

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4,7,8-Tetramethyl-1,10-phenanthrolin-1-ium nitrate monohvdrate

Ke-Jie Zhang^a* and Yan-Fang Zhang^b

^aSchool of Material Science and Engineering, Nanjing Institute of Science and Technology, Nanjing 211168, People's Republic of China, and ^bDepartment of Life Science and Technology, Xinxiang College, Xinxiang 453003, People's Republic of China

Correspondence e-mail: xxzhangyanfang@126.com

Received 10 May 2012; accepted 21 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.052; wR factor = 0.153; data-to-parameter ratio = 11.1.

In the crystal of the title compound, $C_{16}H_{17}N_2^+ \cdot NO_3^- \cdot H_2O_3$, the tetramethyl-1,10-phenanthrolinium cations, nitrate anions and lattice water molecules are all located on a mirror plane with the methyl H atoms of the cation equally disordered over two sites about the mirror plane. The cation, anion and water molecule are linked by $O-H \cdots O$ and $N-H \cdots O$ hydrogen bonds into a sheet parallel to the bc plane. π - π stacking between phenanthroline ring systems is observed in the crystal structure, the centroid-centroid distance being 3.4745 (6) Å.

Related literature

For proton-transfer structures of phenanthroline and its derivatives, see: Bei et al. (2004); Buttery et al. (2006); Gillard et al. (1998); Harvey et al. (2008); Hensen et al. (1998, 2000); Kolev et al. (2009); Lin et al. (2009); Maresca et al. (1989); Milani et al. (1997); Montagu-Bourin et al. (1981); Shang et al. (2006); Thevenet & Rodier (1978); Thevenet et al. (1977, 1978, 1980); Wang et al. (1999); Yu et al. (2006).

Experimental

Crystal data

$C_{16}H_{17}N_2^+ \cdot NO_3^- \cdot H_2O$	V = 3126.1 (6) Å ³
$M_r = 317.34$	Z = 8
Orthorhombic, Cmca	Mo $K\alpha$ radiation
a = 6.7401 (8) Å	$\mu = 0.10 \text{ mm}^{-1}$
b = 24.090 (3) Å	T = 296 K
c = 19.254 (2) Å	$0.37 \times 0.30 \times 0.21 \text{ mm}$

Data collection

Bruker SMART 1000 CCD area-	1585 independent reflections
detector diffractometer	1149 reflections with $I > 2\sigma(I)$
11308 measured reflections	$R_{\rm int} = 0.029$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 143 parameters $wR(F^2) = 0.153$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$ S = 1.03 $\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$ 1585 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N2-H2\cdots O4^{i}$ $O4-H1W\cdots O1^{ii}$	0.86 0.84	1.86 1.97	2.692(3) 2.808(4)	164 174
$O4-H2W \cdot \cdot O1^{iii}$	0.83	2.07	2.886 (4)	170

Symmetry codes: (i) x + 1, y, z; (ii) $x - \frac{1}{2}$, $y - \frac{1}{2}$, z; (iii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010).

Financial support from the National Natural Science Foundation of Henan Educational Committee, China (2011 C550002) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5537).

References

- Bei, F.-L., Yang, X.-J., Lu, L.-D. & Wang, X. (2004). J. Mol. Struct. 689, 237-243
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Buttery, J. H., Effendy, Junk, P. C., Mutrofin, S., Skelton, B. W., Whitaker, C. R., White, A. H. (2006). Z. Anorg. Allg. Chem. 632, 1326-1339.

- Gillard, R. D., Hursthouse, M. B., Abdul Malik, K. M. & Paisey, S. (1998). J. Chem. Crystallogr. 28, 611-619.
- Harvey, M. A., Baggio, S., Garland, M. T. & Baggio, R. (2008). Acta Cryst. C64, 0489-0492
- Hensen, K., Gebhardt, F. & Bolte, M. (1998). Acta Cryst. C54, 359-361.
- Hensen, K., Spangenberg, B. & Bolte, M. (2000). Acta Cryst. C56, 208-210.
- Kolev, T., Koleva, B. B., Nikolova, R., Seidel, R. W., Mayer-Figge, H., Spiteller, M. & Sheldrick, W. S. (2009). Spectrochim. Acta Part A, 73, 929-935.
- Lin, X.-Y., Tang, S.-J. & Wu, W.-S. (2009). Acta Cryst. E65, 02367.

Maresca, L., Natile, G. & Fanizzi, F. P. (1989). J. Am. Chem. Soc. 111, 1492-1493

Milani, B., Anzilutti, A., Vicentini, L., Santi, A. S., o Zangrando, E., Geremia, S. & Mestroni, G. (1997). Organometallics, 16, 5064-5075

Montagu-Bourin, M., Levillain, P., Ceolin, R., Thevenet, G. & Souleau, C. (1981). J. Appl. Cryst. 14, 63.

- Shang, R.-L., Du, L. & Sun, B.-W. (2006). Acta Cryst. E62, o2920-o2921.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Thevenet, G. & Rodier, N. (1978). Acta Cryst. B34, 880-882.
- Thevenet, G., Rodier, N. & Khodadad, P. (1978). Acta Cryst. B34, 2594-2599.
- Thevenet, G., Souleau, C., Montagu-Bourin, M. & Ceolin, R. (1980). J. Appl. Cryst. 13, 315.
- Thevenet, G., Toffoli, P., Rodier, N. & Céolin, R. (1977). Acta Cryst. B33, 2526–2529.
- Wang, Y.-Q., Wang, Z.-M., Liao, C.-S. & Yan, C.-H. (1999). Acta Cryst. C55, 1503–1506.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yu, Y.-Q., Ding, C.-F., Zhang, M.-L., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, 02187-02189.

supporting information

Acta Cryst. (2012). E68, o1931-o1932 [doi:10.1107/S1600536812023318]

3,4,7,8-Tetramethyl-1,10-phenanthrolin-1-ium nitrate monohydrate

Ke-Jie Zhang and Yan-Fang Zhang

S1. Comment

1,10-Phenanthroline and its derivatives have been recognized as good proton acceptors, and usually are considered a suitable agent in the synthesis of proton-transfer systems. Some proton-transfer complexes based on 1,10-phenanthroline (Buttery *et al.* 2006; Gillard *et al.* 1998; Hensen *et al.* 1998, 2000; Kolev *et al.* 2009; Maresca *et al.* 1989; Milani *et al.* 1997; Montagu-Bourin, Levillain, Ceolin, Thevenet & Souleau 1981; Shang *et al.* 2006; Thevenet & Rodier 1978; Thevenet *et al.* 1977, 1980; Thevenet, Rodier & Khodadad 1978; Wang *et al.* 1999), 2,9-dimethyl-1,10-phenanthroline (Harvey *et al.* 2008; Yu *et al.* 2006), and 6-nitro-1,10-phenanthroline (Bei *et al.* 2004), 5,6-dihydroxy-phenanthroline (Lin *et al.* 2009) have been synthesized. In the recent work, the title compound (I), $C_{16}H_{17}N_2$]NO₃.H₂O, was obtained unintentionally as a major product in the reaction of Tb(NO₃)₃.6H₂O with the 3,4,7,8-tetramethyl-1,10-phenanthroline in water. To the best our knowledge, this is the first example of proton-transfer system containing 3,4,7,8-tetramethyl-1,10-1,10-phenanthroline.

The numbering scheme of (I) is given in Fig. 1, and the selected bond lengths and bond angles are provided in the cif file. The crystal contains one protonated 3,4,7,8-tetramethyl-1,10- 1,10-phenanthroline cation, one nitrate anion and one water molecule. In the crystal structure, the cations, anions and water molecules are linked into two dimensional layers parallel to the *bc* plane by N—H···O and O—H···O hydrogen bonds (Table 1). Among them, N—H···O hydrogen bonds play a very important role in the formation of proton-transfer compounds. Additionally, the monoprotonated 3,4,7,8-tetramethyl-1,10- 1,10-phenanthroline cations are parallel to each other in the crystal packing, showing π - π interactions (Fig. 2); the centroid–centroid distance is 3.4745 (6) Å.

S2. Experimental

A aqueous solution (12 ml) of $Tb(NO_3)_3.6H_2O$ (1 mmol) and 3,4,7,8-tetramethyl-1,10-phenanthroline (1 mmol) was stirred. The mixture was then transferred to a 25-ml Teflon reactor and kept at 433 K for 3 d under autogenous pressure, and then cooled to room temperature at a rate of 10 K h⁻¹. Colorless crystals of the title compound were obtained.

S3. Refinement

The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with C—H = 0.93 Å, $U_{iso}(H) = 1.2U_{eq}(C \text{ aromatic})$ and C—H = 0.96 Å, $U_{iso}(H) = 1.5U_{eq}(C \text{ methyl})$, respectively. The H atoms bound to O were located in a difference Fourier map, and refined as riding in their as-found relative positions with $U_{iso}(H) = 1.5U_{eq}(O)$. The methyl H atoms are equally disordered over two sites about the mirror plane.

Figure 1

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Figure 2

 π - π interactions between the neighboring aromatic rings of the title compound. Aromatic hydrogen atoms and methyl groups have been omitted for clarity.

3,4,7,8-Tetramethyl-1,10-phenanthrolin-1-ium nitrate monohydrate

Crystal data

•	
$C_{16}H_{17}N_2^+ \cdot NO_3^- \cdot H_2O$	F(000) = 1344
$M_r = 317.34$	$D_{\rm x} = 1.349 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Cmca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -C 2bc 2	Cell parameters from 2972 reflections
a = 6.7401 (8) Å	$\theta = 2.7 - 25.0^{\circ}$
b = 24.090 (3) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 19.254 (2) Å	T = 296 K
V = 3126.1 (6) Å ³	Block, colorless
Z = 8	$0.37 \times 0.30 \times 0.21 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD area-detector	1149 reflections with $I > 2\sigma(I)$
diffractometer	$R_{\rm eff} = 0.029$

diffactometer	$\Lambda_{\rm int} = 0.029$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$
Graphite monochromator	$h = -8 \rightarrow 7$
φ and ω scans	$k = -28 \rightarrow 28$
11308 measured reflections	$l = -23 \rightarrow 23$
1585 independent reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.153$	neighbouring sites
<i>S</i> = 1.03	H-atom parameters constrained
1585 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0707P)^2 + 2.7655P]$
143 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.22 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	1.0000	0.19047 (14)	0.08694 (15)	0.0642 (9)	
H1	1.0000	0.1825	0.0397	0.077*	
C2	1.0000	0.24624 (14)	0.10669 (16)	0.0618 (8)	
C3	1.0000	0.25954 (12)	0.17669 (16)	0.0550 (8)	
C4	1.0000	0.21518 (11)	0.22551 (14)	0.0474 (7)	
C5	1.0000	0.22191 (12)	0.29933 (15)	0.0517 (7)	

H5	1.0000	0.2576	0.3177	0.062*
C6	1.0000	0.17823 (11)	0.34314 (14)	0.0520 (7)
H6	1.0000	0.1847	0.3908	0.062*
C7	1.0000	0.12218 (11)	0.31849 (13)	0.0485 (7)
C8	1.0000	0.07458 (12)	0.36186 (14)	0.0561 (8)
C9	1.0000	0.02213 (12)	0.33180 (16)	0.0635 (9)
C10	1.0000	0.01823 (12)	0.26008 (17)	0.0660 (9)
H10	1.0000	-0.0168	0.2396	0.079*
C11	1.0000	0.11486 (10)	0.24627 (14)	0.0483 (7)
C12	1.0000	0.16081 (12)	0.19900 (13)	0.0485 (7)
C13	1.0000	0.29005 (16)	0.05051 (19)	0.0890 (12)
H13A	1.0207	0.2728	0.0062	0.134* 0.50
H13B	1.1046	0.3162	0.0592	0.134* 0.50
H13C	0.8747	0.3090	0.0505	0.134* 0.50
C14	1.0000	0.31938 (13)	0.1996 (2)	0.0764 (10)
H14A	0.8712	0.3352	0.1918	0.115* 0.50
H14B	1.0972	0.3397	0.1734	0.115* 0.50
H14C	1.0316	0.3214	0.2481	0.115* 0.50
C15	1.0000	0.08170 (15)	0.43955 (15)	0.0770 (11)
H15A	0.9482	0.0488	0.4610	0.116* 0.50
H15B	0.9186	0.1129	0.4518	0.116* 0.50
H15C	1.1332	0.0880	0.4554	0.116* 0.50
C16	1.0000	-0.03134 (13)	0.3737 (2)	0.0912 (13)
H16A	1.0869	-0.0274	0.4129	0.137* 0.50
H16B	1.0453	-0.0614	0.3450	0.137* 0.50
H16C	0.8679	-0.0390	0.3896	0.137* 0.50
N1	1.0000	0.14820 (10)	0.13060 (11)	0.0570 (7)
N2	1.0000	0.06277 (9)	0.21952 (11)	0.0574 (7)
H2	1.0000	0.0585	0.1752	0.069*
N3	0.5000	0.38702 (12)	0.09781 (14)	0.0702 (8)
O1	0.5000	0.41620 (12)	0.04627 (14)	0.1338 (15)
O2	0.5000	0.40810 (14)	0.15514 (15)	0.1348 (15)
O3	0.5000	0.33707 (11)	0.09262 (15)	0.1115 (11)
O4	0.0000	0.02821 (10)	0.08654 (12)	0.1174 (13)
H2W	0.0000	0.0477	0.0512	0.176*
H1W	0.0000	-0.0058	0.0779	0.176*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.080 (2)	0.077 (2)	0.0361 (15)	0.000	0.000	0.0103 (14)
C2	0.066 (2)	0.067 (2)	0.0532 (18)	0.000	0.000	0.0177 (15)
C3	0.0574 (18)	0.0486 (16)	0.0589 (18)	0.000	0.000	0.0098 (13)
C4	0.0515 (16)	0.0464 (15)	0.0444 (15)	0.000	0.000	0.0003 (11)
C5	0.0607 (18)	0.0442 (15)	0.0501 (16)	0.000	0.000	-0.0088 (12)
C6	0.0679 (19)	0.0516 (16)	0.0365 (14)	0.000	0.000	-0.0074 (12)
C7	0.0616 (18)	0.0480 (15)	0.0360 (13)	0.000	0.000	-0.0022 (11)
C8	0.078 (2)	0.0541 (17)	0.0366 (14)	0.000	0.000	0.0036 (12)

supporting information

C9	0.093 (2)	0.0498 (17)	0.0477 (17)	0.000	0.000	0.0039 (13)
C10	0.101 (3)	0.0448 (16)	0.0521 (18)	0.000	0.000	-0.0060 (13)
C11	0.0632 (18)	0.0475 (15)	0.0343 (13)	0.000	0.000	-0.0024 (11)
C12	0.0574 (17)	0.0528 (16)	0.0354 (13)	0.000	0.000	0.0007 (11)
C13	0.110 (3)	0.091 (3)	0.067 (2)	0.000	0.000	0.036 (2)
C14	0.091 (3)	0.055 (2)	0.083 (2)	0.000	0.000	0.0130 (17)
C15	0.125 (3)	0.070 (2)	0.0363 (15)	0.000	0.000	0.0060 (14)
C16	0.149 (4)	0.053 (2)	0.072 (2)	0.000	0.000	0.0145 (17)
N1	0.0772 (17)	0.0600 (14)	0.0338 (11)	0.000	0.000	0.0002 (10)
N2	0.0918 (19)	0.0467 (13)	0.0336 (11)	0.000	0.000	-0.0057 (10)
N3	0.095 (2)	0.0645 (18)	0.0508 (16)	0.000	0.000	-0.0033 (13)
01	0.259 (5)	0.0823 (19)	0.0605 (16)	0.000	0.000	0.0153 (15)
O2	0.233 (4)	0.104 (2)	0.0669 (18)	0.000	0.000	-0.0228 (17)
O3	0.178 (3)	0.0621 (17)	0.095 (2)	0.000	0.000	0.0016 (15)
O4	0.238 (4)	0.0661 (15)	0.0483 (14)	0.000	0.000	-0.0128 (11)

Geometric parameters (Å, °)

C1—N1	1.320 (4)	C11—N2	1.356 (3)	
C1—C2	1.396 (5)	C11—C12	1.433 (4)	
C1—H1	0.9300	C12—N1	1.351 (3)	
C2—C3	1.385 (4)	C13—H13A	0.9600	
C2—C13	1.511 (4)	C13—H13B	0.9600	
C3—C4	1.423 (4)	C13—H13C	0.9600	
C3—C14	1.508 (4)	C14—H14A	0.9600	
C4—C12	1.406 (4)	C14—H14B	0.9600	
C4—C5	1.431 (4)	C14—H14C	0.9600	
C5—C6	1.349 (4)	C15—H15A	0.9600	
С5—Н5	0.9300	C15—H15B	0.9600	
C6—C7	1.431 (4)	C15—H15C	0.9600	
С6—Н6	0.9300	C16—H16A	0.9600	
C7—C11	1.402 (4)	C16—H16B	0.9600	
C7—C8	1.419 (4)	C16—H16C	0.9600	
C8—C9	1.390 (4)	N2—H2	0.8600	
C8—C15	1.506 (4)	N3—O3	1.208 (4)	
C9—C10	1.384 (5)	N3—O2	1.215 (4)	
C9—C16	1.520 (4)	N3—O1	1.216 (4)	
C10—N2	1.327 (4)	O4—H2W	0.8276	
С10—Н10	0.9300	O4—H1W	0.8365	
N1—C1—C2	124.7 (3)	N1—C12—C11	116.4 (2)	
N1-C1-H1	117.7	C4—C12—C11	119.3 (2)	
C2-C1-H1	117.7	C2—C13—H13A	109.5	
C3—C2—C1	119.2 (3)	C2—C13—H13B	109.5	
C3—C2—C13	122.3 (3)	H13A—C13—H13B	109.5	
C1—C2—C13	118.5 (3)	C2—C13—H13C	109.5	
C2—C3—C4	118.0 (3)	H13A—C13—H13C	109.5	
C2-C3-C14	120.4 (3)	H13B—C13—H13C	109.5	

C4—C3—C14	121.7 (3)	C3—C14—H14A	109.5
C12—C4—C3	117.4 (2)	C3—C14—H14B	109.5
C12—C4—C5	117.8 (2)	H14A—C14—H14B	109.5
C3—C4—C5	124.8 (3)	C3—C14—H14C	109.5
C6—C5—C4	122.2 (3)	H14A—C14—H14C	109.5
С6—С5—Н5	118.9	H14B—C14—H14C	109.5
C4—C5—H5	118.9	C8-C15-H15A	109.5
C5—C6—C7	121.9 (2)	C8-C15-H15B	109.5
C5—C6—H6	119.0	H15A—C15—H15B	109.5
C7—C6—H6	119.0	C8-C15-H15C	109.5
C11—C7—C8	118.8 (2)	H15A—C15—H15C	109.5
C11—C7—C6	116.6 (2)	H15B—C15—H15C	109.5
C8—C7—C6	124.6 (2)	C9—C16—H16A	109.5
C9—C8—C7	119.3 (2)	C9—C16—H16B	109.5
C9—C8—C15	121.2 (3)	H16A—C16—H16B	109.5
C7—C8—C15	119.5 (3)	C9—C16—H16C	109.5
C10—C9—C8	118.5 (3)	H16A—C16—H16C	109.5
C10—C9—C16	118.2 (3)	H16B—C16—H16C	109.5
C8—C9—C16	123.3 (3)	C1-N1-C12	116.5 (3)
N2-C10-C9	122.2 (3)	C10 - N2 - C11	121.6 (2)
N2-C10-H10	118.9	C10—N2—H2	119.2
C9—C10—H10	118.9	C11—N2—H2	119.2
N2—C11—C7	119.5 (2)	O3—N3—O2	119.4 (3)
N2-C11-C12	118.3 (2)	03—N3—01	120.6 (3)
C7—C11—C12	122.2 (2)	O2—N3—O1	120.0 (3)
N1—C12—C4	124.3 (2)	H2W—O4—H1W	113.2
N1—C1—C2—C3	0.0	C15—C8—C9—C16	0.0
N1—C1—C2—C13	180.0	C8—C9—C10—N2	0.0
C1—C2—C3—C4	0.0	C16—C9—C10—N2	180.0
C13—C2—C3—C4	180.0	C8—C7—C11—N2	0.0
C1—C2—C3—C14	180.0	C6—C7—C11—N2	180.0
C13—C2—C3—C14	0.0	C8—C7—C11—C12	180.0
C2—C3—C4—C12	0.0	C6-C7-C11-C12	0.0
C14—C3—C4—C12	180.0	C3—C4—C12—N1	0.0
C2—C3—C4—C5	180.0	C5-C4-C12-N1	180.0
C14—C3—C4—C5	0.0	C3—C4—C12—C11	180.0
C12—C4—C5—C6	0.0	C5—C4—C12—C11	0.0
C3—C4—C5—C6	180.0	N2-C11-C12-N1	0.0
C4—C5—C6—C7	0.0	C7-C11-C12-N1	180.0
C5—C6—C7—C11	0.0	N2—C11—C12—C4	180.0
C5—C6—C7—C8	180.0	C7—C11—C12—C4	0.0
C11—C7—C8—C9	0.0	C2-C1-N1-C12	0.0
C6—C7—C8—C9	180.0	C4—C12—N1—C1	0.0
C11—C7—C8—C15	180.0	C11—C12—N1—C1	180.0
C6—C7—C8—C15	0.0	C9—C10—N2—C11	0.0
C7—C8—C9—C10	0.0	C7-C11-N2-C10	0.0
C15—C8—C9—C10	180.0	C12—C11—N2—C10	180.0

C7—C8—C9—C16 180.0

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N2—H2···O4 ⁱ	0.86	1.86	2.692 (3)	164
O4—H1 <i>W</i> ···O1 ⁱⁱ	0.84	1.97	2.808 (4)	174
O4—H2W···O1 ⁱⁱⁱ	0.83	2.07	2.886 (4)	170

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1/2, *y*-1/2, *z*; (iii) -*x*+1/2, -*y*+1/2, -*z*.