

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(1H-Benzimidazol-2-vl)-N-[(E)-(dimethylamino)methylidene]benzenesulfonamide

Adnan Ashraf,^a M. Nawaz Tahir,^b* Waseeg Ahmad Siddigui^a and Nadia Perveen^a

^aUniversity of Sargodha, Department of Chemistry, Sargodha, Pakistan, and ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 31 May 2012; accepted 2 June 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.059; wR factor = 0.159; data-to-parameter ratio = 15.1.

The asymmetric unit of the title compound, C₁₆H₁₆N₄O₂S, contains two molecules (A and B) with similar conformations: the benzene rings are oriented at dihedral angles of $80.94 (10)^{\circ}$ and $84.54 (10)^{\circ}$ with their adjacent 1*H*-benzimidazole groups. In the crystal, the molecules are connected by N-H···N hydrogen bonds, forming separate C(4) chains of both the A and B molecules along [010]. The A and B chains are cross-linked by several C-H···O interactions involving the benzene rings and the sulfortyl groups, which lead to $R_2^{1}(5)$ loops in the linkage of the chains.

Related literature

For a related structure, see: Esparza-Ruiz et al. (2010).

Experimental

Crystal data	
$C_{16}H_{16}N_4O_2S$	a = 15.630(5) Å
$M_r = 328.39$ Monoclinic, $P2_1/n$	b = 10.003 (4) A c = 22.122 (5) Å

 $\beta = 110.657 \ (5)^{\circ}$ V = 3236.3 (18) Å³ Z = 8Mo $K\alpha$ radiation

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min} = 0.930, T_{\max} = 0.952$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.159$ S = 1.016347 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdot \cdot \cdot N2^{i}$	0.86	2.11	2.964 (3)	174
$N5 - H5A \cdots N6^{ii}$	0.86	2.10	2.955 (3)	178
$C9 - H9 \cdots O4^{i}$	0.93	2.56	3.153 (4)	122
$C10-H10\cdots O4^{i}$	0.93	2.57	3.153 (4)	121
$C25 - H25 \cdots O2^{ii}$	0.93	2.47	3.114 (5)	127

Symmetry codes: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6832).

References

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Esparza-Ruiz, A., Gonzalez-Gomez, G., Mijangos, E., Pena-Hueso, A., Lopez-Sandoval, H., Flores-Parra, A., Contreras, R. & Barba-Behrens, N. (2010). Dalton Trans. 39, 6302-6309.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $\mu = 0.22 \text{ mm}^{-1}$

 $0.28 \times 0.20 \times 0.18 \text{ mm}$

26702 measured reflections

6347 independent reflections 3328 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 296 K

 $R_{\rm int} = 0.070$

419 parameters

 $\Delta \rho_{\rm max} = 0.34 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Acta Cryst. (2012). E68, o2069 [https://doi.org/10.1107/S1600536812025159]

2-(1*H*-Benzimidazol-2-yl)-*N*-[(*E*)-(dimethylamino)methylidene]benzenesulfonamide

Adnan Ashraf, M. Nawaz Tahir, Waseeq Ahmad Siddiqui and Nadia Perveen

S1. Comment

The title compound (I), (Fig. 1) has been prepared in an attempt to attach benzenesulfonyl chloride with 2-(1*H*-benzimidazol-2-yl) benzenesulfonamide (Crystal structure has been determined) in the dimethylformamide.

The crystal structures of 2-(1*H*-benzimidazol-3-ium-2-yl)benzenesulfonate dimethylsulfoxide solvate (Esparza-Ruiz *et al.*, 2010) has been published which is related to (I) upto some extent.

In (I), two molecules (M1 and M2) in the asymmetric unit are present, which differ slightly from each other geometrically. In molecule M1, the group A (C1—C7/N1/N2) of 1*H*-benzimidazole, benzene ring B (C8—C13) and group C (N3/C14/N4/C15/C16) of *N*,*N*-dimethylimidoformamide moiety are planar with r. m. s. deviation of 0.0108 Å, 0.0046 Å and 0.0093 Å, respectively. The dihedral angle between A/B, A/C and B/C is 80.94 (10)°, 12.34 (4)° and 83.76 (18)°, respectively. The sulfonyl group D (O1/S1/O2) is of course planar. The dihedral angle between B/D and C/D is 70.86 (14)° and 53.88 (13)°, respectively. In second molecule M2, the similar groups E (C17—C23/N5/N6), F (C24—C29) and G (N7/C30/N8/C31/C32) are also planar with r. m. s. deviation of 0.0160 Å, 0.0054 Å and 0.0122 Å, respectively. The dihedral angle between E/F, E/G and F/G is 84.54 (10)°, 12.68 (8)° and 83.22 (20)°, respectively. In M2, dihedral angle between F/H and G/H is 69.47 (14)° and 54.53 (13)°, respectively where H (O3/S2/O4) is the sulfonyl group. Both molecules are interlinked with themselves with C (4) chains due to classical H–bonding of N—H···N type (Table 1, Fig. 2). These infinite one-dimensional chains exist along [010]. The polymeric chains are interlinked with each other through benzene ring and the sulfonyl groups due to H–bonding of C—H···O type in a different manner. There exist $R_2^1(5)$ ring motif in the linkage of polymeric chains.

S2. Experimental

The 2-[o-(sulfamoyl)phenyl]benzimidazole (0.1 g, 0.37 mmol) in dimethylformamide (2 ml) was disolved to get a clear solution. Benzenesulfonyl chloride (0.065 g, 0.37 mmol) was added with catalytic amount of potassium carbonate to this solution and subjected to reflux for 2 h. The resulting solution was quenched in ice-cold distilled water (100 ml). Extracted the aqueous layer with ethyl acetate (3 × 25 ml) and dried the organic layer over anhydrous sodium sulfate to get light brown powder (0.11 g, 90.5%). The powder was recrystallized in methanol to get the light brown prisms of (I). m.p. 593–594 K.

S3. Refinement

The H-atoms were positioned geometrically at C—H = 0.93—0.96, nd N—H = 0.86 Å, respectively and included in the refinement as riding with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for metyl H-atoms and x = 1.2 for all other H-atoms.

Figure 1

View of the title compound with displecement ellipsoids drawn at the 50% probability level.

Figure 2

The partial packing (*PLATON*; Spek, 2009) which shows that molecules form C(4) chains and are interlinked. The Hatoms not involved in H-bondings are omitted for clarity.

2-(1H-Benzimidazol-2-yl)-N-[(E)- (dimethylamino)methylidene]benzenesulfonamide

Crystal data

C₁₆H₁₆N₄O₂S $M_r = 328.39$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 15.630 (5) Å b = 10.003 (4) Å c = 22.122 (5) Å $\beta = 110.657$ (5)° V = 3236.3 (18) Å³ Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.00 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.930, T_{\max} = 0.952$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.159$ S = 1.01 F(000) = 1376 $D_x = 1.348 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3328 reflections $\theta = 2.0-26.0^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 296 KPrism, light brown $0.28 \times 0.20 \times 0.18 \text{ mm}$

26702 measured reflections 6347 independent reflections 3328 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -19 \rightarrow 19$ $k = -12 \rightarrow 12$ $l = -27 \rightarrow 22$

6347 reflections419 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier	$w = 1/[\sigma^2(F_o^2) + (0.0638P)^2 + 0.4292P]$
map	where $P = (F_o^2 + 2F_c^2)/3$
Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} < 0.001$
neighbouring sites	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.37734 (6)	0.20738 (11)	0.16157 (4)	0.0540 (4)	
01	0.38444 (16)	0.3454 (2)	0.18274 (13)	0.0766 (11)	
O2	0.41107 (17)	0.1781 (4)	0.11124 (13)	0.1060 (16)	
N1	0.25436 (18)	0.0481 (2)	0.27589 (11)	0.0378 (9)	
N2	0.25592 (18)	0.2709 (2)	0.27357 (12)	0.0369 (9)	
N3	0.42077 (18)	0.1030 (3)	0.21989 (13)	0.0507 (10)	
N4	0.49756 (19)	0.0855 (3)	0.32963 (14)	0.0548 (11)	
C1	0.2819 (2)	0.2276 (3)	0.33732 (15)	0.0362 (11)	
C2	0.3058 (3)	0.2996 (3)	0.39450 (15)	0.0529 (14)	
C3	0.3299 (3)	0.2312 (4)	0.45146 (16)	0.0563 (14)	
C4	0.3314 (3)	0.0922 (3)	0.45294 (15)	0.0541 (16)	
C5	0.3069 (3)	0.0181 (3)	0.39697 (15)	0.0510 (14)	
C6	0.2813 (2)	0.0883 (3)	0.33941 (14)	0.0341 (11)	
C7	0.24058 (19)	0.1606 (3)	0.23952 (14)	0.0293 (10)	
C8	0.20535 (19)	0.1538 (3)	0.16793 (13)	0.0278 (9)	
C9	0.1123 (2)	0.1313 (3)	0.13747 (15)	0.0398 (11)	
C10	0.0741 (2)	0.1237 (3)	0.07082 (16)	0.0479 (11)	
C11	0.1275 (2)	0.1359 (3)	0.03388 (15)	0.0429 (11)	
C12	0.2199 (2)	0.1569 (3)	0.06293 (15)	0.0388 (11)	
C13	0.25898 (19)	0.1670 (3)	0.12983 (14)	0.0304 (10)	
C14	0.4588 (2)	0.1557 (3)	0.27730 (16)	0.0472 (11)	
C15	0.4997 (3)	-0.0594 (4)	0.3281 (2)	0.1017 (19)	
C16	0.5413 (3)	0.1492 (4)	0.39179 (17)	0.0774 (16)	
S2	0.62238 (5)	0.50313 (10)	0.33544 (4)	0.0466 (3)	
03	0.62214 (15)	0.3695 (2)	0.31038 (12)	0.0628 (9)	
O4	0.58453 (16)	0.5169 (3)	0.38516 (12)	0.0784 (13)	
N5	0.73966 (18)	0.6823 (2)	0.22561 (11)	0.0399 (9)	
N6	0.75783 (18)	0.4613 (2)	0.22988 (12)	0.0400 (9)	
N7	0.57612 (18)	0.6125 (3)	0.28025 (13)	0.0495 (10)	
N8	0.5008 (2)	0.6440 (4)	0.17119 (14)	0.0673 (13)	
C17	0.7302 (2)	0.5032 (3)	0.16597 (15)	0.0412 (11)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C18	0.7158 (3)	0.4298 (4)	0.10993 (16)	0.0602 (14)
C19	0.6876 (3)	0.4976 (4)	0.05251 (17)	0.0652 (16)
C20	0.6720 (3)	0.6343 (4)	0.04889 (16)	0.0612 (16)
C21	0.6871 (3)	0.7089 (3)	0.10395 (16)	0.0539 (14)
C22	0.7180 (2)	0.6412 (3)	0.16255 (14)	0.0382 (11)
C23	0.76194 (19)	0.5718 (3)	0.26304 (14)	0.0309 (10)
C24	0.7940 (2)	0.5793 (3)	0.33451 (14)	0.0326 (10)
C25	0.8858 (2)	0.6104 (3)	0.36720 (16)	0.0478 (11)
C26	0.9208 (2)	0.6157 (4)	0.43360 (17)	0.0591 (14)
C27	0.8658 (3)	0.5928 (3)	0.46862 (17)	0.0539 (12)
C28	0.7741 (2)	0.5633 (3)	0.43755 (15)	0.0415 (11)
C29	0.7384 (2)	0.5552 (3)	0.37065 (14)	0.0320 (10)
C30	0.5412 (2)	0.5667 (4)	0.22150 (17)	0.0555 (16)
C31	0.4949 (4)	0.7876 (5)	0.1769 (2)	0.122 (3)
C32	0.4600 (3)	0.5844 (5)	0.10749 (19)	0.108 (2)
H1	0.24759	-0.03292	0.26196	0.0453*
H2	0.30546	0.39255	0.39403	0.0639*
Н3	0.34568	0.27844	0.49005	0.0673*
H4	0.34927	0.04845	0.49255	0.0651*
Н5	0.30761	-0.07483	0.39780	0.0608*
Н9	0.07525	0.12129	0.16212	0.0479*
H10	0.01148	0.11022	0.05105	0.0573*
H11	0.10149	0.12994	-0.01087	0.0516*
H12	0.25644	0.16446	0.03780	0.0467*
H14	0.45815	0.24824	0.28106	0.0564*
H15A	0.45358	-0.09097	0.28921	0.1522*
H15B	0.48820	-0.09457	0.36489	0.1522*
H15C	0.55872	-0.08863	0.32916	0.1522*
H16A	0.53553	0.24449	0.38678	0.1162*
H16B	0.60491	0.12542	0.40845	0.1162*
H16C	0.51255	0.11996	0.42130	0.1162*
H5A	0.73910	0.76310	0.23871	0.0478*
H18	0.72508	0.33784	0.11139	0.0719*
H19	0.67852	0.45024	0.01457	0.0784*
H20	0.65107	0.67604	0.00876	0.0736*
H21	0.67706	0.80070	0.10202	0.0649*
H25	0.92372	0.62779	0.34384	0.0575*
H26	0.98240	0.63487	0.45476	0.0711*
H27	0.88990	0.59712	0.51348	0.0645*
H28	0.73658	0.54898	0.46149	0.0496*
H30	0.54482	0.47545	0.21474	0.0667*
H31A	0.53722	0.81604	0.21800	0.1837*
H31B	0.43392	0.81161	0.17345	0.1837*
H31C	0.50972	0.83024	0.14296	0.1837*
H32A	0.48518	0.62559	0.07828	0.1617*
H32B	0.39504	0.59798	0.09207	0.1617*
H32C	0.47291	0.49031	0.11006	0.1617*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
S 1	0.0310 (5)	0.0841 (8)	0.0447 (6)	-0.0017 (5)	0.0108 (4)	0.0174 (5)
O1	0.0589 (17)	0.0562 (18)	0.087 (2)	-0.0297 (13)	-0.0085 (15)	0.0247 (14)
O2	0.0421 (16)	0.230 (4)	0.0547 (19)	0.022 (2)	0.0280 (14)	0.026 (2)
N1	0.0621 (18)	0.0204 (13)	0.0280 (15)	-0.0069 (12)	0.0123 (13)	-0.0025 (11)
N2	0.0582 (18)	0.0215 (14)	0.0280 (15)	-0.0024 (12)	0.0116 (13)	-0.0009 (11)
N3	0.0426 (16)	0.0581 (19)	0.0441 (19)	0.0099 (14)	0.0063 (14)	0.0020 (15)
N4	0.0478 (17)	0.058 (2)	0.0480 (19)	-0.0014 (15)	0.0037 (15)	0.0097 (16)
C1	0.0462 (19)	0.0310 (18)	0.0311 (19)	-0.0014 (14)	0.0133 (15)	-0.0018 (14)
C2	0.086 (3)	0.0307 (19)	0.036 (2)	-0.0013 (19)	0.014 (2)	-0.0063 (16)
C3	0.082 (3)	0.052 (2)	0.033 (2)	-0.001 (2)	0.018 (2)	-0.0100 (17)
C4	0.074 (3)	0.056 (3)	0.028 (2)	-0.002 (2)	0.0125 (18)	0.0081 (17)
C5	0.081 (3)	0.0332 (19)	0.035 (2)	-0.0088 (18)	0.0156 (19)	0.0047 (16)
C6	0.0458 (19)	0.0259 (18)	0.0288 (18)	-0.0067 (14)	0.0109 (15)	-0.0004 (14)
C7	0.0359 (17)	0.0244 (16)	0.0289 (17)	-0.0020 (14)	0.0132 (14)	0.0021 (14)
C8	0.0324 (16)	0.0200 (16)	0.0293 (17)	-0.0010 (13)	0.0089 (14)	-0.0007 (12)
C9	0.0370 (18)	0.045 (2)	0.039 (2)	-0.0078 (15)	0.0154 (16)	-0.0052 (15)
C10	0.0317 (18)	0.058 (2)	0.041 (2)	-0.0067 (16)	-0.0034 (16)	-0.0018 (17)
C11	0.050 (2)	0.043 (2)	0.0280 (19)	-0.0027 (16)	0.0042 (17)	0.0017 (15)
C12	0.049 (2)	0.0368 (19)	0.0322 (19)	-0.0013 (16)	0.0162 (16)	0.0034 (14)
C13	0.0319 (16)	0.0262 (16)	0.0317 (18)	0.0009 (13)	0.0095 (14)	0.0019 (13)
C14	0.0338 (18)	0.053 (2)	0.050 (2)	-0.0061 (16)	0.0089 (17)	0.0087 (18)
C15	0.126 (4)	0.066 (3)	0.082 (3)	0.028 (3)	-0.002 (3)	0.010 (2)
C16	0.077 (3)	0.087 (3)	0.046 (2)	-0.024 (2)	-0.006 (2)	0.009 (2)
S2	0.0311 (4)	0.0672 (7)	0.0420 (5)	0.0038 (4)	0.0134 (4)	0.0173 (5)
O3	0.0529 (15)	0.0439 (15)	0.0805 (19)	-0.0146 (12)	0.0099 (14)	0.0084 (13)
O4	0.0459 (15)	0.146 (3)	0.0526 (17)	0.0202 (16)	0.0291 (14)	0.0309 (16)
N5	0.0627 (18)	0.0266 (14)	0.0311 (15)	-0.0061 (13)	0.0176 (13)	0.0016 (12)
N6	0.0562 (18)	0.0334 (15)	0.0306 (15)	-0.0038 (13)	0.0155 (13)	-0.0043 (12)
N7	0.0475 (17)	0.0610 (19)	0.0343 (17)	0.0147 (14)	0.0072 (14)	0.0086 (14)
N8	0.0533 (19)	0.099 (3)	0.0369 (19)	-0.0115 (19)	0.0002 (15)	0.0157 (18)
C17	0.057 (2)	0.0347 (19)	0.0308 (19)	-0.0103 (16)	0.0141 (16)	-0.0033 (15)
C18	0.091 (3)	0.047 (2)	0.040 (2)	-0.010 (2)	0.020 (2)	-0.0105 (18)
C19	0.092 (3)	0.068 (3)	0.033 (2)	-0.021 (2)	0.019 (2)	-0.015 (2)
C20	0.082 (3)	0.070 (3)	0.028 (2)	-0.025 (2)	0.015 (2)	0.0067 (18)
C21	0.075 (3)	0.046 (2)	0.037 (2)	-0.0132 (19)	0.015 (2)	0.0075 (17)
C22	0.051 (2)	0.037 (2)	0.0264 (18)	-0.0136 (15)	0.0134 (15)	-0.0023 (14)
C23	0.0309 (16)	0.0298 (17)	0.0320 (18)	-0.0047 (14)	0.0112 (14)	-0.0010 (14)
C24	0.0362 (17)	0.0317 (18)	0.0284 (18)	-0.0015 (14)	0.0097 (14)	0.0006 (14)
C25	0.0394 (19)	0.059 (2)	0.042 (2)	-0.0086 (17)	0.0107 (17)	-0.0008 (17)
C26	0.041 (2)	0.079 (3)	0.046 (2)	-0.0135 (19)	0.0015 (19)	-0.003 (2)
C27	0.059 (2)	0.059 (2)	0.033 (2)	0.002 (2)	0.0029 (19)	-0.0040 (17)
C28	0.052 (2)	0.047 (2)	0.0290 (19)	0.0068 (16)	0.0185 (16)	0.0038 (15)
C29	0.0338 (17)	0.0313 (17)	0.0294 (18)	0.0046 (13)	0.0093 (14)	0.0053 (13)
C30	0.038 (2)	0.073 (3)	0.050 (3)	-0.0114 (18)	0.0088 (18)	0.012 (2)
C31	0.155 (6)	0.104 (4)	0.078 (4)	0.053 (4)	0.004 (4)	0.029 (3)

C32	0.093 (4)	0.164 (5)	0.043 (3)	-0.056 (3)	-0.005 (2)	0.011 (3)	
Geometric parameters (Å, °)							
<u>S1</u> —0	1	1.450 (2	2)	C4—H4		0.9300	
S1—O	2	1.420 (3	5)	С5—Н5		0.9300	
S1—N	3	1.612 (3)	С9—Н9		0.9300	
S1—C	13	1.778 (3)	C10—H10		0.9300	
S2—O	4	1.428 (3)	C11—H11		0.9300	
S2—N ²	7	1.609 (3)	C12—H12		0.9300	
S2—C2	29	1.780 (3)	C14—H14		0.9300	
S2—O	3	1.447 (2	2)	C15—H15C		0.9600	
N1—C	6	1.377 (4	·)	C15—H15A		0.9600	
N1—C	7	1.356 (4	-)	C15—H15B		0.9600	
N2—C	7	1.310 (4	·)	C16—H16C		0.9600	
N2—C	1	1.392 (4	-)	C16—H16B		0.9600	
N3—C	14	1.308 (4	·)	C16—H16A		0.9600	
N4—C	14	1.306 (4	-)	C17—C22		1.392 (4)	
N4—C	16	1.450 (5	5)	C17—C18		1.389 (5)	
N4—C	15	1.451 (5	5)	C18—C19		1.369 (5)	
N1—H	1	0.8600		C19—C20		1.386 (6)	
N5—C	22	1.377 (4	-)	C20—C21		1.376 (5)	
N5—C	23	1.351 (4	-)	C21—C22		1.390 (4)	
N6—C	17	1.389 (4	•)	C23—C24		1.482 (4)	
N6—C	23	1.316 (4	-)	C24—C29		1.394 (5)	
N7—C	30	1.303 (5	5)	C24—C25		1.395 (5)	
N8—C	32	1.454 (5	5)	C25—C26		1.376 (5)	
N8—C	30	1.319 (5	5)	C26—C27		1.364 (6)	
N8—C	31	1.448 (6)	C27—C28		1.385 (6)	
N5—H	5A	0.8600		C28—C29		1.388 (4)	
C1—C	2	1.387 (4	·)	C18—H18		0.9300	
C1—C	6	1.394 (4	•)	C19—H19		0.9300	
С2—С	3	1.365 (5	5)	C20—H20		0.9300	
С3—С	4	1.391 (5	5)	C21—H21		0.9300	
C4—C	5	1.376 (4	·)	C25—H25		0.9300	
С5—С	6	1.384 (4	$\cdot)$	C26—H26		0.9300	
С7—С	8	1.484 (4	-)	C27—H27		0.9300	
C8—C	9	1.389 (5	5)	C28—H28		0.9300	
C8—C	13	1.389 (4	·)	C30—H30		0.9300	
С9—С	10	1.384 (5	5)	C31—H31A		0.9600	
C10—0	211	1.364 (5	5)	C31—H31B		0.9600	
C11—0	212	1.374 (5	5)	C31—H31C		0.9600	
C12—(013	1.391 (4	·)	C32—H32A		0.9600	
С2—Н	2	0.9300		C32—H32B		0.9600	
С3—Н	3	0.9300		C32—H32C		0.9600	
01—S	1—02	116.3 (2)	N3—C14—H14		118.00	
01—S	1—N3	113.32 (16)	N4—C14—H14		118.00	

O1—S1—C13	107.12 (16)	N4—C15—H15B	109.00
O2—S1—N3	109.02 (19)	N4—C15—H15A	109.00
O2—S1—C13	105.41 (16)	N4—C15—H15C	109.00
N3—S1—C13	104.75 (15)	H15B—C15—H15C	109.00
O3—S2—N7	113.45 (15)	H15A—C15—H15C	109.00
O3—S2—C29	107.61 (15)	H15A—C15—H15B	109.00
O4—S2—N7	108.77 (16)	H16A—C16—H16B	109.00
O4—S2—C29	105.65 (15)	H16B—C16—H16C	109.00
N7—S2—C29	104.41 (15)	N4—C16—H16B	109.00
O3—S2—O4	116.02 (17)	H16A—C16—H16C	109.00
C6—N1—C7	106.9 (2)	N4—C16—H16A	109.00
C1—N2—C7	104.4 (2)	N4—C16—H16C	110.00
S1—N3—C14	115.8 (2)	N6—C17—C22	110.0 (3)
C14—N4—C16	121.4 (3)	N6—C17—C18	130.0 (3)
C14—N4—C15	121.6 (3)	C18—C17—C22	120.0 (3)
C15—N4—C16	117.0 (3)	C17—C18—C19	117.7 (4)
C6—N1—H1	127.00	C18-C19-C20	122.3 (3)
C7—N1—H1	127.00	C19 - C20 - C21	120.8(3)
$C_{22} = N_{5} = C_{23}$	107.1 (2)	C_{20} C_{21} C_{22}	117.1 (3)
C17 - N6 - C23	104.5(2)	N5-C22-C21	132.8 (3)
S2—N7—C30	115.9 (3)	N5-C22-C17	105.1(2)
$C_{30} - N_8 - C_{32}$	119.6 (4)	$C_{17} - C_{22} - C_{21}$	122.0(3)
$C_{31} = N_8 = C_{32}$	118.2 (3)	N6-C23-C24	124.7(3)
C_{30} N8— C_{31}	122.3 (3)	N5—C23—C24	122.0(3)
C_{23} N5—H5A	126.00	N5-C23-N6	113.2 (3)
C22—N5—H5A	126.00	C_{23} C_{24} C_{25}	117.6 (3)
N2—C1—C6	110.0 (3)	C23—C24—C29	124.0 (3)
$C_2 - C_1 - C_6$	119.4 (3)	C25-C24-C29	118.5 (3)
N2-C1-C2	130.6 (3)	C_{24} — C_{25} — C_{26}	120.7(3)
C1-C2-C3	118.6 (3)	C25—C26—C27	120.5(3)
C2-C3-C4	121.3 (3)	C26—C27—C28	120.2(3)
C3—C4—C5	121.3 (3)	C_{27} C_{28} C_{29}	119.9 (3)
C4—C5—C6	116.9 (3)	S2-C29-C24	123.0(2)
N1—C6—C5	132.5 (3)	S2-C29-C28	116.6(2)
C1—C6—C5	122.3 (3)	C24—C29—C28	120.3 (3)
N1—C6—C1	105.1(2)	N7—C30—N8	122.9 (4)
N1-C7-N2	113.6 (3)	C17—C18—H18	121.00
N2-C7-C8	125.2 (3)	C19—C18—H18	121.00
N1-C7-C8	121.1(3)	C18—C19—H19	119.00
C9—C8—C13	118.3 (3)	C20—C19—H19	119.00
C7—C8—C13	124.6 (3)	C19 - C20 - H20	120.00
C7—C8—C9	117.1 (3)	C_{21} C_{20} H_{20}	120.00
C8—C9—C10	120.7 (3)	C20—C21—H21	121.00
C9—C10—C11	120.5 (3)	C22—C21—H21	121.00
C10-C11-C12	119.9 (3)	C24—C25—H25	120.00
C11—C12—C13	120.2 (3)	C26—C25—H25	120.00
S1—C13—C12	116.2 (2)	C25—C26—H26	120.00
C8—C13—C12	120.4 (3)	C27—C26—H26	120.00

S1—C13—C8	123.3 (2)	С26—С27—Н27	120.00
N3—C14—N4	123.6 (3)	С28—С27—Н27	120.00
С3—С2—Н2	121.00	С27—С28—Н28	120.00
C1—C2—H2	121.00	C29—C28—H28	120.00
С2—С3—Н3	119.00	N7—C30—H30	119.00
C4—C3—H3	119.00	N8—C30—H30	119.00
C3-C4-H4	119.00	N8—C31—H31A	109.00
C5—C4—H4	119.00	N8—C31—H31B	109.00
C4—C5—H5	122.00	N8-C31-H31C	109.00
С6—С5—Н5	122.00	H_{31A} C_{31} H_{31B}	110.00
C10-C9-H9	122.00	H_{31A} C_{31} H_{31C}	109.00
C8-C9-H9	120.00	H31B - C31 - H31C	109.00
C_{0} C_{10} H_{10}	120.00	N8 C32 H32A	109.00
$C_{11} = C_{10} = H_{10}$	120.00	N8 C32 H32B	109.00
C_{12} C_{11} H_{11}	120.00	N8 C32 H32C	109.00
C_{12} C_{11} H_{11}	120.00	$H_{22A} = C_{22} = H_{22B}$	109.00
C_{11} C_{12} H_{12}	120.00	$H_{22A} = C_{32} = H_{22C}$	109.00
C12 - C12 - H12	120.00	$H_{32A} - C_{32} - H_{32C}$	109.00
C13—C12—H12	120.00	H32B-C32-H32C	109.00
01 S1 N2 C14	-2 2 (2)	C1 $C2$ $C3$ $C4$	0.4(7)
$O_1 = S_1 = N_3 = C_1 4$	-2.2(3)	$C_1 - C_2 - C_3 - C_4$	0.4(7) -1.2(8)
02 - 31 - N3 - C14	129.0(3)	$C_2 = C_3 = C_4 = C_3$	-1.5(6)
C13 - S1 - C12 - C14	-118.0(3)	$C_{4} = C_{5} = C_{6}$	0.4(7)
01 - S1 - C13 - C8	-70.0(3)	C4 - C5 - C6 - N1	1/9.1 (4)
01 - 51 - C13 - C12	106.1 (3)	C4 - C5 - C6 - C1	1.5(6)
02 - S1 - C13 - C8	165.6 (3)	N2-C7-C8-C13	82.7 (4)
02 - S1 - C13 - C12	-18.3(3)	NI	77.7 (4)
N3—S1—C13—C8	50.6 (3)	NI	-101.6 (4)
N3—S1—C13—C12	-133.3 (2)	N2—C7—C8—C9	-98.0 (4)
O4—S2—N7—C30	-127.7 (3)	C7—C8—C13—S1	-5.2 (4)
C29—S2—N7—C30	119.9 (3)	C7—C8—C13—C12	178.9 (3)
O3—S2—C29—C24	67.4 (3)	C13—C8—C9—C10	-0.7 (4)
O3—S2—C29—C28	-108.7 (3)	C7—C8—C9—C10	180.0 (3)
O4—S2—C29—C24	-168.1 (3)	C9—C8—C13—C12	-0.4(4)
O4—S2—C29—C28	15.9 (3)	C9—C8—C13—S1	175.5 (2)
O3—S2—N7—C30	3.0 (3)	C8—C9—C10—C11	1.1 (5)
N7—S2—C29—C28	130.5 (2)	C9—C10—C11—C12	-0.5 (5)
N7—S2—C29—C24	-53.4 (3)	C10-C11-C12-C13	-0.6 (5)
C7—N1—C6—C5	-177.8 (4)	C11—C12—C13—C8	1.1 (5)
C6—N1—C7—N2	-0.1 (4)	C11—C12—C13—S1	-175.2 (2)
C7—N1—C6—C1	0.2 (4)	N6-C17-C18-C19	179.5 (4)
C6—N1—C7—C8	-176.2 (3)	C22-C17-C18-C19	-1.5 (6)
C7—N2—C1—C6	0.0 (4)	N6-C17-C22-N5	0.6 (4)
C7—N2—C1—C2	-179.5 (4)	N6-C17-C22-C21	-177.6 (4)
C1—N2—C7—N1	0.1 (4)	C18—C17—C22—N5	-178.6 (3)
C1—N2—C7—C8	176.0 (3)	C18—C17—C22—C21	3.3 (6)
S1—N3—C14—N4	-179.6 (3)	C17—C18—C19—C20	-1.0(7)
C15—N4—C14—N3	-1.3 (6)	C18—C19—C20—C21	2.0 (8)
C16—N4—C14—N3	178.0 (4)	C19—C20—C21—C22	-0.3 (7)

C23—N5—C22—C21	177.1 (4)	C20-C21-C22-N5	-179.9 (4)
C22—N5—C23—N6	0.8 (4)	C20—C21—C22—C17	-2.3 (6)
C23—N5—C22—C17	-0.8 (4)	N5-C23-C24-C25	-81.3 (4)
C22—N5—C23—C24	176.6 (3)	N5-C23-C24-C29	99.8 (4)
C23—N6—C17—C22	-0.2 (4)	N6-C23-C24-C25	94.1 (4)
C17—N6—C23—N5	-0.4 (4)	N6-C23-C24-C29	-84.9 (4)
C23—N6—C17—C18	178.9 (4)	C23—C24—C25—C26	-178.3 (3)
C17—N6—C23—C24	-176.1 (3)	C29—C24—C25—C26	0.7 (5)
S2—N7—C30—N8	179.8 (3)	C23—C24—C29—S2	3.5 (4)
C31—N8—C30—N7	2.3 (6)	C23—C24—C29—C28	179.5 (3)
C32—N8—C30—N7	-177.3 (4)	C25—C24—C29—S2	-175.5 (2)
C6—C1—C2—C3	1.3 (6)	C25—C24—C29—C28	0.5 (4)
N2-C1-C6-N1	-0.1 (4)	C24—C25—C26—C27	-1.1 (5)
N2—C1—C2—C3	-179.2 (4)	C25—C26—C27—C28	0.3 (5)
N2-C1-C6-C5	178.1 (4)	C26—C27—C28—C29	0.9 (5)
C2-C1-C6-N1	179.5 (3)	C27—C28—C29—S2	174.9 (2)
C2-C1-C6-C5	-2.3 (6)	C27—C28—C29—C24	-1.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H··· A
N1—H1···N2 ⁱ	0.86	2.11	2.964 (3)	174
N5—H5A···N6 ⁱⁱ	0.86	2.10	2.955 (3)	178
C9—H9…O4 ⁱ	0.93	2.56	3.153 (4)	122
C10—H10…O4 ⁱ	0.93	2.57	3.153 (4)	121
C25—H25…O2 ⁱⁱ	0.93	2.47	3.114 (5)	127

Symmetry codes: (i) -x+1/2, y-1/2, -z+1/2; (ii) -x+3/2, y+1/2, -z+1/2.