Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2E)-3-(6-Methoxynaphthalen-2-yl)-1-[4-(methylsulfanyl)phenyl]prop-2-en-1-one

Hoong-Kun Fun,^a* Tze Shyang Chia,^a Mahesh Padaki,^b Arun M. Isloor^b and A. F. Ismail^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bMembrane Technology Laboratory, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and ^cAdvanced Membrane Science and Technology Centre (AMTEC), Universiti Teknologi Malaysia (UTM), Skudai, Johor Bahru, Malaysia Correspondence e-mail: hkfun@usm mv

Received 18 June 2012; accepted 26 June 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; R factor = 0.055; wR factor = 0.136; data-to-parameter ratio = 20.0.

The asymmetric unit of the title compound, $C_{21}H_{18}O_2S$, consists of two crystallographically independent molecules (A and B). The molecules exist in a trans conformation with respect to the central C=C bond. The naphthalene ring system makes dihedral angles of 51.62(12) (molecule A) and $52.69 (12)^{\circ}$ (molecule B) with the benzene ring. In molecule A, the prop-2-en-1-one group forms dihedral angles of 22.84 (15) and 29.02 $(12)^{\circ}$ with the adjacent naphthalene ring system and benzene ring, respectively, whereas the corresponding angles are 30.04 (12) and 23.33 (12)° in molecule B. In the crystal, molecules are linked by intermolecular C-H···O hydrogen bonds into head-to-tail chains along the *a* axis. The crystal packing also features $C-H\cdots\pi$ interactions. The crystal studied was a pseudo-merohedral twin with twin law $(100\ 0\overline{1}0$ $00\overline{1}$) and a refined component ratio of 0.6103 (16):0.3897 (16).

Related literature

For the preparation and applications of chalcones, see: Mori et al. (2003); Kumar et al. (2006); Amir et al. (2008); Atwal et al. (1990). For a related structure, see: Kobkeatthawin et al. (2011). For reference bond lengths, see: Allen et al. (1987). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data

CarHuaOaS	$V = 1659 \ 1 \ (2) \ \text{\AA}^3$
$M_r = 334.41$	Z = 4
Monoclinic, Pc	Mo $K\alpha$ radiation
a = 18.6118 (14) Å	$\mu = 0.21 \text{ mm}^{-1}$
b = 15.0510 (12) Å	$T = 100 { m K}$
c = 5.9227 (5) Å	$0.45 \times 0.10 \times 0.09 \text{ mm}$
$\beta = 90.0005 \ (15)^{\circ}$	

Data collection

Bruker APEX DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.913, \ T_{\max} = 0.982$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.055$	
$wR(F^2) = 0.136$	
S = 1.05	
8757 reflections	
438 parameters	
2 restraints	

18668 measured reflections 8757 independent reflections 8185 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$

H-atom parameters constrained $\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.37 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 3893 Friedel pairs Flack parameter: 0.24 (8)

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg2 and Cg3 are the centroids of the C1A/C2A/C7A-C10A, C14A-C19A	L
and C1B/C2B/C7B-C10B rings, respectively	

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C20A - H20A \cdots O1A^{i}$	0.96	2.44	3.381 (5)	165
$C20B - H20D \cdots O1B^{i}$	0.96	2.39	3.252 (5)	149
$C8A - H8AA \cdots Cg1^{ii}$	0.93	2.84	3.565 (3)	136
$C3B - H3BA \cdot \cdot \cdot Cg2^{iii}$	0.93	2.74	3.479 (3)	137
$C8B - H8BA \cdots Cg3^{iv}$	0.93	2.78	3.494 (3)	134
$C20A - H20B \cdots Cg3^{v}$	0.96	2.63	3.481 (5)	148

Symmetry codes: (i) x + 1, y, z; (ii) x, -y, $z - \frac{1}{2}$; (iii) x - 1, y, z; (iv) x, -y + 1, $z + \frac{1}{2}$; (v) x + 1, y, z - 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009): data reduction: SAINT: program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship. AMI is thankful to the Board of Research in Nuclear Sciences, Government of India, for a Young Scientist award. AMI also thanks the Vision Group on Science & Technology, Government of Karnataka, India, for the Best Research Paper award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2777).

organic compounds

[‡] Thomson Reuters ResearcherID: A-3561-2009.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Amir, M., Javed, S. A. & Kumar, H. (2008). Acta Pharm. 58, 467-477.
- Atwal, K. S., Rovnyak, G. C., Kimball, S. D., Floyd, D. M., Moreland, S., Swanson, B. N., Gougoutas, J. Z., Schwartz, J., Smillie, K. M. & Malley, M. F. (1990). J. Med. Chem. 33, 2629–2635.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Kobkeatthawin, T., Chantrapromma, S., Saewan, N. & Fun, H.-K. (2011). Acta Cryst. E67, 01204–01205.
- Kumar, D. B. A., Prakash, G. K., Kumaraswamy, M. N., Nandeshwarappa, B. P., Sherigara, B. S. & Mahadevan, K. M. (2006). *Indian J. Chem. Sect. B*, 45, 1699–1703.
- Mori, A., Sekiguchi, A., Masui, K., Shimada, T., Horie, M., Osakada, K., Kawamoto, M. & Ikeda, T. (2003). J. Am. Chem. Soc. 125, 1700–1701. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2012). E68, o2277–o2278 [https://doi.org/10.1107/S1600536812028930] (2E)-3-(6-Methoxynaphthalen-2-yl)-1-[4-(methylsulfanyl)phenyl]prop-2-en-1-

one

Hoong-Kun Fun, Tze Shyang Chia, Mahesh Padaki, Arun M. Isloor and A. F. Ismail

S1. Comment

Chalcones are unsaturated ketones containing the reactive ketoethylenic group —CO—CH=CH—. These compounds are coloured due to the presence of the chromophore —CO—CH=CH—, and depends on the presence of other auxochromes. Several methods are available for the preparation of chalcones (Mori *et al.*, 2003; Kumar *et al.*, 2006). The most convenient method is the Claisen-Schimdt condensation of equimolar quantities of arylmethylketone with aryl aldehyde in the presence of alcoholic alkali (Amir *et al.*, 2008). Chalcones are used to synthesize several derivatives like cyanopyridines, pyrazolines, isoxazoles and pyrimidines with different heterocyclic ring systems (Atwal *et al.*, 1990). In view of the importance of chalcones, the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title compound (Fig. 1) consists of two crystallographically independent molecules (*A* and *B*). The molecules exist in *trans* configuration with respect to the central C11=C12 bond. The naphthalene ring system [C1–C10; maximum deviations = 0.037 (3) and 0.041 (3) Å at atom C4 for both molecules] makes dihedral angles of 51.62 (12)° [molecule *A*] and 52.69 (12)° [molecule *B*] with the C14–C19 benzene ring. The prop-2-en-1-one group [maximum deviations = 0.0426 (23) Å at atom C13A and 0.0846 (21) Å at atom C13B] forms dihedral angles of 22.84 (15) and 29.02 (12)° with the adjacent naphthalene ring system and benzene ring, respectively in molecules *A*, whereas the corresponding angles are 30.04 (12) and 23.33 (12)° in molecule *B*. Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to those found in a related structure (Kobkeatthawin *et al.*, 2011).

In the crystal (Fig. 2), molecules are linked by intermolecular C20A—H20A···O1A and C20B—H20D···O1B hydrogen bonds into chains in head-to-tail fashion, propagating along the *a* axis. The crystal packing is further stabilized by the C —H··· π interactions (Table 1), involving *Cg*1, *Cg*2 and *Cg*3 which are the centroids of C1A/C2A/C7A–C10A, C14A– C19A and C1B/C2B/C7B–C10B rings, respectively.

S2. Experimental

To a thoroughly stirred solution of 6-methoxy-2-naphthaldehyde (0.5 g, 10 mmol) and 1-[4-(methylsulfanyl)phenyl]ethanone (1.66 g, 10 mmol) in 5 ml methanol, 0.5 ml of 40% NaOH solution was added. The reaction mixture was stirred overnight and the solid separated was collected by filtration. The product obtained was recrystallized from methanol. Yield: 2.65 g, 79.3%. M.p. 459–461 K.

S3. Refinement

All H atoms were positioned geometrically [C—H = 0.93 and 0.96 Å] and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl groups. The crystal was a pseudo-merohedral twin with twin law (100 010 001) and BASF of 0.3897 (16).

Figure 1

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the title compound. Hydrogen atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.

(2E)-3-(6-Methoxynaphthalen-2-yl)-1-[4-(methylsulfanyl)phenyl]prop- 2-en-1-one

Crystal data F(000) = 704 $C_{21}H_{18}O_2S$ $M_r = 334.41$ $D_{\rm x} = 1.339 {\rm Mg m^{-3}}$ Monoclinic, Pc Mo *K* α radiation, $\lambda = 0.71073$ Å Hall symbol: P -2yc Cell parameters from 6635 reflections a = 18.6118 (14) Å $\theta = 2.6 - 29.9^{\circ}$ *b* = 15.0510 (12) Å $\mu = 0.21 \text{ mm}^{-1}$ T = 100 Kc = 5.9227 (5) Å $\beta = 90.0005 (15)^{\circ}$ Needle, yellow V = 1659.1 (2) Å³ $0.45 \times 0.10 \times 0.09 \text{ mm}$ Z = 4Data collection Bruker APEX DUO CCD area-detector 18668 measured reflections diffractometer 8757 independent reflections Radiation source: fine-focus sealed tube 8185 reflections with $I > 2\sigma(I)$ Graphite monochromator $R_{\rm int} = 0.041$ $\theta_{\text{max}} = 30.1^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$ $h = -26 \rightarrow 26$ φ and ω scans Absorption correction: multi-scan $k = -21 \rightarrow 20$ (SADABS; Bruker, 2009) $T_{\rm min} = 0.913, T_{\rm max} = 0.982$ $l = -8 \rightarrow 8$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.055$	H-atom parameters constrained
$wR(F^2) = 0.136$	$w = 1/[\sigma^2(F_o^2) + (0.0704P)^2]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
8757 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
438 parameters	$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
2 restraints	$\Delta \rho_{\min} = -0.37 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 3893 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.24 (8)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1A	1.08822 (5)	0.10393 (6)	0.36728 (17)	0.02342 (18)	
01A	0.26820 (13)	0.12565 (17)	-0.1262 (6)	0.0267 (5)	
O2A	0.75451 (14)	0.1316 (2)	0.7822 (5)	0.0350 (6)	
C1A	0.52042 (16)	0.16767 (19)	0.3703 (6)	0.0150 (5)	
H1AA	0.5183	0.1960	0.5096	0.018*	
C2A	0.45726 (17)	0.15987 (19)	0.2382 (6)	0.0155 (6)	
C3A	0.38979 (15)	0.19520 (18)	0.3088 (6)	0.0173 (6)	
H3AA	0.3865	0.2254	0.4455	0.021*	
C4A	0.33029 (17)	0.1853 (2)	0.1788 (7)	0.0219 (7)	
H4AA	0.2873	0.2113	0.2245	0.026*	
C5A	0.33241 (18)	0.1362 (2)	-0.0252 (7)	0.0191 (7)	
C6A	0.39676 (18)	0.1015 (2)	-0.1018 (7)	0.0180 (6)	
H6AA	0.3985	0.0702	-0.2370	0.022*	
C7A	0.45972 (17)	0.11400 (19)	0.0271 (6)	0.0136 (6)	
C8A	0.52828 (17)	0.0818 (2)	-0.0451 (6)	0.0177 (6)	
H8AA	0.5316	0.0531	-0.1837	0.021*	
C9A	0.58886 (19)	0.09160 (19)	0.0813 (6)	0.0172 (6)	
H9AA	0.6327	0.0707	0.0280	0.021*	
C10A	0.58450 (17)	0.13411 (19)	0.2960 (6)	0.0146 (5)	
C11A	0.64673 (18)	0.1402 (2)	0.4461 (6)	0.0194 (6)	
H11A	0.6372	0.1588	0.5928	0.023*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12A	0.71575 (16)	0.1225 (2)	0.3995 (7)	0.0193 (7)
H12A	0.7293	0.1082	0.2528	0.023*
C13A	0.77081 (19)	0.1256 (2)	0.5813 (7)	0.0226 (7)
C14A	0.84832 (17)	0.1204 (2)	0.5130 (7)	0.0167 (6)
C15A	0.87291 (18)	0.1513 (2)	0.3048 (6)	0.0177 (6)
H15A	0.8403	0.1730	0.1994	0.021*
C16A	0.94659 (16)	0.14992 (19)	0.2532 (6)	0.0157 (6)
H16A	0.9633	0.1726	0.1169	0.019*
C17A	0.99451 (15)	0.11367 (19)	0.4108 (6)	0.0137 (6)
C18A	0.96989 (16)	0.08086 (19)	0.6188 (6)	0.0163 (6)
H18A	1.0019	0.0559	0.7215	0.020*
C19A	0.89735 (18)	0.0861 (2)	0.6689(7)	0.0182 (6)
H19A	0.8810	0.0664	0.8086	0.022*
C20A	1.1033 (2)	0.1573 (3)	0.0992 (7)	0.0312 (9)
H20A	1.1534	0.1538	0.0613	0.047*
H20B	1.0891	0.2185	0.1087	0.047*
H20C	1.0755	0.1281	-0.0153	0.047*
C21A	0.2639 (2)	0.0665 (3)	-0.3144(7)	0.0290 (8)
H21A	0.2150	0.0621	-0.3638	0.044*
H21B	0.2809	0.0088	-0.2703	0.044*
H21C	0.2931	0.0888	-0.4354	0.044*
S1B	0.65875 (5)	0.38034 (6)	0.7749 (2)	0.0290 (2)
O1B	-0.17124 (13)	0.37693 (16)	1.1700 (5)	0.0232 (5)
O2B	0.32634 (15)	0.40237 (17)	0.3454 (6)	0.0281 (6)
C1B	0.08998 (19)	0.33729 (19)	0.7171 (6)	0.0173 (6)
H1BA	0.0896	0.3105	0.5756	0.021*
C2B	0.02541 (17)	0.34493 (18)	0.8358 (6)	0.0171 (6)
C3B	-0.04127 (17)	0.31198 (19)	0.7549 (6)	0.0191 (6)
H3BA	-0.0420	0.2826	0.6168	0.023*
C4B	-0.10425 (17)	0.3214 (2)	0.8700 (7)	0.0207 (6)
H4BA	-0.1465	0.2968	0.8142	0.025*
C5B	-0.10433 (18)	0.3700 (2)	1.0789 (6)	0.0183 (6)
C6B	-0.04156 (17)	0.4025 (2)	1.1700 (6)	0.0163 (6)
H6BA	-0.0422	0.4323	1.3076	0.020*
C7B	0.02500 (17)	0.3900 (2)	1.0507 (6)	0.0155 (6)
C8B	0.09134 (18)	0.41933 (19)	1.1407 (6)	0.0175 (6)
H8BA	0.0924	0.4465	1.2817	0.021*
C9B	0.1544 (2)	0.4080 (2)	1.0217 (7)	0.0207 (7)
H9BA	0.1975	0.4267	1.0855	0.025*
C10B	0.15495 (18)	0.36844 (18)	0.8037 (7)	0.0174 (7)
C11B	0.21800 (18)	0.3661 (2)	0.6598 (6)	0.0174 (6)
H11B	0.2111	0.3475	0.5117	0.021*
C12B	0.28628 (19)	0.3885 (2)	0.7199 (7)	0.0224 (7)
H12B	0.2974	0.4005	0.8699	0.027*
C13B	0.34251 (18)	0.3934 (2)	0.5438 (7)	0.0185 (7)
C14B	0.41983 (19)	0.38928 (19)	0.6142 (7)	0.0174 (6)
C15B	0.44145 (15)	0.35310 (19)	0.8180 (6)	0.0142 (6)
H15B	0.4073	0.3326	0.9201	0.017*

C16B	0.51400 (18)	0.3474 (2)	0.8703 (7)	0.0202 (6)	
H16B	0.5279	0.3219	1.0066	0.024*	
C17B	0.56853 (17)	0.38018 (18)	0.7174 (6)	0.0152 (6)	
C18B	0.5429 (2)	0.4159 (2)	0.5152 (7)	0.0220 (7)	
H18B	0.5763	0.4383	0.4131	0.026*	
C19B	0.47186 (17)	0.4199 (2)	0.4584 (6)	0.0169 (6)	
H19B	0.4579	0.4426	0.3190	0.020*	
C20B	0.6682 (2)	0.3138 (3)	1.0244 (8)	0.0311 (8)	
H20D	0.7182	0.3083	1.0618	0.047*	
H20E	0.6484	0.2559	0.9977	0.047*	
H20F	0.6432	0.3416	1.1473	0.047*	
C21B	-0.17812 (19)	0.4323 (2)	1.3649 (7)	0.0261 (7)	
H21D	-0.2281	0.4428	1.3952	0.039*	
H21E	-0.1544	0.4879	1.3381	0.039*	
H21F	-0.1565	0.4033	1.4924	0.039*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1A	0.0118 (3)	0.0298 (4)	0.0287 (5)	-0.0011 (3)	-0.0032 (4)	-0.0013 (4)
O1A	0.0175 (11)	0.0359 (12)	0.0267 (14)	0.0022 (9)	-0.0083 (13)	-0.0057 (13)
O2A	0.0178 (12)	0.0736 (19)	0.0135 (12)	0.0016 (12)	-0.0024 (12)	0.0005 (15)
C1A	0.0163 (12)	0.0190 (12)	0.0097 (13)	0.0026 (10)	-0.0015 (13)	-0.0023 (12)
C2A	0.0128 (12)	0.0167 (12)	0.0169 (15)	0.0035 (10)	0.0019 (13)	-0.0011 (12)
C3A	0.0143 (12)	0.0174 (11)	0.0204 (15)	0.0013 (9)	0.0016 (12)	-0.0048 (12)
C4A	0.0143 (13)	0.0220 (14)	0.0293 (18)	0.0047 (11)	0.0030 (14)	-0.0020 (14)
C5A	0.0151 (15)	0.0188 (14)	0.0235 (17)	-0.0001 (11)	-0.0025 (14)	0.0009 (13)
C6A	0.0159 (14)	0.0218 (14)	0.0163 (16)	0.0031 (11)	0.0036 (14)	0.0000 (12)
C7A	0.0138 (14)	0.0167 (14)	0.0104 (13)	0.0009 (10)	0.0015 (13)	0.0008 (11)
C8A	0.0197 (15)	0.0229 (14)	0.0104 (13)	0.0042 (11)	0.0055 (13)	0.0012 (11)
C9A	0.0130 (12)	0.0195 (13)	0.0191 (15)	0.0017 (11)	0.0011 (14)	-0.0014 (12)
C10A	0.0117 (12)	0.0193 (12)	0.0127 (13)	0.0048 (10)	-0.0006 (14)	0.0006 (12)
C11A	0.0147 (14)	0.0265 (15)	0.0169 (16)	0.0008 (12)	-0.0010 (14)	0.0022 (13)
C12A	0.0091 (12)	0.0290 (15)	0.0198 (18)	0.0014 (10)	0.0016 (13)	0.0046 (14)
C13A	0.0147 (15)	0.0344 (17)	0.0188 (17)	0.0007 (13)	0.0032 (14)	0.0084 (14)
C14A	0.0126 (14)	0.0202 (14)	0.0173 (16)	0.0007 (11)	-0.0016 (13)	0.0030 (12)
C15A	0.0199 (14)	0.0228 (14)	0.0105 (14)	0.0060 (11)	0.0015 (13)	0.0012 (12)
C16A	0.0112 (12)	0.0165 (12)	0.0192 (16)	0.0007 (9)	0.0001 (13)	-0.0004 (12)
C17A	0.0070 (11)	0.0168 (12)	0.0173 (17)	-0.0017 (9)	0.0014 (12)	-0.0055 (11)
C18A	0.0131 (13)	0.0146 (12)	0.0213 (17)	-0.0036 (10)	-0.0057 (13)	-0.0004 (11)
C19A	0.0167 (14)	0.0179 (13)	0.0201 (15)	-0.0007 (10)	0.0010 (14)	0.0034 (12)
C20A	0.0181 (16)	0.048 (2)	0.028 (2)	-0.0047 (14)	0.0022 (16)	-0.0040 (18)
C21A	0.0246 (17)	0.0407 (19)	0.0218 (17)	-0.0028 (15)	-0.0100 (16)	-0.0025 (16)
S1B	0.0183 (4)	0.0299 (4)	0.0388 (6)	-0.0019 (3)	0.0068 (4)	0.0041 (4)
O1B	0.0141 (11)	0.0307 (12)	0.0247 (13)	-0.0029 (9)	0.0019 (11)	-0.0019 (11)
O2B	0.0273 (13)	0.0315 (12)	0.0254 (15)	0.0045 (10)	0.0019 (13)	0.0080 (12)
C1B	0.0177 (13)	0.0218 (13)	0.0125 (14)	-0.0009 (12)	-0.0021 (13)	0.0003 (11)
C2B	0.0186 (14)	0.0122 (11)	0.0204 (17)	0.0012 (9)	-0.0028 (14)	-0.0003 (11)

supporting information

C3B	0.0189 (13)	0.0196 (12)	0.0187 (15)	-0.0035 (10)	-0.0036 (14)	-0.0001 (13)
C4B	0.0214 (14)	0.0189 (13)	0.0219 (15)	-0.0035 (10)	-0.0008 (16)	0.0003 (13)
C5B	0.0110 (13)	0.0225 (14)	0.0214 (17)	-0.0030 (11)	-0.0009 (14)	0.0021 (13)
C6B	0.0151 (13)	0.0182 (13)	0.0156 (14)	0.0030 (11)	0.0040 (13)	-0.0014 (12)
C7B	0.0117 (14)	0.0204 (14)	0.0145 (15)	0.0002 (10)	-0.0008 (13)	0.0050 (12)
C8B	0.0177 (13)	0.0172 (13)	0.0175 (14)	-0.0005 (11)	-0.0052 (14)	0.0012 (11)
C9B	0.0228 (17)	0.0183 (13)	0.0211 (17)	-0.0029 (12)	-0.0049 (16)	0.0002 (13)
C10B	0.0170 (13)	0.0121 (11)	0.0231 (19)	-0.0016 (10)	-0.0014 (15)	-0.0009 (12)
C11B	0.0176 (14)	0.0204 (14)	0.0141 (14)	0.0015 (11)	-0.0002 (13)	0.0023 (12)
C12B	0.0199 (16)	0.0271 (16)	0.0203 (18)	0.0008 (12)	0.0022 (15)	-0.0018 (13)
C13B	0.0133 (15)	0.0231 (15)	0.0192 (17)	0.0001 (11)	-0.0005 (13)	0.0052 (13)
C14B	0.0193 (14)	0.0121 (12)	0.0207 (17)	-0.0030 (10)	0.0039 (13)	-0.0002 (11)
C15B	0.0106 (12)	0.0181 (12)	0.0140 (15)	-0.0035 (9)	0.0017 (11)	0.0020 (11)
C16B	0.0203 (14)	0.0214 (13)	0.0189 (16)	-0.0018 (11)	0.0029 (15)	-0.0034 (14)
C17B	0.0187 (14)	0.0095 (11)	0.0176 (15)	0.0055 (9)	-0.0008 (12)	-0.0038 (10)
C18B	0.0258 (16)	0.0164 (13)	0.0237 (18)	0.0012 (12)	0.0100 (16)	-0.0005 (13)
C19B	0.0188 (14)	0.0159 (13)	0.0161 (14)	0.0024 (10)	0.0094 (13)	0.0018 (11)
C20B	0.0211 (16)	0.0379 (19)	0.034 (2)	0.0000 (14)	-0.0004 (17)	0.0001 (17)
C21B	0.0251 (15)	0.0360 (17)	0.0171 (15)	-0.0016 (13)	0.0050 (16)	-0.0020 (16)

Geometric parameters (Å, °)

S1A—C17A	1.769 (3)	S1B—C17B	1.713 (3)
S1A-C20A	1.802 (5)	S1B—C20B	1.794 (5)
O1A—C5A	1.346 (4)	O1B—C5B	1.361 (4)
O1A—C21A	1.429 (5)	O1B—C21B	1.429 (5)
O2A—C13A	1.231 (5)	O2B—C13B	1.220 (5)
C1A—C10A	1.368 (4)	C1BC10B	1.395 (5)
C1A—C2A	1.417 (4)	C1B—C2B	1.397 (5)
C1A—H1AA	0.9300	C1B—H1BA	0.9300
C2A—C3A	1.426 (4)	C2B—C3B	1.420 (4)
C2A—C7A	1.429 (5)	C2B—C7B	1.443 (5)
C3A—C4A	1.357 (5)	C3B—C4B	1.364 (5)
СЗА—НЗАА	0.9300	C3B—H3BA	0.9300
C4A—C5A	1.418 (5)	C4B—C5B	1.437 (5)
С4А—Н4АА	0.9300	C4B—H4BA	0.9300
С5А—С6А	1.383 (5)	C5B—C6B	1.377 (5)
C6A—C7A	1.411 (5)	C6B—C7B	1.439 (5)
С6А—Н6АА	0.9300	C6B—H6BA	0.9300
C7A—C8A	1.430 (4)	C7B—C8B	1.415 (5)
C8A—C9A	1.361 (5)	C8B—C9B	1.379 (5)
С8А—Н8АА	0.9300	C8B—H8BA	0.9300
C9A—C10A	1.426 (5)	C9B—C10B	1.422 (5)
С9А—Н9АА	0.9300	C9B—H9BA	0.9300
C10A-C11A	1.463 (4)	C10B—C11B	1.451 (5)
C11A—C12A	1.341 (4)	C11B—C12B	1.362 (5)
C11A—H11A	0.9300	C11B—H11B	0.9300
C12A—C13A	1.487 (5)	C12B—C13B	1.479 (5)

C12A—H12A	0.9300	C12B—H12B	0.9300
C13A—C14A	1.500 (5)	C13B—C14B	1.500 (5)
C14A—C15A	1.395 (5)	C14B—C15B	1.384 (5)
C14A—C19A	1.397 (5)	C14B—C19B	1.415 (4)
C15A—C16A	1.405 (4)	C15B—C16B	1.388 (4)
С15А—Н15А	0.9300	C15B—H15B	0.9300
C16A - C17A	1 402 (5)	C16B-C17B	1 447 (5)
C16A—H16A	0.9300	C16B—H16B	0.9300
C17A - C18A	1404(5)	C17B-C18B	1 396 (5)
C18A - C19A	1.101(3) 1.385(4)	C18B-C19B	1.366 (5)
C_{18A} H_{18A}	0.0300	C18B H18B	0.9300
	0.9300	CIOR HIOR	0.9300
	0.9300	C19D - H19D	0.9300
C_{20A} H20P	0.9000	$\begin{array}{c} C20B \\ C20B \\ H20E \end{array}$	0.9000
C20A—H20B	0.9600	C20B—H20E	0.9600
C20A—H20C	0.9600	C20B—H20F	0.9600
C2IA—H2IA	0.9600	C2IB—H2ID	0.9600
C2IA—H2IB	0.9600	C2IB—H2IE	0.9600
C21A—H21C	0.9600	C21B—H21F	0.9600
C17A—S1A—C20A	104 21 (17)	C17B—S1B—C20B	105 05 (17)
$C_{5A} = 01A = C_{21A}$	10.21(17) 118.0(3)	C5B - O1B - C21B	1165(3)
C_{10A} C_{1A} C_{2A}	1210(3)	C10B-C1B-C2B	1222(3)
C10A - C1A - H1AA	121.0 (5)	C10B-C1B-H1BA	118.9
$C_{10A} = C_{1A} = H_{1AA}$	119.5	C^{2} C^{1} C^{2} C^{2} C^{1} C^{2} C^{2} C^{2} C^{1} C^{2} C^{2	118.9
C_{2A} C_{1A} C_{2A} C_{2A}	119.5	C_{2B} $-C_{1B}$ $-H_{1BA}$	110.9
CIA = C2A = C3A	122.5(3)	C1B - C2B - C3B	123.0(3)
CIA - C2A - C7A	119.8 (3)	CIB - C2B - C7B	119.2 (3)
C_{3A} C_{2A} C_{7A}	11/./(3)	$C_{3B} = C_{2B} = C_{7B}$	117.2 (3)
C4A—C3A—C2A	120.8 (3)	C4B—C3B—C2B	123.1 (3)
С4А—СЗА—НЗАА	119.6	C4B—C3B—H3BA	118.4
С2А—С3А—НЗАА	119.6	C2B—C3B—H3BA	118.4
C3A—C4A—C5A	121.2 (3)	C3B—C4B—C5B	119.0 (3)
СЗА—С4А—Н4АА	119.4	C3B—C4B—H4BA	120.5
С5А—С4А—Н4АА	119.4	C5B—C4B—H4BA	120.5
O1A—C5A—C6A	125.4 (4)	O1B—C5B—C6B	126.4 (3)
O1A—C5A—C4A	114.6 (3)	O1B—C5B—C4B	112.4 (3)
C6A—C5A—C4A	120.0 (3)	C6B—C5B—C4B	121.2 (3)
C5A—C6A—C7A	119.4 (3)	C5B—C6B—C7B	119.5 (3)
С5А—С6А—Н6АА	120.3	C5B—C6B—H6BA	120.3
С7А—С6А—Н6АА	120.3	C7B—C6B—H6BA	120.3
C6A—C7A—C2A	120.7 (3)	C8B—C7B—C6B	121.7 (3)
C6A—C7A—C8A	122.3 (3)	C8B—C7B—C2B	118.3 (3)
C2A—C7A—C8A	117.0 (3)	C6B—C7B—C2B	120.0 (3)
C9A—C8A—C7A	122.5 (3)	C9B—C8B—C7B	120.8 (3)
С9А—С8А—Н8АА	118.7	C9B—C8B—H8BA	119.6
С7А—С8А—Н8АА	118.7	C7B—C8B—H8BA	119.6
C8A—C9A—C10A	119.5 (3)	C8B—C9B—C10B	121.4 (3)
С8А—С9А—Н9АА	120.3	C8B—C9B—H9BA	119.3
С10А—С9А—Н9АА	120.3	C10B—C9B—H9BA	119.3

C1A—C10A—C9A	120.1 (3)	C1B—C10B—C9B	117.9 (3)	
C1A-C10A-C11A	118.2 (3)	C1B—C10B—C11B	118.5 (3)	
C9A—C10A—C11A	121.7 (3)	C9B—C10B—C11B	123.3 (3)	
C12A—C11A—C10A	128.4 (4)	C12B—C11B—C10B	126.5 (3)	
C12A—C11A—H11A	115.8	C12B—C11B—H11B	116.7	
C10A—C11A—H11A	115.8	C10B—C11B—H11B	116.7	
C11A—C12A—C13A	120.3 (4)	C11B—C12B—C13B	119.2 (4)	
C11A—C12A—H12A	119.8	C11B—C12B—H12B	120.4	
C13A—C12A—H12A	119.8	C13B—C12B—H12B	120.4	
O2A—C13A—C12A	122.2 (3)	O2B-C13B-C12B	120.6 (3)	
O2A - C13A - C14A	1201(3)	$0^{2}B-C^{13}B-C^{14}B$	120.6(3)	
C12A— $C13A$ — $C14A$	117.8(3)	C12B $C13B$ $C14B$	1187(3)	
C15A - C14A - C19A	1195(3)	C15B— $C14B$ — $C19B$	110.7(3)	
C15A - C14A - C13A	119.5(3) 122 5(3)	C15B $C14B$ $C13B$	122.5(3)	
$C_{19} - C_{14} - C_{13}$	122.3(3) 1180(3)	C19B $C14B$ $C13B$	122.5(3) 117.5(3)	
C14A - C15A - C16A	120.5(3)	C14B $C15B$ $C16B$	117.3(3) 120.1(3)	
C_{14A} C_{15A} H_{15A}	120.5 (5)	C14B $C15B$ $H15B$	110.0	
$C_{14A} = C_{15A} = 115A$	119.7	$C_{14D} = C_{15D} = H_{15D}$	119.9	
C17A $C16A$ $C15A$	119.7 118.8(3)	C10D - C10D - III0D	119.9 121.4(3)	
C17A = C16A = C15A	110.0 (5)	C15D - C10D - C17D	121.4(3)	
C17A - C16A - H16A	120.0	C13D - C10D - D10B	119.5	
C16A - C17A - C18A	120.0	C1/B— $C10B$ — $C10B$	119.5	
C16A - C17A - C18A	120.9 (3)	C18B - C17B - C16B	115.4 (3)	
CI6A—CI/A—SIA	124.2 (3)	C18B - C1/B - S1B	120.3 (3)	
CI8A—CI7A—SIA	114.9 (2)	CI6B—CI7B—SIB	124.3 (3)	
C19A—C18A—C17A	119.1 (3)	C19B—C18B—C17B	124.0 (3)	
C19A—C18A—H18A	120.5	C19B—C18B—H18B	118.0	
C17A—C18A—H18A	120.5	C17B—C18B—H18B	118.0	
C18A—C19A—C14A	121.1 (3)	C18B—C19B—C14B	119.2 (3)	
C18A—C19A—H19A	119.5	C18B—C19B—H19B	120.4	
C14A—C19A—H19A	119.5	C14B—C19B—H19B	120.4	
S1A—C20A—H20A	109.5	S1B—C20B—H20D	109.5	
S1A—C20A—H20B	109.5	S1B—C20B—H20E	109.5	
H20A—C20A—H20B	109.5	H20D—C20B—H20E	109.5	
S1A—C20A—H20C	109.5	S1B—C20B—H20F	109.5	
H20A—C20A—H20C	109.5	H20D—C20B—H20F	109.5	
H20B—C20A—H20C	109.5	H20E—C20B—H20F	109.5	
O1A—C21A—H21A	109.5	O1B—C21B—H21D	109.5	
O1A—C21A—H21B	109.5	O1B—C21B—H21E	109.5	
H21A—C21A—H21B	109.5	H21D—C21B—H21E	109.5	
O1A—C21A—H21C	109.5	O1B—C21B—H21F	109.5	
H21A—C21A—H21C	109.5	H21D—C21B—H21F	109.5	
H21B—C21A—H21C	109.5	H21E—C21B—H21F	109.5	
C10A—C1A—C2A—C3A	-179.0 (3)	C10B—C1B—C2B—C3B	-178.4 (3)	
C10A—C1A—C2A—C7A	1.9 (5)	C10B—C1B—C2B—C7B	2.9 (4)	
C1A—C2A—C3A—C4A	-179.1 (3)	C1B—C2B—C3B—C4B	-178.6 (3)	
C7A—C2A—C3A—C4A	0.0 (5)	C7B—C2B—C3B—C4B 0.2 (4)		
C2A—C3A—C4A—C5A	3.0 (5)	C2B—C3B—C4B—C5B	2.6 (5)	
	~ /		· /	

C21A—O1A—C5A—C6A	7.0 (5)	C21B—O1B—C5B—C6B	8.0 (5)
C21A—O1A—C5A—C4A	-171.2 (3)	C21B—O1B—C5B—C4B	-173.4 (3)
C3A—C4A—C5A—O1A	174.6 (3)	C3B-C4B-C5B-01B	177.6 (3)
C3A—C4A—C5A—C6A	-3.7 (5)	C3B—C4B—C5B—C6B	-3.7 (5)
O1A—C5A—C6A—C7A	-176.9 (3)	O1B-C5B-C6B-C7B	-179.5 (3)
C4A—C5A—C6A—C7A	1.2 (5)	C4B—C5B—C6B—C7B	1.9 (5)
C5A—C6A—C7A—C2A	1.8 (5)	C5B—C6B—C7B—C8B	-177.7 (3)
C5A—C6A—C7A—C8A	-178.4 (3)	C5B—C6B—C7B—C2B	0.9 (4)
C1A—C2A—C7A—C6A	176.7 (3)	C1B-C2B-C7B-C8B	-4.5 (4)
C3A—C2A—C7A—C6A	-2.4 (4)	C3B—C2B—C7B—C8B	176.7 (3)
C1A—C2A—C7A—C8A	-3.1 (4)	C1B—C2B—C7B—C6B	176.9 (3)
C3A—C2A—C7A—C8A	177.8 (3)	C3B—C2B—C7B—C6B	-2.0 (4)
C6A—C7A—C8A—C9A	-178.2 (3)	C6B—C7B—C8B—C9B	-178.9 (3)
C2A—C7A—C8A—C9A	1.7 (5)	C2B-C7B-C8B-C9B	2.5 (4)
C7A—C8A—C9A—C10A	1.1 (5)	C7B-C8B-C9B-C10B	1.3 (5)
C2A-C1A-C10A-C9A	0.9 (5)	C2B-C1B-C10B-C9B	0.8 (4)
C2A-C1A-C10A-C11A	-176.8 (3)	C2B-C1B-C10B-C11B	-173.7 (3)
C8A—C9A—C10A—C1A	-2.4 (5)	C8B—C9B—C10B—C1B	-3.0 (5)
C8A—C9A—C10A—C11A	175.2 (3)	C8B—C9B—C10B—C11B	171.3 (3)
C1A—C10A—C11A—C12A	-170.7 (3)	C1B-C10B-C11B-C12B	-175.7 (3)
C9A—C10A—C11A—C12A	11.6 (5)	C9B-C10B-C11B-C12B	10.1 (5)
C10A—C11A—C12A—C13A	-174.9 (3)	C10B—C11B—C12B—C13B	-172.1 (3)
C11A—C12A—C13A—O2A	10.5 (6)	C11B—C12B—C13B—O2B	20.4 (5)
C11A—C12A—C13A—C14A	-169.9 (3)	C11B—C12B—C13B—C14B	-160.9 (3)
O2A—C13A—C14A—C15A	-151.5 (4)	O2B—C13B—C14B—C15B	-159.8 (3)
C12A—C13A—C14A—C15A	28.9 (5)	C12B—C13B—C14B—C15B	21.5 (5)
O2A—C13A—C14A—C19A	26.2 (5)	O2B-C13B-C14B-C19B	17.0 (5)
C12A—C13A—C14A—C19A	-153.3 (3)	C12B—C13B—C14B—C19B	-161.7 (3)
C19A—C14A—C15A—C16A	-1.5 (5)	C19B—C14B—C15B—C16B	0.4 (4)
C13A—C14A—C15A—C16A	176.3 (3)	C13B—C14B—C15B—C16B	177.1 (3)
C14A—C15A—C16A—C17A	2.6 (5)	C14B—C15B—C16B—C17B	1.2 (5)
C15A—C16A—C17A—C18A	-1.3 (5)	C15B—C16B—C17B—C18B	-1.1 (4)
C15A—C16A—C17A—S1A	177.9 (2)	C15B—C16B—C17B—S1B	176.8 (2)
C20A—S1A—C17A—C16A	4.3 (3)	C20B—S1B—C17B—C18B	-171.2 (3)
C20A—S1A—C17A—C18A	-176.4 (2)	C20B—S1B—C17B—C16B	11.0 (3)
C16A—C17A—C18A—C19A	-1.1 (4)	C16B—C17B—C18B—C19B	-0.7 (4)
S1A—C17A—C18A—C19A	179.6 (2)	S1B-C17B-C18B-C19B	-178.7 (3)
C17A—C18A—C19A—C14A	2.3 (5)	C17B—C18B—C19B—C14B	2.2 (5)
C15A—C14A—C19A—C18A	-1.0 (5)	C15B—C14B—C19B—C18B	-2.1 (5)
C13A—C14A—C19A—C18A	-178.8 (3)	C13B—C14B—C19B—C18B	-179.0 (3)

Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C1A/C2A/C7A-C10A, C14A-C19A and C1B/C2B/C7B-C10B rings, respectively

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C20A—H20A…O1A ⁱ	0.96	2.44	3.381 (5)	165
C20 <i>B</i> —H20 <i>D</i> ····O1 <i>B</i> ⁱ	0.96	2.39	3.252 (5)	149
C8A— $H8AA$ ···· $Cg1$ ⁱⁱ	0.93	2.84	3.565 (3)	136

supporting information C3*B*—H3*BA*····*Cg*2ⁱⁱⁱ 0.93 2.74 3.479 (3) 137 C8B—H8BA…Cg3^{iv} 0.93 2.78 3.494 (3) 134 C20A—H20B····Cg3^v 0.96 3.481 (5) 148 2.63

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*, -*y*, *z*-1/2; (iii) *x*-1, *y*, *z*; (iv) *x*, -*y*+1, *z*+1/2; (v) *x*+1, *y*, *z*-1.