
2,4-Dioxa-k6-thiatetracyclo-
[5.3.1.15,9.01,5]dodecane-3,3-dione

Savvas Ioannou* and Eleni Moushi

Chemistry Department, University of Cyprus, Nicosia 1678, Cyprus

Correspondence e-mail: ioannou.savvas@ucy.ac.cy

Received 5 April 2012; accepted 8 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean �(C–C) = 0.003 Å;
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The crystal structure of the title compound, C9H12O4S, was

determined in order to investigate the effect of the eclipsed O

atoms on the bond length of the vicinal quaternary C atoms.

The two quaternary C atoms of the noradamantane skeleton

and the two O atoms to which they are connected all located

essentially in the same plane (maximum deviation = 0.01 Å),

resulting in an eclipsed conformation of the C—O bonds. The

C—C bond of the quaternary C atoms is 1.581 (3) Å,

considerably longer than the other C—C bonds of the

molecule due to the stretch of the cage structure.

Related literature

For reviews on noradamantene and analogous pyramidalized

alkenes, see: Borden (1989, 1996); Vázquez & Camps (2005).

For the syntheses of cyclic sulfates of acyclic alcohols, see:

Byun et al. (2000); Kaiser (1970); Boer et al. (1968). For the

synthesis of the precursor diol (tricyclo-[3.3.1.03,7]nonane-3,7-

diol), an important intermediate in the synthetic route towards

the generation of noradamantene, see: Zalikowski et al.

(1980); Bertz (1985). For the synthesis of the title compound,

see: Ioannou & Nicolaides (2009).

Experimental

Crystal data

C9H12O4S
Mr = 216.25
Monoclinic, P21=n
a = 7.6571 (3) Å
b = 13.0442 (6) Å
c = 9.1755 (4) Å
� = 95.410 (4)�

V = 912.37 (7) Å3

Z = 4
Mo K� radiation
� = 0.34 mm�1

T = 100 K
0.05 � 0.03 � 0.02 mm

Data collection

Oxford Diffraction SuperNova
Dual Cu at zero Atlas
diffractometer

Absorption correction: multi-scan
(CrysAlis RED; Oxford

Diffraction, 2008)
Tmin = 0.803, Tmax = 1.000

5195 measured reflections
1596 independent reflections
1389 reflections with I > 2�(I)
Rint = 0.036

Refinement

R[F 2 > 2�(F 2)] = 0.036
wR(F 2) = 0.097
S = 1.02
1596 reflections

127 parameters
H-atom parameters constrained
��max = 0.30 e Å�3

��min = �0.36 e Å�3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell

refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduc-

tion: CrysAlis RED; program(s) used to solve structure: SHELXS97

(Sheldrick, 2008); program(s) used to refine structure: SHELXL97

(Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg,

2006) and Mercury (Macrae et al., 2006); software used to prepare

material for publication: WinGX (Farrugia, 1999) and publCIF

(Westrip, 2010).
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2,4-Dioxa-λ6-thiatetracyclo[5.3.1.15,9.01,5]dodecane-3,3-dione
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S1. Comment 

Five member cyclic sulfates are known for their exceptional reactivity to solvolysis in comparison to the six member 

rings or their acyclic analogs (Kaiser 1970, Boer et al. 1968). Their significant role in organic synthesis originates from 

their high reactivity towards various nucleophiles (Byun et al. 2000).

Pyramidalized alkenes is a special category of olefins which have their four substituents of the double bond not lying on 

the same plane (Borden 1989, 1996, Vázquez & Camps et al. 2005). This fact makes the higher pyramidalized alkenes 

(like noradamantene) very reactive and impossible to isolate at ambient conditions. Due to their high reactivity, once they 

form, they react instantly with any nucleophile. In the absence of any reactive compound during their formation, the most 

common product is their [2 + 2] dimer. Noradamantene is a member of a homologous series of this category and its 

preparation is quite important on studying the properties of these highly reactive compounds, as well as using it for the 

preparation of larger polycyclic hydrocarbons. The only convenient way of producing noradamantene quantitative is by 

reduction of the corresponding diiodide (scheme 3). Unfortunately, the precursor diol gives a very poor yield of diiodide 

(~20%) upon iodination (Ioannou et al. 2009). The title compound was synthesized in an attempt to build new good 

precursors for noradamantene, or even for the corresponding diiodide in order to improve the reaction yields.

S2. Experimental 

Synthesis of tricyclo[3.3.1.03,7]nonane-3,7-diol cyclic sulfate. Tricyclo[3.3.1.03,7]nonane-3,7-diol (500 mg, 3.25 mmol) 

was added to concd H2SO4 (95–97%, 5 ml) and the resulting mixture was stirred at 130 οC for 1 h. After cooling, H2O 

(100 ml) was added very slowly. The solution was extracted with CH2Cl2 (4 x 20 ml), and the combined organic phase 

was dried (Na2SO4) and the solvent was removed under vacuum to give crude product (629 mg, 90%). Crystallization by 

slow evaporation of the solvent (hexane/dichloromethane 4:1), afforded colorless needle-like crystals. Mp 117–118 oC; 

νmax(KBr) 2955, 2922, 2853, 1460, 1382, 1337, 1306, 1242, 1202, 1090, 960, 837, 812, 777; δH (300 MHz, CDCl3) 2.65 

(2H, s, –CH), 2.32 (4Heq, d, J = 11.1 Hz), 2.19 (4Hax, d, J = 10.8 Hz), 1.55 (2H, s, –CH2 bridge); δC (75.5 MHz, CDCl3) 

94.47 (C–O), 46.44 (CH2), 37.04 (CH), 33.00 (CH2 bridge). Anal. Calcd for C9H12O4S: C, 50.0; H, 5.6; S, 14.8. Found: C, 

50.4; H, 5.6; S, 14.4.

S3. Refinement 

The H atoms are positioned with idealized geometry and refined using a riding model with Uiso(H) = 1.2 of Ueq (C).
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Figure 1

Structure of the title compound tricyclo-[3.3.1.03,7]nonane-3,7-diol cyclic sulfate with the atom-labelling. Displacement 

elipsoids are drawn at the 50% probability level. 
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Figure 2

Molecular packing of the title compound, viewed along [1 0 0]. 
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Figure 3

Preparation of the title compound and the experimental path of noradamantene formation. 

2,4-Dioxa-λ6-thiatetracyclo[5.3.1.15,9.01,5]dodecane-3,3-dione 

Crystal data 

C9H12O4S
Mr = 216.25
Monoclinic, P21/n
a = 7.6571 (3) Å
b = 13.0442 (6) Å
c = 9.1755 (4) Å
β = 95.410 (4)°
V = 912.37 (7) Å3

Z = 4

F(000) = 456
Dx = 1.574 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 3034 reflections
θ = 3.1–28.8°
µ = 0.34 mm−1

T = 100 K
Needle, colorless
0.05 × 0.03 × 0.02 mm

Data collection 

Oxford Diffraction SuperNova Dual Cu at zero 
Atlas 
diffractometer

Radiation source: SuperNova (Mo) X-ray 
Source

Mirror monochromator
Detector resolution: 10.4223 pixels mm-1

ω scans
Absorption correction: multi-scan 

(CrysAlis RED; Oxford Diffraction, 2008)

Tmin = 0.803, Tmax = 1.000
5195 measured reflections
1596 independent reflections
1389 reflections with I > 2σ(I)
Rint = 0.036
θmax = 25.0°, θmin = 3.1°
h = −9→9
k = −14→15
l = −10→10
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Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.036
wR(F2) = 0.097
S = 1.02
1596 reflections
127 parameters
0 restraints
Primary atom site location: structure-invariant 

direct methods

Secondary atom site location: difference Fourier 
map

Hydrogen site location: inferred from 
neighbouring sites

H-atom parameters constrained
w = 1/[σ2(Fo

2) + (0.0463P)2 + 0.8407P] 
where P = (Fo

2 + 2Fc
2)/3

(Δ/σ)max < 0.001
Δρmax = 0.30 e Å−3

Δρmin = −0.36 e Å−3

Special details 

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and 
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. 
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, 
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used 
only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 
are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

S1 −0.10031 (6) 0.20071 (4) 0.77561 (6) 0.01630 (19)
O1 −0.05353 (18) 0.13375 (11) 0.64114 (16) 0.0169 (4)
O2 0.09088 (18) 0.23740 (11) 0.83001 (17) 0.0175 (4)
O3 −0.20095 (19) 0.28604 (12) 0.72290 (18) 0.0224 (4)
O4 −0.16597 (19) 0.13680 (12) 0.88353 (17) 0.0226 (4)
C1 0.4547 (3) 0.01132 (17) 0.7302 (2) 0.0185 (5)
H1A 0.5641 0.0202 0.7913 0.022*
H1B 0.4684 −0.0465 0.6658 0.022*
C2 0.3060 (3) −0.01186 (16) 0.8282 (2) 0.0177 (5)
H2 0.3305 −0.0733 0.8881 0.021*
C3 0.1296 (3) −0.01977 (16) 0.7334 (2) 0.0170 (5)
H3A 0.1327 −0.0705 0.6564 0.020*
H3B 0.0330 −0.0344 0.7914 0.020*
C4 0.1219 (3) 0.08940 (16) 0.6732 (2) 0.0147 (5)
C5 0.2365 (3) 0.09867 (17) 0.5474 (2) 0.0178 (5)
H5A 0.2076 0.1589 0.4879 0.021*
H5B 0.2300 0.0380 0.4860 0.021*
C6 0.4163 (3) 0.10886 (17) 0.6370 (2) 0.0180 (5)
H6 0.5104 0.1242 0.5750 0.022*
C7 0.3780 (3) 0.19974 (17) 0.7360 (3) 0.0181 (5)
H7A 0.4735 0.2121 0.8111 0.022*
H7B 0.3524 0.2620 0.6803 0.022*
C8 0.2171 (3) 0.15760 (16) 0.7992 (2) 0.0153 (5)
C9 0.2700 (3) 0.08211 (17) 0.9218 (2) 0.0189 (5)
H9A 0.1757 0.0698 0.9831 0.023*
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H9B 0.3742 0.1043 0.9819 0.023*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

S1 0.0148 (3) 0.0156 (3) 0.0191 (3) 0.0000 (2) 0.0042 (2) −0.0004 (2)
O1 0.0144 (7) 0.0174 (8) 0.0187 (8) 0.0018 (6) 0.0006 (6) −0.0029 (6)
O2 0.0150 (7) 0.0138 (8) 0.0239 (9) 0.0009 (6) 0.0027 (6) −0.0052 (7)
O3 0.0209 (8) 0.0200 (9) 0.0269 (10) 0.0054 (7) 0.0048 (7) 0.0023 (7)
O4 0.0223 (8) 0.0237 (9) 0.0229 (9) −0.0025 (7) 0.0076 (6) 0.0031 (7)
C1 0.0188 (11) 0.0159 (11) 0.0210 (12) 0.0020 (9) 0.0026 (9) −0.0014 (9)
C2 0.0210 (11) 0.0120 (11) 0.0196 (12) 0.0014 (9) 0.0005 (9) 0.0040 (9)
C3 0.0184 (11) 0.0132 (11) 0.0196 (12) −0.0017 (9) 0.0037 (8) −0.0004 (9)
C4 0.0116 (10) 0.0132 (11) 0.0191 (12) −0.0001 (9) −0.0001 (8) −0.0010 (9)
C5 0.0209 (11) 0.0169 (11) 0.0159 (12) 0.0022 (9) 0.0036 (9) 0.0005 (9)
C6 0.0165 (10) 0.0161 (11) 0.0225 (12) −0.0006 (9) 0.0075 (9) 0.0004 (9)
C7 0.0156 (11) 0.0155 (12) 0.0236 (13) −0.0016 (9) 0.0037 (9) −0.0011 (9)
C8 0.0148 (10) 0.0124 (11) 0.0189 (12) 0.0007 (9) 0.0037 (8) −0.0035 (9)
C9 0.0185 (10) 0.0222 (12) 0.0158 (12) 0.0001 (10) 0.0007 (8) 0.0006 (10)

Geometric parameters (Å, º) 

S1—O3 1.4129 (16) C3—H3B 0.9700
S1—O4 1.4221 (16) C4—C5 1.520 (3)
S1—O2 1.5759 (15) C4—C8 1.581 (3)
S1—O1 1.5801 (15) C5—C6 1.541 (3)
O1—C4 1.466 (2) C5—H5A 0.9700
O2—C8 1.466 (2) C5—H5B 0.9700
C1—C6 1.546 (3) C6—C7 1.538 (3)
C1—C2 1.546 (3) C6—H6 0.9800
C1—H1A 0.9700 C7—C8 1.514 (3)
C1—H1B 0.9700 C7—H7A 0.9700
C2—C9 1.536 (3) C7—H7B 0.9700
C2—C3 1.540 (3) C8—C9 1.521 (3)
C2—H2 0.9800 C9—H9A 0.9700
C3—C4 1.526 (3) C9—H9B 0.9700
C3—H3A 0.9700

O3—S1—O4 118.88 (9) C3—C4—C8 105.15 (17)
O3—S1—O2 109.24 (9) C4—C5—C6 98.78 (17)
O4—S1—O2 109.66 (9) C4—C5—H5A 112.0
O3—S1—O1 108.94 (9) C6—C5—H5A 112.0
O4—S1—O1 109.92 (9) C4—C5—H5B 112.0
O2—S1—O1 98.22 (8) C6—C5—H5B 112.0
C4—O1—S1 109.39 (12) H5A—C5—H5B 109.7
C8—O2—S1 109.44 (12) C7—C6—C5 99.84 (16)
C6—C1—C2 111.76 (17) C7—C6—C1 110.17 (18)
C6—C1—H1A 109.3 C5—C6—C1 109.73 (18)
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C2—C1—H1A 109.3 C7—C6—H6 112.2
C6—C1—H1B 109.3 C5—C6—H6 112.2
C2—C1—H1B 109.3 C1—C6—H6 112.2
H1A—C1—H1B 107.9 C8—C7—C6 98.85 (17)
C9—C2—C3 100.12 (16) C8—C7—H7A 112.0
C9—C2—C1 110.47 (17) C6—C7—H7A 112.0
C3—C2—C1 109.83 (18) C8—C7—H7B 112.0
C9—C2—H2 111.9 C6—C7—H7B 112.0
C3—C2—H2 111.9 H7A—C7—H7B 109.7
C1—C2—H2 111.9 O2—C8—C7 113.03 (17)
C4—C3—C2 98.27 (16) O2—C8—C9 116.85 (17)
C4—C3—H3A 112.1 C7—C8—C9 110.41 (17)
C2—C3—H3A 112.1 O2—C8—C4 105.88 (15)
C4—C3—H3B 112.1 C7—C8—C4 105.08 (17)
C2—C3—H3B 112.1 C9—C8—C4 104.40 (16)
H3A—C3—H3B 109.8 C8—C9—C2 98.76 (17)
O1—C4—C5 113.56 (17) C8—C9—H9A 112.0
O1—C4—C3 116.37 (16) C2—C9—H9A 112.0
C5—C4—C3 110.08 (18) C8—C9—H9B 112.0
O1—C4—C8 105.98 (16) C2—C9—H9B 112.0
C5—C4—C8 104.54 (16) H9A—C9—H9B 109.7


