organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1E,4E)-1-(2-Nitrophenyl)-5-(2,6,6trimethylcyclohex-1-en-1-yl)penta-1,4dien-3-one

Peng Zou, Yi-Jun Jin, Liu-Fang Xiang, Dong-Ping Sun and Shu-Lin Yang*

Institute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, People's Republic of China Correspondence e-mail: shulin_yang@126.com

Received 6 May 2012; accepted 17 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.055; wR factor = 0.144; data-to-parameter ratio = 14.8

In the title curcumin-ionone derivative, C₂₀H₂₃NO₃, the dihedral angle between the cyclohexene and benzene rings is $21.03 (8)^{\circ}$, with both double bonds in the interlinking olefinic chain adopting E conformations. Two of the methylene groups of the β -ionone ring are disordered over two sets of sites with occupancy ratios of 0.50:0.50 and 0.60:0.40. In the crystal, molecules are linked by weak C-H···O hydrogen bonds into zigzag chains extending along the b axis.

Related literature

For related structures, see: Liang et al. (2007); Zhang et al. (2012). For background to the biological properties of curcumin-ionone derivatives, see: Asokkumar et al. (2012); Hsu & Cheng (2007); Kuttan et al. (1985); Zhao, Cai et al. (2010); Zhao, Yang et al. (2010).

Experimental

Crvstal data

C ₂₀ H ₂₃ NO ₃	b = 19.2984 (15) Å
$M_r = 325.39$	c = 12.7491 (10) Å
Monoclinic, $P2_1/n$	$\beta = 92.892 \ (2)^{\circ}$
a = 7.2941 (6) Å	$V = 1792.3 (2) \text{ Å}^3$

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector	10762 measured reflections
diffractometer	3512 independent reflections
Absorption correction: multi-scan	2629 reflections with $I > 2\sigma($
(SADABS: Bruker, 2002)	$R_{i-1} = 0.029$
$T_{\text{min}} = 0.533, T_{\text{max}} = 1.000$	int the second s
- mm - eee, - max - eee	

T = 293 K

238 parameters

 $\Delta \rho_{\rm max} = 0.23 \text{ e} \text{ Å}^ \Delta \rho_{\rm min}$ = -0.14 e Å⁻³

H-atom parameters constrained

 $0.33 \times 0.25 \times 0.08 \text{ mm}$

 $> 2\sigma(I)$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.144$ S = 1.063512 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
C8−H8···O1 ⁱ	0.93	2.50	3.182 (2)	131
Summatry and a (i)	x 1 y 1 m	1		

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful for the Program Foundation of the Ministry of Education of China (grant No. 20093219110013) and the Nanjing University of Science and Technology Training Grant (S-LY and Y-JJ). The use of the X-ray crystallographic service at the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, and the valuable assistance of the staff there is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2210).

References

- Asokkumar, S., Naveenkumar, C., Raghunandhakumar, S., Kamaraj, S., Anandakumar, P., Jagan, S. & Devaki, T. (2012). Mol. Cell. Biochem. 363, 335-345
- Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hsu, C. H. & Cheng, A. L. (2007). Adv. Exp. Med. Biol. 595, 471-480.
- Kuttan, R., Sudheeran, P. C. & Josph, C. D. (1985). Cancer Lett. 29, 197-202. Liang, G., Yang, S.-L., Wang, X.-H., Li, Y.-R. & Li, X.-K. (2007). Acta Cryst. E63, o4118.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, Y.-L., Xiang, L.-F., Zou, P., Jin, Y.-J. & Yang, S.-L. (2012). Acta Cryst. E68. 01859.
- Zhao, C. G., Cai, Y. P., He, X. Z., Li, J. L., Zhang, L., Wu, J. Z., Zhao, Y. J., Yang, S. L., Li, X. K., Li, W. L. & Liang, G. (2010). Eur. J. Med. Chem. 45, 5773-5780
- Zhao, C. G., Yang, J., Wang, Y., Liang, D. L., Yang, X. Y., Wu, J. Z., Wu, X. P., Yang, S. L., Li, X. K. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388-2393.

supporting information

Acta Cryst. (2012). E68, o1858 [doi:10.1107/S1600536812022453]

(1*E*,4*E*)-1-(2-Nitrophenyl)-5-(2,6,6-trimethylcyclohex-1-en-1-yl)penta-1,4dien-3-one

Peng Zou, Yi-Jun Jin, Liu-Fang Xiang, Dong-Ping Sun and Shu-Lin Yang

S1. Comment

Ionone is an important intermediate in the metabolism of terpenoids, and has been isolated from many sources, and represents a promising candidate for chemopreventive applications. Ionone has been used for *in vivo* and *in vitro* protection against various types of cancer cells (Asokkumar *et al.*, 2012). Curcumin is a yellow compound isolated from the rhizome of the herb *Curcuma longa L*, which has been used for centuries as a dietary pigment, spice, and traditional medicine in India and China (Kuttan *et al.*, 1985). Several clinical trials involving curcumin are currently being conducted on patients with pancreatic cancer, multiple myeloma, rheumatoid arthritis, cystic fibrosis, inflammatory bowel disease, psoriasis, and other disorders (Hsu & Cheng, 2007). Our previous studies also showed that some monocarbonyl analogues of curcumin without the β -diketone moiety exhibited better anti-inflammatory activities than those of curcumin (Liang *et al.*, 2007; Zhao, Cai *et al.*, 2010; Zhao, Yang *et al.*, 2010).

In the present study, we designed and synthesized a series of ionone-based monocarbonyl analogues of curcumin by incorporating ionone and monocarbonyl dienone into one chemical entity. One of these was the title compound, $C_{20}H_{23}NO_3$ and its structure is reported here. In the molecule (Fig. 1) the dihedral angle between the cyclohexene ring and the benzene ring is 21.03 (8)° with both double bonds in the inter-linking olefinic chain adopting *E*-configurations. Two of the methylene groups (C15 and C16) of the β -ionone ring are disordered over two sites, C15' (S.O.F = 0.40) and C16' (S.O.F. = 0.50), respectively. In the crystal, the molecules are linked through a weak intermolecular aromatic C— H…O_{carbonyl} hydrogen bond, (Table 1), giving zigzag chains which extend down the *b*-cell direction.

S2. Experimental

To the mixture of β -ionone (2.5 mmol, 0.481 g) and 2-nitrobenzaldehyde (2.5 mmol) in 10 ml of ethanol, 1 ml of 10% NaOH was added and the mixture was stirred for 12 h at room temperature. After addition of 10 ml of water, the solution was extracted by 3×10 ml of CH₂Cl₂. The crude product was obtained from the combined organic layers, and was purified by silica gel column chromatography (elutant: EtOAc/hexane). Crystals of the title compound suitable for X-ray analysis were obtained from an ethanol/chloroform solution (1:3, v/v) at 293 K.

S3. Refinement

Hydrogen atoms were positioned geometrically, with C—H = 0.93 Å (aromatic or olefinic), 0.96 Å (methyl) or 0.97 Å (methylene) and were allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}$ (aromatic, olefinic or methylene C) or $1.5U_{eq}$ (methyl C). The methyl groups C15 and C16 were found to be disordered over two sites (C15' and C16') with occupancies of 0.60/0.40 and 0.50/0.50, respectively.

Figure 1

The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. The disordered components of C15 and C16 are not shown. Hydrogen atoms are drawn as spheres of arbitrary radius.

(1E,4E)-1-(2-Nitrophenyl)-5-(2,6,6-trimethylcyclohex-1-en-1-yl)penta-1,4-dien-3-one

Crystal data

C₂₀H₂₃NO₃ $M_r = 325.39$ Monoclinic, P2₁/n Hall symbol: -P 2yn a = 7.2941 (6) Å b = 19.2984 (15) Å c = 12.7491 (10) Å $\beta = 92.892$ (2)° V = 1792.3 (2) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\min} = 0.533, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.144$ S = 1.063512 reflections 238 parameters 0 restraints F(000) = 696 $D_x = 1.206 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2030 reflections $\theta = 5.3-42.7^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 KPrismatic, green $0.33 \times 0.25 \times 0.08 \text{ mm}$

10762 measured reflections 3512 independent reflections 2629 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 26.0^\circ, \ \theta_{min} = 1.9^\circ$ $h = -8 \rightarrow 8$ $k = -23 \rightarrow 19$ $l = -15 \rightarrow 15$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0618P)^{2} + 0.407P] \qquad \Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.14 \text{ e} \text{ Å}^{-3}$ $(\Delta/\sigma)_{max} = 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F2 against all reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F2, conventional Rfactors *R* are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating Rfactors (gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors

based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

1 racional alonic coordinates and isotropic or equivalent isotropic displacement parameters (11)	Fractional atomic coordinates	and isotropic o	r equivalent i	sotropic d	displacement	parameters	$(Å^2)$	ļ
--	-------------------------------	-----------------	----------------	------------	--------------	------------	---------	---

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.0393 (2)	0.29601 (10)	0.52846 (12)	0.0552 (5)	
01	0.67912 (19)	0.20268 (9)	0.48739 (10)	0.0668 (5)	
O2	0.1133 (2)	0.24512 (10)	0.56699 (11)	0.0761 (5)	
O3	-0.0291 (3)	0.34121 (11)	0.57997 (12)	0.0906 (6)	
C1	0.6322 (2)	0.18763 (10)	0.39702 (13)	0.0458 (5)	
C2	0.4555 (3)	0.21296 (11)	0.34870 (14)	0.0486 (5)	
H2	0.4212	0.1990	0.2807	0.058*	
C3	0.3453 (2)	0.25430 (10)	0.39799 (14)	0.0447 (4)	
H3	0.3813	0.2676	0.4661	0.054*	
C4	0.1692 (2)	0.28111 (9)	0.35343 (13)	0.0410 (4)	
C5	0.0265 (2)	0.30303 (9)	0.41389 (13)	0.0413 (4)	
C6	-0.1358 (3)	0.32970 (10)	0.37105 (15)	0.0487 (5)	
H6	-0.2263	0.3451	0.4143	0.058*	
C7	-0.1623 (3)	0.33330 (10)	0.26406 (15)	0.0530 (5)	
H7	-0.2733	0.3493	0.2341	0.064*	
C8	-0.0240 (3)	0.31316 (11)	0.20119 (15)	0.0536 (5)	
H8	-0.0411	0.3161	0.1285	0.064*	
C9	0.1391 (3)	0.28873 (10)	0.24514 (14)	0.0489 (5)	
H9	0.2323	0.2769	0.2014	0.059*	
C10	0.7434 (3)	0.14433 (10)	0.33055 (14)	0.0468 (5)	
H10	0.7035	0.1366	0.2611	0.056*	
C11	0.8992 (3)	0.11580 (10)	0.36674 (14)	0.0465 (5)	
H11	0.9313	0.1265	0.4364	0.056*	
C12	1.0294 (3)	0.07069 (10)	0.31721 (15)	0.0468 (5)	
C13	1.1754 (3)	0.04690 (10)	0.37653 (17)	0.0540 (5)	
C14	1.3181 (3)	0.00004 (14)	0.3345 (2)	0.0806 (8)	
H14A	1.3006	-0.0464	0.3612	0.097*	0.60
H14B	1.4386	0.0158	0.3598	0.097*	0.60
H14C	1.3564	-0.0326	0.3880	0.097*	0.40
H14D	1.4220	0.0272	0.3161	0.097*	0.40
C15	1.3113 (7)	-0.0023 (4)	0.2146 (5)	0.0806 (15)	0.60
H15A	1.3534	0.0414	0.1868	0.097*	0.60

H15B	1.3898	-0.0390	0.1908	0.097*	0.60
C16	1.1135 (8)	-0.0156 (3)	0.1771 (5)	0.0617 (14)	0.50
H16A	1.0659	-0.0555	0.2130	0.074*	0.50
H16B	1.1065	-0.0249	0.1022	0.074*	0.50
C15′	1.2479 (15)	-0.0375 (4)	0.2337 (8)	0.082 (3)	0.40
H15C	1.3461	-0.0635	0.2035	0.099*	0.40
H15D	1.1491	-0.0691	0.2485	0.099*	0.40
C16′	1.1810 (10)	0.0186 (4)	0.1612 (5)	0.0762 (16)	0.50
H16C	1.1588	0.0000	0.0910	0.091*	0.50
H16D	1.2736	0.0546	0.1582	0.091*	0.50
C17	0.9974 (3)	0.05041 (11)	0.20138 (16)	0.0582 (6)	
C18	1.2140 (3)	0.06430 (14)	0.49096 (18)	0.0751 (7)	
H18A	1.1982	0.1132	0.5013	0.113*	
H18B	1.3378	0.0515	0.5115	0.113*	
H18C	1.1305	0.0393	0.5328	0.113*	
C19	0.8125 (4)	0.01320 (13)	0.1825 (2)	0.0835 (8)	
H19A	0.7145	0.0462	0.1855	0.125*	
H19B	0.7994	-0.0214	0.2357	0.125*	
H19C	0.8082	-0.0085	0.1147	0.125*	
C20	1.0017 (3)	0.11384 (14)	0.13065 (17)	0.0729 (7)	
H20A	0.9097	0.1462	0.1504	0.109*	
H20B	0.9777	0.1001	0.0589	0.109*	
H20C	1.1205	0.1352	0.1381	0.109*	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0414 (9)	0.0854 (13)	0.0391 (9)	0.0153 (9)	0.0032 (7)	-0.0070 (9)
0.0511 (9)	0.1112 (13)	0.0381 (8)	0.0193 (8)	0.0009 (6)	-0.0105 (8)
0.0691 (11)	0.1120 (14)	0.0473 (8)	0.0321 (10)	0.0044 (7)	0.0175 (9)
0.0924 (13)	0.1301 (16)	0.0492 (9)	0.0438 (12)	0.0039 (8)	-0.0284 (10)
0.0395 (10)	0.0623 (12)	0.0361 (10)	0.0027 (9)	0.0070 (8)	0.0016 (8)
0.0431 (10)	0.0630 (12)	0.0396 (10)	0.0048 (9)	0.0018 (8)	-0.0062 (9)
0.0395 (10)	0.0578 (12)	0.0370 (9)	0.0027 (8)	0.0034 (8)	-0.0042 (8)
0.0409 (10)	0.0440 (10)	0.0382 (9)	0.0021 (8)	0.0027 (8)	-0.0044 (7)
0.0402 (10)	0.0475 (10)	0.0359 (9)	0.0036 (8)	0.0009 (7)	-0.0039 (8)
0.0445 (11)	0.0530 (12)	0.0487 (11)	0.0098 (9)	0.0025 (9)	-0.0063 (9)
0.0513 (12)	0.0538 (12)	0.0527 (11)	0.0118 (9)	-0.0086 (9)	0.0015 (9)
0.0625 (13)	0.0603 (12)	0.0372 (10)	0.0070 (10)	-0.0048 (9)	0.0028 (9)
0.0524 (12)	0.0562 (12)	0.0388 (10)	0.0058 (9)	0.0083 (8)	-0.0018 (8)
0.0419 (11)	0.0607 (12)	0.0377 (9)	0.0065 (9)	0.0013 (8)	-0.0019 (8)
0.0439 (11)	0.0551 (11)	0.0405 (9)	0.0036 (9)	0.0021 (8)	0.0018 (8)
0.0426 (10)	0.0472 (10)	0.0507 (11)	0.0051 (8)	0.0030 (8)	0.0026 (8)
0.0448 (11)	0.0490 (11)	0.0679 (13)	0.0027 (9)	-0.0014 (10)	0.0089 (10)
0.0597 (15)	0.0751 (16)	0.106 (2)	0.0257 (13)	-0.0002 (14)	0.0025 (15)
0.059 (3)	0.081 (4)	0.102 (4)	0.028 (3)	0.016 (3)	-0.010 (3)
0.060 (4)	0.051 (3)	0.075 (3)	0.001 (3)	0.015 (3)	-0.012 (3)
0.086 (6)	0.048 (4)	0.115 (6)	0.025 (4)	0.027 (5)	-0.001 (4)
	U^{11} 0.0414 (9) 0.0511 (9) 0.0691 (11) 0.0924 (13) 0.0395 (10) 0.0431 (10) 0.0395 (10) 0.0409 (10) 0.0402 (10) 0.0402 (10) 0.0445 (11) 0.0513 (12) 0.0625 (13) 0.0524 (12) 0.0419 (11) 0.0426 (10) 0.0448 (11) 0.0597 (15) 0.059 (3) 0.060 (4) 0.086 (6)	U^{11} U^{22} 0.0414 (9) 0.0854 (13) 0.0511 (9) 0.1112 (13) 0.0691 (11) 0.1120 (14) 0.0924 (13) 0.1301 (16) 0.0395 (10) 0.0623 (12) 0.0431 (10) 0.0630 (12) 0.0395 (10) 0.0578 (12) 0.0409 (10) 0.0440 (10) 0.0402 (10) 0.0475 (10) 0.0445 (11) 0.0530 (12) 0.0513 (12) 0.0538 (12) 0.0625 (13) 0.0603 (12) 0.0524 (12) 0.0562 (12) 0.0419 (11) 0.0551 (11) 0.0426 (10) 0.0472 (10) 0.0448 (11) 0.0490 (11) 0.0597 (15) 0.0751 (16) 0.059 (3) 0.081 (4) 0.086 (6) 0.048 (4)	U^{11} U^{22} U^{33} 0.0414 (9) 0.0854 (13) 0.0391 (9) 0.0511 (9) 0.1112 (13) 0.0381 (8) 0.0691 (11) 0.1120 (14) 0.0473 (8) 0.0924 (13) 0.1301 (16) 0.0492 (9) 0.0395 (10) 0.0623 (12) 0.0361 (10) 0.0431 (10) 0.0630 (12) 0.0396 (10) 0.0395 (10) 0.0578 (12) 0.0370 (9) 0.0409 (10) 0.0440 (10) 0.0382 (9) 0.0402 (10) 0.0475 (10) 0.0359 (9) 0.0445 (11) 0.0530 (12) 0.0487 (11) 0.0513 (12) 0.0538 (12) 0.0527 (11) 0.0625 (13) 0.0603 (12) 0.0388 (10) 0.0419 (11) 0.0562 (12) 0.0388 (10) 0.0419 (11) 0.0551 (11) 0.0405 (9) 0.0426 (10) 0.0472 (10) 0.0507 (11) 0.0597 (15) 0.0751 (16) 0.106 (2) 0.059 (3) 0.081 (4) 0.102 (4) 0.060 (4) 0.051 (3) 0.075 (3) 0.086 (6) 0.048 (4) 0.115 (6)	U^{11} U^{22} U^{33} U^{12} 0.0414 (9)0.0854 (13)0.0391 (9)0.0153 (9)0.0511 (9)0.1112 (13)0.0381 (8)0.0193 (8)0.0691 (11)0.1120 (14)0.0473 (8)0.0321 (10)0.0924 (13)0.1301 (16)0.0492 (9)0.0438 (12)0.0395 (10)0.0623 (12)0.0361 (10)0.0027 (9)0.0431 (10)0.0630 (12)0.0396 (10)0.0048 (9)0.0395 (10)0.0578 (12)0.0370 (9)0.0027 (8)0.0409 (10)0.0440 (10)0.0382 (9)0.0021 (8)0.0402 (10)0.0475 (10)0.0359 (9)0.0036 (8)0.0445 (11)0.0530 (12)0.0487 (11)0.0098 (9)0.0513 (12)0.0538 (12)0.0527 (11)0.0118 (9)0.0625 (13)0.0603 (12)0.0372 (10)0.0070 (10)0.0524 (12)0.0562 (12)0.0388 (10)0.0058 (9)0.0419 (11)0.0607 (12)0.0377 (9)0.0065 (9)0.0426 (10)0.0472 (10)0.0507 (11)0.0051 (8)0.0448 (11)0.0490 (11)0.0679 (13)0.0027 (9)0.0597 (15)0.0751 (16)0.106 (2)0.0257 (13)0.059 (3)0.081 (4)0.102 (4)0.028 (3)0.060 (4)0.051 (3)0.075 (3)0.001 (3)0.086 (6)0.048 (4)0.115 (6)0.025 (4)	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0414 (9)0.0854 (13)0.0391 (9)0.0153 (9)0.0032 (7)0.0511 (9)0.1112 (13)0.0381 (8)0.0193 (8)0.0009 (6)0.0691 (11)0.1120 (14)0.0473 (8)0.0321 (10)0.0044 (7)0.0924 (13)0.1301 (16)0.0492 (9)0.0438 (12)0.0039 (8)0.0395 (10)0.0623 (12)0.0361 (10)0.0027 (9)0.0070 (8)0.0431 (10)0.0630 (12)0.0396 (10)0.0048 (9)0.0018 (8)0.0395 (10)0.0578 (12)0.0370 (9)0.0027 (8)0.0027 (8)0.0409 (10)0.0440 (10)0.0382 (9)0.0021 (8)0.0027 (8)0.0402 (10)0.0475 (10)0.0359 (9)0.0036 (8)0.0009 (7)0.0445 (11)0.0530 (12)0.0487 (11)0.0098 (9)0.0025 (9)0.0513 (12)0.0527 (11)0.0118 (9)-0.0086 (9)0.0524 (12)0.0562 (12)0.0388 (10)0.0058 (9)0.0023 (8)0.0419 (11)0.0607 (12)0.0377 (9)0.0065 (9)0.0013 (8)0.0426 (10)0.0472 (10)0.0507 (11)0.0051 (8)0.0030 (8)0.0448 (11)0.0490 (11)0.0679 (13)0.0027 (9)-0.0014 (10)0.059 (3)0.081 (4)0.102 (4)0.028 (3)0.016 (3)0.060 (4)0.051 (3)0.075 (3)0.001 (3)0.015 (3)0.086 (6)0.048 (4)0.115 (6)0.025 (4)0.027 (5)

supporting information

C16′	0.074 (5)	0.076 (4)	0.079 (4)	0.019 (4)	0.017 (3)	-0.018 (3)	
C17	0.0579 (13)	0.0619 (13)	0.0546 (12)	0.0157 (11)	0.0029 (10)	-0.0105 (10)	
C18	0.0665 (15)	0.0839 (17)	0.0724 (15)	0.0090 (13)	-0.0204 (12)	0.0140 (13)	
C19	0.112 (2)	0.0615 (15)	0.0759 (16)	-0.0227 (15)	-0.0086 (15)	-0.0128 (12)	
C20	0.0743 (16)	0.0969 (18)	0.0482 (12)	-0.0140 (14)	0.0103 (11)	0.0054 (12)	

Geometric parameters (Å, °)

N1—02	1.213 (2)	C14—C15′	1.539 (10)	
N103	1.214 (2)	C14—H14A	0.9700	
N1-C5	1.465 (2)	C14—H14B	0.9700	
01—C1	1.220 (2)	C14—H14C	0.9600	
C1-C10	1.464 (3)	C14—H14D	0.9600	
C1—C2	1.483 (3)	C15—C16	1.519 (8)	
C2—C3	1.314 (3)	C15—H15A	0.9700	
С2—Н2	0.9300	C15—H15B	0.9700	
C3—C4	1.472 (3)	C16—C17	1.569 (6)	
С3—Н3	0.9300	C16—H16A	0.9700	
C4—C5	1.392 (2)	C16—H16B	0.9700	
C4—C9	1.395 (2)	C15′—C16′	1.490 (11)	
C5—C6	1.378 (2)	C15′—H15C	0.9700	
С6—С7	1.370 (3)	C15′—H15D	0.9700	
С6—Н6	0.9300	C16′—C17	1.582 (6)	
С7—С8	1.376 (3)	C16'—H16C	0.9700	
С7—Н7	0.9300	C16'—H16D	0.9700	
С8—С9	1.372 (3)	C17—C20	1.522 (3)	
С8—Н8	0.9300	C17—C19	1.536 (3)	
С9—Н9	0.9300	C18—H18A	0.9600	
C10-C11	1.325 (3)	C18—H18B	0.9600	
С10—Н10	0.9300	C18—H18C	0.9600	
C11—C12	1.455 (3)	C19—H19A	0.9600	
C11—H11	0.9300	C19—H19B	0.9600	
C12—C13	1.355 (3)	C19—H19C	0.9600	
C12—C17	1.534 (3)	C20—H20A	0.9600	
C13—C14	1.498 (3)	C20—H20B	0.9600	
C13—C18	1.510(3)	C20—H20C	0.9600	
C14—C15	1.527 (7)			
O2—N1—O3	123.32 (17)	C15'—C14—H14D	106.7	
O2—N1—C5	118.91 (16)	H14C—C14—H14D	109.1	
O3—N1—C5	117.74 (17)	C16-C15-C14	107.6 (4)	
O1-C1-C10	123.06 (17)	C16-C15-H15A	110.2	
01—C1—C2	120.66 (17)	C14—C15—H15A	110.2	
C10—C1—C2	116.28 (15)	C16—C15—H15B	110.2	
C3—C2—C1	122.75 (17)	C14—C15—H15B	110.2	
С3—С2—Н2	118.6	H15A—C15—H15B	108.5	
C1—C2—H2	118.6	C15—C16—C17	108.3 (4)	
C2—C3—C4	124.85 (17)	C15—C16—H16A	110.0	

С2—С3—Н3	117.6	C17—C16—H16A	110.0
С4—С3—Н3	117.6	C15—C16—H16B	110.0
C5—C4—C9	115.53 (16)	C17—C16—H16B	110.0
C5—C4—C3	123.75 (15)	H16A—C16—H16B	108.4
C9—C4—C3	120.67 (16)	C16'—C15'—C14	105.1 (6)
C6—C5—C4	123.06 (16)	C16'—C15'—H15C	110.7
C6C5N1	116.09 (16)	C14—C15′—H15C	110.7
C4—C5—N1	120.80 (15)	C16'—C15'—H15D	110.7
C7—C6—C5	119.28 (18)	C14—C15′—H15D	110.7
С7—С6—Н6	120.4	H15C—C15′—H15D	108.8
С5—С6—Н6	120.4	C15'—C16'—C17	109.7 (6)
C6-C7-C8	119.66 (18)	C15'—C16'—H16C	109.7
С6—С7—Н7	120.2	C17—C16′—H16C	109.7
C8—C7—H7	120.2	C15'—C16'—H16D	109.7
C9-C8-C7	120.2 120.33(17)	C17— $C16'$ — $H16D$	109.7
C9-C8-H8	119.8	$H_{16} - C_{16} - H_{16} D$	108.2
C7-C8-H8	119.8	C_{20} C_{17} C_{12}	111.00(18)
C8 - C9 - C4	122.04 (18)	$C_{20} - C_{17} - C_{19}$	109 12 (19)
	110.0	C_{12} C_{17} C_{19} C_{19}	109.12(19) 111.07(19)
C4 - C9 - H9	119.0	$C_{12} - C_{17} - C_{16}$	111.07(19) 120.6(3)
$C_{11} - C_{10} - C_{10}$	121 74 (17)	C_{12} C_{17} C_{16}	120.0(3) 109.9(3)
$C_{11} = C_{10} = C_{11}$	110 1	$C_{12} - C_{17} - C_{16}$	93.9(3)
C_1 C_{10} H_{10}	110.1	$C_{10}^{$	93.7(3)
$C_{10} = C_{10} = C_{10} = C_{10}$	119.1	$C_{20} = C_{17} = C_{10}$	108.7(3)
$C_{10} = C_{11} = C_{12}$	131.04 (10)	$C_{12} = C_{17} = C_{16}$	100.7(3)
C_{10} C_{11} H_{11}	114.2	$C_{12} = C_{12} = C_{10} = C_{10}$	121.5 (5)
C12 - C12 - C11	114.2	C_{12} C_{10} H_{10}	109.5
$C_{13} = C_{12} = C_{17}$	110.10(10) 121.94(19)		109.5
C13 - C12 - C17	121.84(18) 110.07(16)	H18A - C18 - H18B	109.5
C12 - C12 - C17	119.97(10)		109.5
C12 - C13 - C14	123.1(2)	H18A - C18 - H18C	109.5
C12 - C13 - C18	124.52 (19)	H18B - C18 - H18C	109.5
C12 - C13 - C18	112.42 (18)	C17C19H19A	109.5
C13 - C14 - C15	112.8 (3)		109.5
C13 - C14 - C15'	112.0 (4)	H19A—C19—H19B	109.5
C13—C14—H14A	109.0	C1/C19H19C	109.5
C15—C14—H14A	109.0	H19A—C19—H19C	109.5
C13—C14—H14B	109.0	H19B—C19—H19C	109.5
C15—C14—H14B	109.0	C17—C20—H20A	109.5
C15′—C14—H14B	133.1	C17—C20—H20B	109.5
H14A—C14—H14B	107.8	H20A—C20—H20B	109.5
C13—C14—H14C	108.9	С17—С20—Н20С	109.5
C15'—C14—H14C	110.9	H20A—C20—H20C	109.5
C13—C14—H14D	109.2	H20B—C20—H20C	109.5
Q1—C1—C2—C3	2.7 (3)	C17—C12—C13—C18	-179.4 (2)
$C_{10} - C_{1} - C_{2} - C_{3}$	-177.46 (19)	C_{12} C_{13} C_{14} C_{15}	15.3 (4)
C1 - C2 - C3 - C4	179.70 (17)	C18 - C13 - C14 - C15	-164.4(3)
C2—C3—C4—C5	156.1 (2)	C12—C13—C14—C15′	-20.1(5)
			(-)

C2—C3—C4—C9	-26.6 (3)	C18—C13—C14—C15′	160.1 (4)
C9—C4—C5—C6	0.9 (3)	C13—C14—C15—C16	-49.6 (6)
C3—C4—C5—C6	178.25 (18)	C15'—C14—C15—C16	46.0 (7)
C9—C4—C5—N1	178.32 (17)	C14—C15—C16—C17	68.9 (7)
C3—C4—C5—N1	-4.3 (3)	C13—C14—C15′—C16′	54.0 (8)
O2—N1—C5—C6	140.47 (19)	C15—C14—C15′—C16′	-44.3 (6)
O3—N1—C5—C6	-37.9 (3)	C14—C15′—C16′—C17	-71.5 (9)
O2—N1—C5—C4	-37.1 (3)	C13—C12—C17—C20	-118.2 (2)
O3—N1—C5—C4	144.5 (2)	C11—C12—C17—C20	62.8 (2)
C4—C5—C6—C7	2.0 (3)	C13—C12—C17—C19	120.2 (2)
N1-C5-C6-C7	-175.55 (18)	C11—C12—C17—C19	-58.8 (3)
C5—C6—C7—C8	-2.8 (3)	C13—C12—C17—C16	17.7 (4)
C6—C7—C8—C9	0.8 (3)	C11—C12—C17—C16	-161.3 (3)
C7—C8—C9—C4	2.2 (3)	C13—C12—C17—C16′	-15.7 (4)
C5—C4—C9—C8	-3.0 (3)	C11—C12—C17—C16′	165.3 (3)
C3—C4—C9—C8	179.57 (19)	C15—C16—C17—C20	78.9 (5)
O1-C1-C10-C11	3.4 (3)	C15—C16—C17—C12	-52.1 (6)
C2-C1-C10-C11	-176.50 (18)	C15—C16—C17—C19	-166.1 (5)
C1-C10-C11-C12	178.81 (19)	C15—C16—C17—C16′	41.5 (6)
C10-C11-C12-C13	-177.1 (2)	C15'—C16'—C17—C20	165.9 (7)
C10-C11-C12-C17	1.9 (3)	C15'—C16'—C17—C12	52.0 (7)
C11—C12—C13—C14	179.8 (2)	C15'—C16'—C17—C19	-78.5 (7)
C17—C12—C13—C14	0.8 (3)	C15'—C16'—C17—C16	-45.7 (7)
C11—C12—C13—C18	-0.4 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
C8—H8…O1 ⁱ	0.93	2.50	3.182 (2)	131
C9—H9…O1 ⁱ	0.93	2.76	3.318 (2)	119

Symmetry code: (i) x-1/2, -y+1/2, z-1/2.