Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-Hydrazinylquinoline

Muhd. Hidayat bin Najib, ${ }^{\text {a }}$ Ai Ling Tan, ${ }^{\text {a }}$ David J. Young, ${ }^{\text {a }} \ddagger$ Seik Weng $\mathbf{N g}^{\mathbf{b}, \mathbf{c}}$ and Edward R. T. Tiekink ${ }^{\text {b }}$ *

${ }^{\text {a}}$ Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link BE 1410, Negara Brunei Darussalam, ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\text {c}}$ Chemistry Department and Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: edward.tiekink@gmail.com
Received 9 June 2012; accepted 14 June 2012
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.052 ; w R$ factor $=0.158$; data-to-parameter ratio $=12.7$.

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3}$, the 12 non- H atoms are essentially planar (r.m.s. deviation $=0.068 \AA$). The maximum deviation from planarity is reflected in the torsion angle between the $\beta-\mathrm{N}$ atom of the hydrazinyl residue and the quinolinyl N atom $\left[\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{N}=-12.7\right.$ (3) ${ }^{\circ}$]; these atoms are syn. In the crystal, supramolecular layers in the $b c$ plane are formed via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Related literature

For applications of coordination complexes of hydrazones as organic light emitting diodes and supramolecular magnetic clusters, see: Zhang et al. (2011); Petukhov et al. (2009). For background to the synthesis of hydrazones, see: Gupta et al. (2007); Anwar et al. (2011). For a related structure, see: Najib et al. (2012).

Experimental

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3}$
$M_{r}=159.19$
Monoclinic, $P 2_{1} / c$ $a=13.7966$ (9) A $b=3.9648$ (3) \AA $c=14.0700(8) \AA$ $\beta=97.039(5)^{\circ}$

$$
V=763.84(9) \AA^{3}
$$

$$
Z=4
$$

$\mathrm{Cu} K \alpha$ radiation
$\mu=0.70 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.30 \times 0.08 \times 0.03 \mathrm{~mm}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) $T_{\min }=0.476, T_{\max }=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.158 \quad$ independent and constrained
$S=1.10$
1542 reflections
121 parameters

2474 measured reflections
1542 independent reflections
1169 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 n \cdots \mathrm{~N}^{\mathrm{i}}$	$0.93(3)$	$2.18(3)$	$3.077(2)$	$164(2)$
$\mathrm{N} 3-\mathrm{H} 2 n \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.89(2)$	$2.31(2)$	$3.200(2)$	$175.1(19)$
$\mathrm{N} 3-\mathrm{H} 3 n \cdots \mathrm{~N} 2^{\mathrm{iii}}$	$0.90(2)$	$2.58(2)$	$3.295(2)$	$136.4(16)$
Symmetry codes:	(i)	$-x+1, y+\frac{1}{2},-z+\frac{3}{2} ;$	(ii)	$-x+1,-y+1,-z+1 ; \quad$ (iii)
$x, y-1, z$.				

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

We gratefully acknowledge funding from the Brunei Research Council, and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/3).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2456).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Anwar, M. U., Elliott, A. S., Thompson, L. K. \& Dawe, L. N. (2011). Dalton Trans. 40, 4623-4635.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gupta, L. K., Bansal, U. \& Chandra, S. (2007). Spectrochim. Acta Part A, 66, 972-975.
Najib, M. H. bin, Tan, A. L., Young, D. J., Ng, S. W. \& Tiekink, E. R. T. (2012). Acta Cryst. E68, m571-m572.
Petukhov, K., Alam, M. S., Rupp, H., Strömsdörfer, S., Müller, P., Scheurer, A., Saalfrank, R. W., Kortus, J., Postnikov, A., Ruben, M., Thompson, L. K. \& Lehn, J.-M. (2009). Coord. Chem. Rev. 253, 2387-2398.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhang, W. H., Hu, J. J., Chi, Y., Young, D. J. \& Hor, T. S. A. (2011). Organometallics, 30, 2137-2143.

[^0]
supporting information

Acta Cryst. (2012). E68, o2138 [https://doi.org/10.1107/S1600536812026906]

2-Hydrazinylquinoline

Muhd. Hidayat bin Najib, Ai Ling Tan, David J. Young, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

Hydrazones are versatile nitrogen donor ligands which have been used extensively for making coordination complexes for a variety of applications from organic light emitting diode (OLED) materials (Zhang et al., 2011) to supramolecular magnetic clusters (Petukhov et al., 2009). These ligands are made by condensation of a carbonyl compound with an organic hydrazine or hydrazide (Anwar et al., 2011). We have previously reported the solid-state structure of the zinc(II) complex of 3,5-dimethyl-1- (2'-quinolyl)pyrazole (Najib et al., 2012). The ligand in that complex was made by the condensation of acetylacetone with the title compound (Gupta et al., 2007). Herein, the crystal and molecular structure of the title compound is described.
In the title compound, Fig. 1, the 12 non-hydrogen atoms are planar with a r.m.s. deviation $=0.068 \AA$ and maximum deviations of 0.068 (2) and -0.152 (2) \AA for the N1 and N3 atoms, respectively. The amine-N3 group is syn with the quinolinyl-N1 atom with the $\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$ torsion angle being -12.7 (3) ${ }^{\circ}$.
In the crystal, molecules assemble into supramolecular layers in the bc plane via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, Fig. 2 and Table 1. The secondary amine-H hydrogen bonds to the primary amine-N2 atom. One of the primary amine-H atoms forms a hydrogen bond with the quinolinyl-N atom and the other forms a weak interaction with the secondary amine-N2 atom. The layers stack along the a axis with no specific interactions between them, Fig. 3.

S2. Experimental

The title compound was prepared by modification of a literature procedure (Gupta et al., 2007). 2-Chloroquinoline (10.06 g) and hydrazine monohydrate $\left(64-65 \% \mathrm{~N}_{2} \mathrm{H}_{4}\right)$ in water $(10 \mathrm{ml})$ were refluxed for 2 h . The water was removed using a rotary evaporator to provide a scarlet residue which was triturated with water and filtered. This scarlet solid was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and hexane to provide $6.48 \mathrm{~g}(66.6 \%)$ of the title compound [M.p. $=417 \mathrm{~K}$]. Spectroscopic data for the title compound are given in the archived CIF.

S3. Refinement

C-bound H -atoms were placed in calculated positions $\left[\mathrm{C}-\mathrm{H}=0.95 \AA, U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$ and were included in the refinement in the riding model approximation. The N -bound H -atoms were located in a difference Fourier map and refined freely.

supporting information

Figure 1
The molecular structure of the title molecule showing the atom-labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.

Figure 2
A view of the supramolecular layer in the $b c$ plane in the crystal of the title compound. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as blue dashed lines (see Table 1 for details).

Figure 3
A view of the unit-cell contents of the title compound in projection down the b axis. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are shown as blue dashed lines (see Table 1 for details).

2-Hydrazinylquinoline

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \quad F(000)=336$
$M_{r}=159.19$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=13.7966$ (9) \AA
$b=3.9648$ (3) \AA
$c=14.0700(8) \AA$
$\beta=97.039$ (5) ${ }^{\circ}$
$V=763.84(9) \AA^{3}$
$Z=4$
$D_{\mathrm{x}}=1.384 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 799 reflections
$\theta=3.2-75.8^{\circ}$
$\mu=0.70 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, red
$0.30 \times 0.08 \times 0.03 \mathrm{~mm}$

Data collection

Agilent SuperNova Dual
diffractometer with an Atlas detector
Radiation source: SuperNova (Cu) X-ray Source
Mirror monochromator
Detector resolution: 10.4041 pixels mm^{-1}
ω scan
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052$
$w R\left(F^{2}\right)=0.158$
$S=1.10$
1542 reflections
121 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& T_{\min }=0.476, T_{\max }=1.000 \\
& 2474 \text { measured reflections } \\
& 1542 \text { independent reflections } \\
& 1169 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.018 \\
& \theta_{\max }=76.0^{\circ}, \theta_{\min }=3.2^{\circ} \\
& h=-16 \rightarrow 17 \\
& k=-3 \rightarrow 4 \\
& l=-17 \rightarrow 17
\end{aligned}
$$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1 P)^{2}\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Special details

Experimental. Spectroscopic data for the title compound: IR $\backslash \mathrm{V} / \mathrm{cm}^{-1}: 3282,3188,3042,2954,2926,2854,1621,1529$,
 $(1 \mathrm{H}, \mathrm{dd}), 7.23(1 \mathrm{H}, \mathrm{dd}), 6.75(1 \mathrm{H}, \mathrm{d}), 4.0\left(3 \mathrm{H}, \mathrm{br}\right.$ s). ${ }^{13} \mathrm{C}$ NMR $100 \mathrm{MHz}\left(\mathrm{CDCl}_{3}\right) \delta: 158.8,147.3,137.4,129.7,127.5$, 126.3, 124.2, 122.8, 110.6.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
N1	$0.35068(10)$	$0.3907(4)$	$0.51371(10)$	$0.0241(4)$
N2	$0.44545(11)$	$0.4959(4)$	$0.65825(10)$	$0.0315(4)$
N3	$0.52127(11)$	$0.2769(4)$	$0.63649(11)$	$0.0305(4)$
C1	$0.35855(13)$	$0.5229(5)$	$0.60074(12)$	$0.0261(4)$
C2	$0.28104(14)$	$0.6982(5)$	$0.63892(12)$	$0.0285(4)$
H2	0.2907	0.7905	0.7017	0.034^{*}
C3	$0.19420(13)$	$0.7297(4)$	$0.58430(13)$	$0.0277(4)$
H3	0.1422	0.8465	0.6084	0.033^{*}
C4	$0.18015(13)$	$0.5882(5)$	$0.49047(12)$	$0.0250(4)$
C5	$0.09162(13)$	$0.6087(5)$	$0.42974(13)$	$0.0281(4)$
H5	0.0375	0.7219	0.4510	0.034^{*}

C6	$0.08226(13)$	$0.4670(5)$	$0.33990(13)$	$0.0287(4)$
H6	0.0220	0.4808	0.2995	0.034^{*}
C7	$0.16246(13)$	$0.3017(5)$	$0.30833(12)$	$0.0271(4)$
H7	0.1558	0.2029	0.2464	0.033^{*}
C8	$0.25074(13)$	$0.2802(4)$	$0.36567(12)$	$0.0244(4)$
H8	0.3044	0.1700	0.3428	0.029^{*}
C9	$0.26140(12)$	$0.4220(4)$	$0.45841(11)$	$0.0225(4)$
H1n	$0.4430(19)$	$0.564(7)$	$0.721(2)$	$0.058(7)^{*}$
H2n	$0.5538(16)$	$0.370(6)$	$0.5919(16)$	$0.038(6)^{*}$
H3n	$0.4950(14)$	$0.090(6)$	$0.6069(14)$	$0.025(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0259(7)$	$0.0276(8)$	$0.0193(7)$	$-0.0045(6)$	$0.0042(5)$	$0.0015(5)$
N2	$0.0317(8)$	$0.0407(10)$	$0.0218(7)$	$-0.0017(7)$	$0.0016(6)$	$-0.0034(7)$
N3	$0.0277(8)$	$0.0396(10)$	$0.0238(8)$	$-0.0043(7)$	$0.0017(6)$	$0.0025(6)$
C1	$0.0283(8)$	$0.0283(10)$	$0.0222(8)$	$-0.0074(7)$	$0.0051(6)$	$0.0016(6)$
C2	$0.0377(10)$	$0.0283(9)$	$0.0208(8)$	$-0.0052(8)$	$0.0095(7)$	$-0.0026(7)$
C3	$0.0339(9)$	$0.0252(9)$	$0.0258(9)$	$-0.0012(7)$	$0.0111(7)$	$0.0003(7)$
C4	$0.0298(9)$	$0.0228(9)$	$0.0234(8)$	$-0.0028(7)$	$0.0069(6)$	$0.0030(6)$
C5	$0.0273(9)$	$0.0266(10)$	$0.0310(9)$	$0.0005(7)$	$0.0067(7)$	$0.0039(7)$
C6	$0.0253(8)$	$0.0288(10)$	$0.0312(9)$	$-0.0017(7)$	$-0.0005(6)$	$0.0040(7)$
C7	$0.0312(9)$	$0.0286(10)$	$0.0214(8)$	$-0.0035(7)$	$0.0026(7)$	$0.0002(6)$
C8	$0.0270(8)$	$0.0266(9)$	$0.0202(8)$	$-0.0021(7)$	$0.0046(6)$	$0.0008(6)$
C9	$0.0236(8)$	$0.0232(9)$	$0.0212(8)$	$-0.0033(7)$	$0.0051(6)$	$0.0031(6)$

Geometric parameters ($\AA,{ }^{\circ}$)

N1-C1	1.324 (2)	C3-H3	0.9500
N1-C9	1.380 (2)	C4-C5	1.405 (2)
N2-C1	1.366 (2)	C4-C9	1.421 (2)
N2-N3	1.421 (2)	C5-C6	1.375 (3)
N2-H1n	0.93 (3)	C5-H5	0.9500
N3-H2n	0.89 (2)	C6-C7	1.404 (2)
N3-H3n	0.90 (2)	C6-H6	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	1.434 (2)	C7-C8	1.379 (2)
C2-C3	1.348 (3)	C7-H7	0.9500
C2-H2	0.9500	C8-C9	1.412 (2)
C3-C4	1.426 (2)	C8-H8	0.9500
C1-N1-C9	116.89 (15)	C5-C4-C3	123.37 (16)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3$	122.42 (15)	C9-C4-C3	116.97 (16)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 1 \mathrm{n}$	114.1 (16)	C6-C5-C4	120.82 (16)
N3-N2-H1n	119.8 (17)	C6-C5-H5	119.6
N2-N3-H2n	110.1 (15)	C4-C5-H5	119.6
N2-N3-H3n	109.6 (13)	C5-C6-C7	119.52 (16)
$\mathrm{H} 2 \mathrm{n}-\mathrm{N} 3-\mathrm{H} 3 \mathrm{n}$	102.9 (19)	C5-C6-H6	120.2

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	118.89 (16)	C7-C6-H6	120.2
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	123.91 (16)	C8-C7-C6	121.16 (16)
N2-C1-C2	117.19 (15)	C8-C7-H7	119.4
C3-C2-C1	118.89 (15)	C6-C7-H7	119.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.6	C7-C8-C9	120.05 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.6	C7-C8-H8	120.0
C2-C3-C4	120.13 (16)	C9-C8-H8	120.0
C2-C3-H3	119.9	N1-C9-C8	118.03 (15)
C4-C3-H3	119.9	N1-C9-C4	123.20 (15)
C5-C4-C9	119.66 (15)	C8-C9-C4	118.77 (15)
C9-N1-C1-N2	179.57 (15)	C4-C5-C6-C7	-0.4 (3)
C9-N1-C1-C2	-1.1 (3)	C5-C6-C7-C8	-0.3 (3)
N3-N2-C1-N1	-12.7 (3)	C6-C7-C8-C9	0.8 (3)
N3-N2-C1-C2	167.89 (16)	C1-N1-C9-C8	-179.37 (16)
N1-C1-C2-C3	0.7 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 4$	0.4 (2)
N2-C1-C2-C3	-179.94 (16)	C7-C8-C9-N1	179.17 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.4 (3)	C7-C8-C9-C4	-0.6 (3)
C2-C3-C4-C5	179.51 (18)	C5-C4-C9-N1	-179.88 (16)
C2-C3-C4-C9	-1.0 (2)	C3-C4-C9-N1	0.6 (3)
C9-C4-C5-C6	0.6 (3)	C5-C4-C9-C8	-0.1 (3)
C3-C4-C5-C6	-179.92 (17)	C3-C4-C9-C8	-179.61 (15)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 n \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.93(3)$	$2.18(3)$	$3.077(2)$	$164(2)$
$\mathrm{N} 3 — \mathrm{H} 2 n \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.89(2)$	$2.31(2)$	$3.200(2)$	$175.1(19)$
$\mathrm{N} 3 — \mathrm{H} 3 n \cdots \mathrm{~N} 2^{\mathrm{iii}}$	$0.90(2)$	$2.58(2)$	$3.295(2)$	$136.4(16)$

Symmetry codes: (i) $-x+1, y+1 / 2,-z+3 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $x, y-1, z$.

[^0]: \ddagger Additional correspondence author, e-mail: david.young@ubd.edu.bn.

