Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

8-Hydroxy-5-(hydroxymethyl)quinolin-1ium chloride

Majda Fathi, ${ }^{\text {a }}$ Youssef Fouham, ${ }^{\text {b }}$ El Hassan Arbib, ${ }^{\text {a* }}$ Brahim Lakhrissi, ${ }^{\text {b }}$ Mohamed Saadi ${ }^{\text {c }}$ and Lahcen El Ammari ${ }^{\text {c }}$

${ }^{\text {a Laboratoire de Physico-chimie des Matériaux Vitreux et Cristallisés, Equipe de }}$ Physico-chimie des Matériaux Inorganiques, Faculté des Sciences, Université Ibn Tofail, Kénitra, Morocco, ${ }^{\text {blLaboratoire d'Agroressources et Génie des Procédés, }}$ Faculté des Sciences, Université Ibn Tofail Kénitra, Morocco, and ${ }^{\text {c Laboratoire de }}$ Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
Correspondence e-mail: elhassan.arbib@yahoo.com
Received 21 May 2012; accepted 27 May 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.039 ; w R$ factor $=0.124 ;$ data-to-parameter ratio $=36.3$.

The title compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2}^{+} \cdot \mathrm{Cl}^{-}$, contains a quinoline ring system which is essentially planar, with the largest deviation from the mean plane being 0.017 (1) \AA. In the crystal, the ion pairs and their inversion-symmetry-related partners are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds to form tetramers which are further connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, building infinite one-dimensional chains parallel to the [010] direction.

Related literature

For antioxidant properties, see: Kayyali et al. (1998). For the synthesis of some substituted 8 -quinolinol derivatives, see: Mishra et al. (2004). For the application of the corresponding aluminium complexes, see: Tang et al. (1989); Chen \& Shi (1998); Shougen et al. (2000). For application as a promising display, see: Cao et al. (1996); Wu et al. (2003). For the synthesis, see: Zheng et al. (2005).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=211.64$
Monoclinic, $P 2_{b} / c$
$a=6.9081$ (5) A
$b=8.0577$ (5) A
$c=17.1890(11) \AA$
$\beta=101.183$ (3) ${ }^{\circ}$
$V=938.63(11) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.54 \times 0.43 \times 0.12 \mathrm{~mm}$

Data collection

Bruker X8 APEX diffractometer
3679 reflections with $I>2 \sigma(I)$
22727 measured reflections 4615 independent reflections

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.124$
$S=1.07$
4615 reflections
$R_{\text {int }}=0.024$

127 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.50 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{Cl} 1$	0.86	2.24	$3.0261(8)$	152
$\mathrm{O}_{1}-\mathrm{H} 1 O \cdots 2^{\mathrm{i}}$	0.82	1.78	$2.5841(10)$	166
$\mathrm{O}^{\mathrm{H}} \mathrm{H} 2 O \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.82	2.21	$3.0281(8)$	172

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z+1$.

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2562).

References

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Cao, Y., Parker, I. D., Yu, G., Zhang, C. \& Heeger, A. J. (1996). Nature, 397, 414-417.
Chen, C. H. \& Shi, J. M. (1998). Coord. Chem. Rev. 171, 161-174.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Kayyali, R., Pannala, A. S., Khodr, H. \& Hider, R. C. (1998). Biochem. Pharmacol. 55 1327-1332.
Mishra, A., Nayak, P. K. \& Periasamy, N. (2004). Tetrahedron Lett. 45, 62656268.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shougen, Y., Yulin, H., Xiaohong, C., Xiaohui, Y., Yanbing, H. \& Xurong, X. (2000). Synth. Met. 111-112, 109-112.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Tang, C. W., Vanslyke, S. A. \& Chen, C. H. (1989). J. Appl. Phys. 65, 36103616.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

organic compounds

Wu, Z., Yang, H., Duan, Y., Xie, W., Liu, S. \& Zhao, Y. (2003). Semicond. Sci. Technol. 18, 49-52.

Zheng, H., Weiner, L. M., Bar-Am, O., Epsztejn, S., Cabantchik, Z. I., Warshawsky, A., Youdim, M. B. H. \& Fridkin, M. (2005). Bioorg. Med. Chem. 13, 773-783.

supporting information

Acta Cryst. (2012). E68, o1979-o1980 [https://doi.org/10.1107/S1600536812024233]

8-Hydroxy-5-(hydroxymethyl)quinolin-1-ium chloride

Majda Fathi, Youssef Fouham, El Hassan Arbib, Brahim Lakhrissi, Mohamed Saadi and Lahcen El Ammari

S1. Comment

8-Quinolinol is a strong iron chelator with antioxidant property (Kayyali et al. 1998). 5-Chloromethyl-8-hydroxyquinoline hydrochloride (I) is used as an intermediate in the synthesis of 5-hydroxymethyl-8-quinolinol and some substituted 8-quinolinol derivatives (Mishra et al. (2004). The corresponding aluminium complexes has been used as an excellent Organic Light-Emitting Diodes (OLEDs) (Tang et al. (1989), Chen \& Shi (1998), Shougen et al. (2000)) witch are currently under intensive investigation for application as a promising display technology due to their high luminous efficiency and capability of emitting full colour flat displays (Cao et al. (1996), Wu et al. (2003)). The present work describes the crystal structure of $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2} . \mathrm{Cl}$ (scheme 1) obtained from the X-ray diffraction data on single-crystal.
The 5-(hydroxymethyl)-8-quinolinol hydrochloride molecule structure is built up from two fused six-membered rings linked to $\mathrm{CH}_{2} \mathrm{OH}$ and to OH groups as shown in Fg .1. The fused-ring system is essentially planar, with the maximum deviation of 0.017 (1) \AA from C 7 atom. The dihedral angle between them does not exceed $1.15(5)^{\circ}$. The hydroxide $\mathrm{O} 2-$ H linked to $-\mathrm{C}_{10 \mathrm{H}}^{2}-$ form an angle of $56.68(6)^{\circ}$ with the mean plane of the quinolin ring. In the crystal, each molecule and its symmetry through the inversion center are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds in the way to form dimers as shown in Fig.2. These dimers are further connected through $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds building infinite onedimensional chains parallel to $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ direction (Table 1).

S2. Experimental

5-Chloromethyl-8-hydroxyquinoline hydrochloride (I) was synthesized according to the method described by Zheng et al. (2005). A mixture of $10.0 \mathrm{~g}(0.068 \mathrm{~mol})$ of 8 -hydroxyquinoline, 11 ml of concentrated hydrochloric acid, and 11 ml $(0.397 \mathrm{~mol})$ of 37% formaldehyde was treated with hydrogen chloride gas and stirred for 6 h . The solution was allowed to stand at room temperature for 2 h without stirring. The yellow solid obtained was collected on a filter, washed with acetone or alcohol, and dried under vacuum to give 5-chloromethyl-8-hydroxyquinoline hydrochloride (I) ($13.0 \mathrm{~g}, 98 \%$). The compound obtained was dissolved in distilled water in a box Petrys and let in air at room temperature. After 10 days, transparent single crystals as platelets were isolated. X-ray diffraction analysis shows that the obtained product is the 5-(hydroxymethyl)-8-quinolinol hydrochloride.

S3. Refinement

H atoms were located in a difference map and treated as riding with $\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), $\mathrm{C}-\mathrm{H}=$ $0.97 \AA$ (methylene) and $\mathrm{O}-\mathrm{H}=0.82 \AA$ with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}$ (aromatic, methylene) and $U_{\mathrm{iso}}(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{OH})$.

Figure 1
Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50\% probability level. H atoms are represented as small circles.

Figure 2
Molecule and its symmetry through the inversion center linked by hydrogen bonds and building dimers.

8-Hydroxy-5-(hydroxymethyl)quinolin-1-ium chloride

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=211.64$
Monoclinic, $P 2_{1} / c$
Hall symbol: -p_2ybc
$a=6.9081$ (5) $\bar{\AA}$
$b=8.0577$ (5) \AA
$c=17.1890(11) \AA$
$\beta=101.183(3)^{\circ}$
$V=938.63(11) \AA^{3}$
$Z=4$
$F(000)=440$
$D_{\mathrm{x}}=1.498 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4615 reflections
$\theta=2.8-36.5^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, colourless
$0.54 \times 0.43 \times 0.12 \mathrm{~mm}$

Data collection

Bruker X8 APEX

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
22727 measured reflections
4615 independent reflections

$$
\begin{aligned}
& 3679 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.024 \\
& \theta_{\max }=36.5^{\circ}, \theta_{\min }=2.8^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-12 \rightarrow 13 \\
& l=-28 \rightarrow 28
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0694 P)^{2}+0.1142 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.50$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}

Refinement
Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.124$
$S=1.07$
4615 reflections
127 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against all reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
C11	$0.16928(4)$	$0.17354(3)$	$0.310398(15)$	$0.03843(8)$
O1	$0.30276(12)$	$0.22164(9)$	$0.51946(4)$	$0.03652(16)$
H1O	0.3342	0.1525	0.5547	0.055^{*}
O2	$0.44071(12)$	$0.98428(9)$	$0.61542(5)$	$0.03859(17)$
H2O	0.5509	0.9455	0.6316	0.058^{*}
N1	$0.19725(11)$	$0.47152(9)$	$0.41916(4)$	$0.02749(14)$
H1N	0.1996	0.3699	0.4041	0.033^{*}
C1	$0.14320(16)$	$0.58746(13)$	$0.36492(5)$	$0.03366(18)$
H1	0.1075	0.5578	0.3118	0.040^{*}
C2	$0.13937(16)$	$0.75383(12)$	$0.38682(6)$	$0.0362(2)$
H2	0.1026	0.8355	0.3486	0.043^{*}
C3	$0.19059(14)$	$0.79558(11)$	$0.46549(6)$	$0.03077(17)$
H3	0.1887	0.9064	0.4804	$0.037 *$
C4	$0.24629(12)$	$0.67260(10)$	$0.52439(5)$	$0.02444(14)$
C5	$0.24952(12)$	$0.50630(10)$	$0.49814(5)$	$0.02361(14)$
C6	$0.30430(13)$	$0.37354(10)$	$0.55186(5)$	$0.02688(15)$
C7	$0.35081(16)$	$0.40924(12)$	$0.63135(5)$	$0.03253(18)$

H7	0.3846	0.3239	0.6679	0.039^{*}
C8	$0.34767(16)$	$0.57403(12)$	$0.65797(5)$	$0.03347(18)$
H8	0.3807	0.5948	0.7121	0.040^{*}
C9	$0.29775(14)$	$0.70577(11)$	$0.60713(5)$	$0.02761(15)$
C10	$0.29652(17)$	$0.87978(12)$	$0.63908(6)$	$0.03501(19)$
H10A	0.1669	0.9279	0.6209	0.042^{*}
H10B	0.3200	0.8753	0.6965	0.042^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Cl1	$0.04035(14)$	$0.03721(14)$	$0.03423(12)$	$0.00236(9)$	$-0.00147(9)$	$-0.00972(8)$
O1	$0.0523(4)$	$0.0204(3)$	$0.0344(3)$	$0.0019(3)$	$0.0024(3)$	$0.0011(2)$
O2	$0.0372(4)$	$0.0224(3)$	$0.0521(4)$	$-0.0014(2)$	$-0.0014(3)$	$0.0061(3)$
N1	$0.0306(3)$	$0.0242(3)$	$0.0260(3)$	$-0.0013(2)$	$0.0016(2)$	$-0.0007(2)$
C1	$0.0395(5)$	$0.0317(4)$	$0.0265(4)$	$-0.0006(3)$	$-0.0018(3)$	$0.0027(3)$
C2	$0.0431(5)$	$0.0286(4)$	$0.0326(4)$	$0.0007(4)$	$-0.0034(4)$	$0.0066(3)$
C3	$0.0334(4)$	$0.0218(3)$	$0.0342(4)$	$0.0001(3)$	$-0.0006(3)$	$0.0035(3)$
C4	$0.0243(3)$	$0.0209(3)$	$0.0274(3)$	$-0.0018(2)$	$0.0033(3)$	$0.0011(2)$
C5	$0.0242(3)$	$0.0209(3)$	$0.0251(3)$	$-0.0015(2)$	$0.0034(2)$	$0.0013(2)$
C6	$0.0304(4)$	$0.0207(3)$	$0.0289(3)$	$-0.0018(3)$	$0.0043(3)$	$0.0028(3)$
C7	$0.0432(5)$	$0.0253(4)$	$0.0277(4)$	$-0.0024(3)$	$0.0037(3)$	$0.0053(3)$
C8	$0.0450(5)$	$0.0295(4)$	$0.0254(3)$	$-0.0046(4)$	$0.0057(3)$	$0.0009(3)$
C9	$0.0317(4)$	$0.0232(3)$	$0.0280(3)$	$-0.0040(3)$	$0.0060(3)$	$-0.0014(3)$
C10	$0.0425(5)$	$0.0263(4)$	$0.0369(4)$	$-0.0026(3)$	$0.0094(4)$	$-0.0061(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C6	1.3439 (11)	C3-H3	0.9300
$\mathrm{O} 1-\mathrm{H} 1 \mathrm{O}$	0.8200	C4-C5	1.4155 (11)
$\mathrm{O} 2-\mathrm{C} 10$	1.4225 (13)	C4-C9	1.4229 (12)
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O}$	0.8200	C5-C6	1.4158 (11)
N1-C1	1.3215 (12)	C6-C7	1.3721 (13)
N1-C5	1.3644 (11)	C7-C8	1.4059 (14)
N1-H1N	0.8600	C7-H7	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.3941 (14)	C8-C9	1.3757 (13)
C1-H1	0.9300	C8-H8	0.9300
C2-C3	1.3718 (14)	C9-C10	1.5065 (12)
C2-H2	0.9300	C10-H10A	0.9700
C3-C4	1.4155 (12)	C10-H10B	0.9700
C6-O1-H1O	109.5	C4-C5-C6	121.75 (7)
C10-O2-H2O	109.5	O1-C6-C7	125.81 (8)
C1-N1-C5	122.74 (8)	O1-C6-C5	115.99 (8)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	118.6	C7-C6-C5	118.19 (8)
C5-N1-H1N	118.6	C6-C7-C8	120.44 (8)
N1-C1-C2	120.45 (9)	C6-C7-H7	119.8
N1-C1-H1	119.8	C8-C7-H7	119.8

supporting information

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.8	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$122.67(8)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.16(8)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{H} 8$	118.7
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.4	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	118.7
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.4	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 4$	$118.25(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$121.05(8)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$120.34(8)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.5	$\mathrm{C} 4-\mathrm{C} 9-\mathrm{C} 10$	$121.41(8)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.5	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$113.14(8)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$116.98(8)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 9$	$124.33(8)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.0
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 9$	$118.69(7)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.0
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 4$	$119.60(7)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.0
$\mathrm{~N} 1-\mathrm{C} 5-\mathrm{C} 6$	$118.65(7)$	$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	107.8

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 N \cdots \mathrm{Cl1}$	0.86	2.24	$3.0261(8)$	152
$\mathrm{O} 1 — \mathrm{H} 1 O \cdots 2^{\mathrm{i}}$	0.82	1.78	$2.5841(10)$	166
$\mathrm{O} 2 — \mathrm{H} 2 O \cdots \mathrm{Cl1}^{\mathrm{ii}}$	0.82	2.21	$3.0281(8)$	172

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+1,-y+1,-z+1$.

