3)	0.060 (4)

Geometric parameters (Å, °)

01—C9	1.362 (3)	С13—Н13	0.9300	
01—H10	0.92 (4)	C14—C15	1.499 (4)	
O2—C10	1.367 (3)	C14—H14A	0.9700	
O2—C14	1.431 (3)	C14—H14B	0.9700	
O3—C18	1.362 (3)	C15—H15A	0.9600	
O3—H3O	0.99 (3)	C15—H15B	0.9600	
O4—C19	1.370 (3)	C15—H15C	0.9600	
O4—C23	1.434 (3)	C16—C17	1.511 (3)	
N1C7	1.329 (3)	C16—H16A	0.9700	
N1—C1	1.386 (3)	C16—H16B	0.9700	
N2—C7	1.372 (3)	C17—C22	1.381 (4)	
N2—C6	1.385 (3)	C17—C18	1.382 (3)	
N2-C16	1.455 (3)	C18—C19	1.403 (3)	
C1—C2	1.388 (4)	C19—C20	1.387 (4)	
C1—C6	1.395 (3)	C20—C21	1.385 (3)	
С2—С3	1.371 (4)	C20—H20	0.9300	
C2—H2	0.9300	C21—C22	1.378 (4)	
C3—C4	1.399 (4)	C21—H21	0.9300	
С3—Н3	0.9300	C22—H22	0.9300	
C4—C5	1.374 (4)	C23—C24	1.500 (4)	
C4—H4	0.9300	C23—H23A	0.9700	
C5—C6	1.386 (4)	С23—Н23В	0.9700	
С5—Н5	0.9300	C24—H24A	0.9600	
С7—С8	1.462 (4)	C24—H24B	0.9600	
С8—С9	1.399 (3)	C24—H24C	0.9600	
C8—C13	1.399 (3)	O5—N3	1.157 (4)	
C9—C10	1.405 (3)	O6—N3	1.178 (4)	
C10-C11	1.370 (3)	N3—C25	1.450 (5)	
C11—C12	1.392 (3)	C25—H25A	0.9600	
C11—H11	0.9300	C25—H25B	0.9600	
C12—C13	1.369 (4)	C25—H25C	0.9600	
C12—H12	0.9300			
С9—01—Н1О	105 (2)	H14A—C14—H14B	108.6	
C10-02-C14	118.1 (2)	C14—C15—H15A	109.5	
С18—О3—НЗО	112.0 (18)	C14—C15—H15B	109.5	
C19—O4—C23	117.4 (2)	H15A—C15—H15B	109.5	
C7—N1—C1	106.0 (2)	C14—C15—H15C	109.5	
C7—N2—C6	106.7 (2)	H15A—C15—H15C	109.5	
C7—N2—C16	129.8 (2)	H15B—C15—H15C	109.5	
C6—N2—C16	123.1 (2)	N2-C16-C17	113.5 (2)	
N1—C1—C2	131.0 (2)	N2—C16—H16A	108.9	
N1-C1-C6	109.2 (2)	C17—C16—H16A	108.9	
C2—C1—C6	119.8 (3)	N2—C16—H16B	108.9	
C3—C2—C1	118.1 (3)	C17—C16—H16B	108.9	
C3—C2—H2	121.0	H16A—C16—H16B	107.7	

C1—C2—H2	121.0	C22—C17—C18	119.5 (2)
C2—C3—C4	121.5 (3)	C22—C17—C16	123.2 (2)
С2—С3—Н3	119.2	C18—C17—C16	117.2 (2)
С4—С3—Н3	119.2	O3—C18—C17	117.4 (2)
C5—C4—C3	121.3 (3)	O3—C18—C19	122.2 (2)
C5—C4—H4	119.4	C17—C18—C19	120.4 (2)
C3—C4—H4	119.4	04-C19-C20	125.7(2)
C4-C5-C6	116.9 (3)	04-C19-C18	1151(2)
C4	121.6	C_{20} C_{19} C_{18}	119.1(2)
С6—С5—Н5	121.0	$C_{20} = C_{10} = C_{10}$	119.2(2) 119.9(3)
N_{2}	121.0 131.3(2)	$C_{21} = C_{20} = H_{20}$	120.0
$N_2 = C_0 = C_3$ $N_2 = C_6 = C_1$	106.2(2)	$C_{21} = C_{20} = H_{20}$	120.0
12 - 60 - 61	100.2(2) 122.4(3)	$C_{12}^{22} = C_{21}^{21} = C_{20}^{20}$	120.0
C_{3}	122.4(3)	$C_{22} = C_{21} = C_{20}$	120.3 (3)
$\frac{1}{1} - \frac{1}{2} - \frac{1}{2}$	111.9(2)	C_{22} C_{21} H_{21}	119.0
NI = C7 = C8	121.0(2)	$C_{20} = C_{21} = H_{21}$	119.8
$N_2 = C_1 = C_8$	126.5 (2)	$C_{21} = C_{22} = C_{17}$	120.6 (2)
C9—C8—C13	118.6 (2)	C21—C22—H22	119.7
C9—C8—C7	117.8 (2)	C17—C22—H22	119.7
C13—C8—C7	123.4 (2)	04—C23—C24	108.0 (2)
O1—C9—C8	122.7 (2)	O4—C23—H23A	110.1
O1—C9—C10	117.2 (2)	C24—C23—H23A	110.1
C8—C9—C10	120.1 (2)	O4—C23—H23B	110.1
O2—C10—C11	126.1 (2)	C24—C23—H23B	110.1
O2—C10—C9	114.0 (2)	H23A—C23—H23B	108.4
C11—C10—C9	119.9 (2)	C23—C24—H24A	109.5
C10-C11-C12	120.0 (3)	C23—C24—H24B	109.5
C10-C11-H11	120.0	H24A—C24—H24B	109.5
C12—C11—H11	120.0	C23—C24—H24C	109.5
C13—C12—C11	120.7 (3)	H24A—C24—H24C	109.5
C13—C12—H12	119.6	H24B—C24—H24C	109.5
C11—C12—H12	119.6	O5—N3—O6	123.0 (5)
C12—C13—C8	120.5 (3)	O5—N3—C25	121.8 (5)
C12—C13—H13	119.7	O6—N3—C25	115.2 (4)
C8—C13—H13	119.7	N3—C25—H25A	109.5
O2—C14—C15	107.1 (2)	N3—C25—H25B	109.5
O2—C14—H14A	110.3	H25A—C25—H25B	109.5
C15—C14—H14A	110.3	N3—C25—H25C	109.5
Ω^2 — $C14$ —H14B	110.3	H25A - C25 - H25C	109.5
C_{15} C_{14} H_{14B}	110.3	$H_{25B} = C_{25} = H_{25C}$	109.5
	110.5	11230 023 11230	109.5
C7—N1—C1—C2	179 1 (3)	01 - C9 - C10 - 02	-33(3)
C7-N1-C1-C6	-16(3)	C8-C9-C10-O2	1780(2)
$N_1 - C_1 - C_2 - C_3$	-1799(3)	01 - C9 - C10 - C11	175.6(2)
C6-C1-C2-C3	0.8 (4)	C8 - C9 - C10 - C11	-31(4)
$C_1 - C_2 - C_3 - C_4$	-0.1(4)	02-C10-C11-C12	170 3 (2)
$C_1 - C_2 - C_3 - C_4$	-0.6(5)	C_{2} C_{10} C_{11} C_{12}	179.3(2)
$C_2 = C_3 = C_4 = C_5$	0.0(3)	C_{2} C_{10} C_{11} C_{12} C_{12} C_{12}	1.2(4)
C_{3} C_{4} C_{5} C_{5}	-179.2(2)	$C_{10} - C_{11} - C_{12} - C_{13}$	1.2(4)
$U_1 - 1N_2 - U_0 - U_3$	1/0.3 (3)	011-012-013-08	0.3(4)

C16—N2—C6—C5	8.6 (4)	C9—C8—C13—C12	-2.2 (4)
C7—N2—C6—C1	1.0 (3)	C7—C8—C13—C12	-178.3 (3)
C16—N2—C6—C1	-172.1 (2)	C10-02-C14-C15	-176.3 (2)
C4—C5—C6—N2	179.4 (3)	C7—N2—C16—C17	102.3 (3)
C4—C5—C6—C1	0.2 (4)	C6—N2—C16—C17	-86.3 (3)
N1-C1-C6-N2	0.3 (3)	N2-C16-C17-C22	-3.6 (4)
C2-C1-C6-N2	179.8 (2)	N2-C16-C17-C18	177.0 (2)
N1-C1-C6-C5	179.7 (3)	C22—C17—C18—O3	-179.6 (2)
C2-C1-C6-C5	-0.9 (4)	C16—C17—C18—O3	-0.2 (4)
C1—N1—C7—N2	2.3 (3)	C22-C17-C18-C19	-0.8 (4)
C1—N1—C7—C8	-178.9 (2)	C16—C17—C18—C19	178.6 (2)
C6—N2—C7—N1	-2.1 (3)	C23—O4—C19—C20	-12.0 (4)
C16—N2—C7—N1	170.3 (2)	C23—O4—C19—C18	168.1 (2)
C6—N2—C7—C8	179.1 (2)	O3—C18—C19—O4	-0.6 (4)
C16—N2—C7—C8	-8.4 (4)	C17—C18—C19—O4	-179.2 (2)
N1—C7—C8—C9	-25.1 (4)	O3—C18—C19—C20	179.5 (2)
N2—C7—C8—C9	153.6 (2)	C17—C18—C19—C20	0.8 (4)
N1-C7-C8-C13	151.1 (3)	O4—C19—C20—C21	179.5 (3)
N2-C7-C8-C13	-30.3 (4)	C18—C19—C20—C21	-0.6 (4)
C13—C8—C9—O1	-174.7 (2)	C19—C20—C21—C22	0.4 (4)
C7—C8—C9—O1	1.6 (4)	C20-C21-C22-C17	-0.4 (4)
C13—C8—C9—C10	3.9 (4)	C18—C17—C22—C21	0.6 (4)
C7—C8—C9—C10	-179.8 (2)	C16—C17—C22—C21	-178.7 (3)
C14—O2—C10—C11	-4.9 (4)	C19—O4—C23—C24	-172.3 (2)
C14—O2—C10—C9	173.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
01—H1 <i>O</i> …N1	0.92 (4)	1.75 (4)	2.596 (3)	152 (3)
O3—H3 <i>O</i> ···O4	0.99 (3)	2.27 (3)	2.710(2)	106 (2)
O3—H3 <i>O</i> …O1 ⁱ	0.99 (3)	1.91 (3)	2.819 (2)	151 (2)
O3—H3 <i>O</i> ···O2 ⁱ	0.99 (3)	2.36 (3)	3.012 (3)	122 (2)

Symmetry code: (i) -x, y+1/2, -z+1/2.