Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(1*H*-Tetrazol-1-yl)acetic acid monohydrate

Wen-Xiang Wang

Ordered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: wxwang@seu.edu.cn

Received 20 May 2012; accepted 21 July 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.030; wR factor = 0.069; data-to-parameter ratio = 7.6.

The crystal structure of the title compound, $C_3H_4N_4O_2 \cdot H_2O$, exhibits $O-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot N$ hydrogen bonds, which lead to the formation of a two-dimensional network parallel to the *bc* plane. The dihedral angle between the ring and the carboxylic acid group is 84.6 (14)°.

Related literature

For the use of 2-(1*H*-tetrazol-1-yl) acetic acid as a pharmaceutical intermediate, see: Gunnlaugsson & Stomeo (2007). For its coordination properties, see: Ghosh & Bharadwaj (2004). For the synthesis, see: Jústiz *et al.* (1997).

Experimental

Crystal data

 $C_{3}H_{4}N_{4}O_{2} \cdot H_{2}O$ $M_{r} = 146.12$ Orthorhombic, *Pna*2₁ a = 12.618 (3) Å b = 5.1871 (10) Å c = 9.874 (2) Å $V = 646.2 (2) \text{ Å}^3$ Z = 4 Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^{-1}$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.965, T_{max} = 0.983$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.069$ S = 1.17786 reflections 103 parameters 1 restraint 6216 measured reflections 786 independent reflections 715 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

 $0.26 \times 0.23 \times 0.19 \text{ mm}$

T = 293 K

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.11\ e\ \mathring{A}^{-3}\\ &\Delta\rho_{min}=-0.12\ e\ \mathring{A}^{-3} \end{split}$$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O3-H3B\cdots N2$	0.83 (4)	2.11 (4)	2.864 (3)	150 (3)
$O1 - H1A \cdots O3^{i}$	0.89 (4)	1.72 (4)	2.603 (3)	175 (4)
$O3-H3A\cdots O2^{ii}$	0.76 (3)	2.00 (3)	2.752 (3)	168 (3)

Symmetry codes: (i) x, y, z + 1; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

This work was supported by Southeast University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FY2060).

References

Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.

Ghosh, S. K. & Bharadwaj, P. K. (2004). Inorg. Chem. 43, 2293-2298.

Gunnlaugsson, T. & Stomeo, F. (2007). Org. Biomol. Chem. 5, 1999–2009.
Jústiz, O. H., Fernández-Lafuente, R. & Guisán, J. M. (1997). J. Org. Chem. 62, 9099–9106.

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2561 [https://doi.org/10.1107/S1600536812033090]

2-(1H-Tetrazol-1-yl)acetic acid monohydrate

Wen-Xiang Wang

S1. Comment

2-(1*H*-tetrazol-1-yl) acetic acid is an important raw material to prepare a variety of antibiotic drugs, and is widely used as an important pharmaceutical intermediate (Gunnlaugsson & Stomeo, 2007). In recent years, researchers found that tetrazole acetic acid has excellent coordination properties (Ghosh & Bharadwaj, 2004). We report here the crystal structure of the title compound (Fig. 1).

In the title compound the carboxyl functional group is almost perpendicular to the tetrazole heterocycle with a dihedral angle of 87.3 (2)°. The O3—H3B···N2 hydrogen bond anchors the water molecule to the tetrazole heterocycle. Two intermolecular hydrogen bonds (O1—H1A···O3 and O3—H3A···O2) connect the water molecule and two carboxyl groups from the neighboring asymmetric unit, forming layers with louver-like network (Fig. 2).

S2. Experimental

A procedure similar to the previously published method of Jústiz *et al.* (1997) was applied. To a solution of 2-aminoacetic acid (7.5 g, 0.1 mol) in 50 ml acetic acid was added triethoxymethane (32.4 g, 0.22 mol) and sodium azide (7.15 g, 0.11 mol). The mixture was refluxed for 3.0 h at 80°C. Active carbon was used to discolor the mixture, which was then refluxed for another 10 minutes. Heating was stopped and cooled to room temperature, the mixture was filtered to remove the active carbon and concentrated hydrochloric acid was trickled into the filtrate and a white solid product precipitated out. The precipitate was extracted by ethyl acetate and washed with saturated solution of sodium bicarbonate, brine, and then dried over MgSO₄. Evaporation of the solvent in vacuum afforded the 2-(1*H*-tetrazol-1-yl) acetic acid compound. The pale yellow single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a solution in the 3:7 (v/v) mixture of petroleum ether and ethyl acetate.

S3. Refinement

In the absence of significant anomalous dispersion effects, Friedel pairs were averaged. Hydrogen atom positions were calculated geometrically and were set to ride on the associated C atoms, with $U_{iso}(H)=1.2 U_{iso}(C)$. The H atoms on O were located in difference electron density maps and were refined freely with isotropic displacement parameters.

Figure 1

Asymmetric unit with anisotropic ellipsoid representation, shown with the atom labeling scheme. Ellipsoids are shown at the 50% probability level.

Figure 2

Packing diagram for the title compound. Hydrogen bonds are denoted by dashed lines.

2-(1*H*-Tetrazol-1-yl)acetic acid monohydrate

Crystal data	
CUNOIL	

C₃H₄N₄O₂·H₂O $M_r = 146.12$ Orthorhombic, *Pna*2₁ Hall symbol: P 2c -2n a = 12.618 (3) Å b = 5.1871 (10) Å c = 9.874 (2) Å V = 646.2 (2) Å³ Z = 4

Data collection

Rigaku SCXmini diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans F(000) = 304 $D_x = 1.502 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6216 reflections $\theta = 3.2-27.5^{\circ}$ $\mu = 0.13 \text{ mm}^{-1}$ T = 293 KNeedle, pale yellow $0.26 \times 0.23 \times 0.19 \text{ mm}$

Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.965$, $T_{max} = 0.983$ 6216 measured reflections 786 independent reflections

715 reflections with $I > 2\sigma(I)$	$h = -16 \rightarrow 16$
$R_{\rm int} = 0.031$	$k = -6 \rightarrow 6$
$\theta_{\rm max} = 27.5^\circ, \ \theta_{\rm min} = 3.2^\circ$	$l = -12 \rightarrow 12$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.030$	Hydrogen site location: inferred from
$wR(F^2) = 0.069$	neighbouring sites
S = 1.17	H atoms treated by a mixture of independent
786 reflections	and constrained refinement
103 parameters	$w = 1/[\sigma^2(F_o^2) + (0.029P)^2 + 0.0792P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.11 \ m e \ m \AA^{-3}$
	$\Delta \rho_{\rm min} = -0.12 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.38513 (14)	0.5364 (3)	1.01953 (17)	0.0450 (4)	
O2	0.30421 (14)	0.8326 (3)	0.89450 (17)	0.0525 (5)	
N2	0.37640 (16)	0.8301 (4)	0.4743 (2)	0.0436 (5)	
C5	0.36860 (19)	0.6540 (4)	0.5678 (2)	0.0381 (5)	
H5A	0.3281	0.5047	0.5614	0.046*	
N4	0.47431 (18)	0.9471 (4)	0.6448 (2)	0.0497 (5)	
C7	0.37025 (18)	0.6679 (4)	0.9087 (2)	0.0358 (5)	
N1	0.44272 (18)	1.0105 (4)	0.5252 (2)	0.0527 (6)	
N3	0.42748 (14)	0.7205 (3)	0.67377 (18)	0.0334 (4)	
C6	0.44751 (19)	0.5888 (4)	0.8003 (2)	0.0379 (5)	
H6A	0.5190	0.6270	0.8302	0.046*	
H6B	0.4424	0.4042	0.7860	0.046*	
03	0.27445 (17)	0.7053 (4)	0.22354 (17)	0.0509 (5)	
H1A	0.344 (3)	0.595 (6)	1.086 (4)	0.079 (11)*	
H3A	0.246 (2)	0.600 (6)	0.263 (4)	0.062 (10)*	
H3B	0.310 (3)	0.789 (6)	0.279 (4)	0.062 (10)*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
01	0.0495 (9)	0.0525 (10)	0.0330 (9)	0.0046 (8)	-0.0002 (8)	0.0146 (8)

supporting information

Geometric parameters (Å, °)

01—C7	1.303 (3)	N4—N3	1.346 (3)
O1—H1A	0.89 (4)	C7—C6	1.505 (3)
O2—C7	1.202 (3)	N3—C6	1.446 (3)
N2—C5	1.303 (3)	С6—Н6А	0.9700
N2—N1	1.352 (3)	C6—H6B	0.9700
C5—N3	1.329 (3)	O3—H3A	0.76 (3)
C5—H5A	0.9300	O3—H3B	0.83 (4)
N4—N1	1.289 (3)		
C7—O1—H1A	111 (2)	C5—N3—N4	107.74 (19)
C5—N2—N1	105.6 (2)	C5—N3—C6	130.92 (19)
N2C5N3	109.49 (19)	N4—N3—C6	121.31 (19)
N2—C5—H5A	125.3	N3—C6—C7	111.87 (17)
N3—C5—H5A	125.3	N3—C6—H6A	109.2
N1—N4—N3	106.37 (19)	С7—С6—Н6А	109.2
O2—C7—O1	124.8 (2)	N3—C6—H6B	109.2
O2—C7—C6	124.0 (2)	С7—С6—Н6В	109.2
O1—C7—C6	111.19 (19)	H6A—C6—H6B	107.9
N4—N1—N2	110.82 (19)	H3A—O3—H3B	107 (3)
N1—N2—C5—N3	0.1 (3)	N1—N4—N3—C6	178.50 (19)
N3—N4—N1—N2	-0.3 (3)	C5—N3—C6—C7	-92.1 (3)
C5—N2—N1—N4	0.1 (3)	N4—N3—C6—C7	90.3 (3)
N2-C5-N3-N4	-0.3 (3)	O2—C7—C6—N3	-4.4 (3)
N2-C5-N3-C6	-178.2 (2)	O1—C7—C6—N3	176.12 (18)
N1—N4—N3—C5	0.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H…A
O3—H3 <i>B</i> …N2	0.83 (4)	2.11 (4)	2.864 (3)	150 (3)
01—H1 <i>A</i> ···O3 ⁱ	0.89 (4)	1.72 (4)	2.603 (3)	175 (4)
O3—H3 <i>A</i> ···O2 ⁱⁱ	0.76 (3)	2.00 (3)	2.752 (3)	168 (3)

Symmetry codes: (i) x, y, z+1; (ii) -x+1/2, y-1/2, z-1/2.