Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-{2-[2-(2-Cyano-4,6-dinitrophenyl)diazenyl]-5-(diethylamino)phenyl}acetamide

Lihua Lu

College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China Correspondence e-mail: lhedlut2002@yahoo.com.cn

Received 22 July 2012; accepted 20 September 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.006 Å; disorder in main residue; R factor = 0.067; wR factor = 0.157; data-to-parameter ratio = 11.2.

The title compound, $C_{19}H_{19}N_7O_5$, exhibits substitutional disorder of the ortho-nitro and cyano groups, with siteoccupancy factors of 0.686 (7):0.314 (7). The two aromatic rings are essentially coplanar, with a dihedral angle of $6.6 (5)^{\circ}$. In the diethylamino group, the two ethyl groups lie on the same side of the aminobenzene plane. An intramolecular N- $H \cdots N$ hydrogen bond links the amino and diazenyl groups.

Related literature

For the influence of the substitutent on molecular planarity, see: Freeman et al. (1997); Lu & He (2012). For similar structures, see: Gong & Lu (2011); He et al. (2009).

10384 measured reflections

 $R_{\rm int} = 0.108$

3487 independent reflections

1453 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C19H19N7O5 V = 1993.6 (3) Å³ $M_r = 425.41$ Z = 4Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 5.0995 (5) Å $\mu = 0.11 \text{ mm}^$ b = 30.792 (3) Å T = 298 Kc = 12.7211 (11) Å $0.37 \times 0.11 \times 0.07 \text{ mm}$ $\beta = 93.569 (1)^{\circ}$

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.962,\;T_{\rm max}=0.993$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.067$	311 parameters
$wR(F^2) = 0.157$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
3487 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1 F

|--|

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N3−H3···N2	0.86	2.01	2.676 (4)	133

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2072).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Freeman, H. S., McIntosh, S. A. & Singh, P. (1997). Dyes Pigm. 35, 149-164. Gong, L. & Lu, L. (2011). Acta Cryst. E67, 0662.
- He, L., El-Shafei, A., Freeman, H. S. & Boyle, P. (2009). Dyes Pigm. 82, 299-306.
- Lu, L. & He, L. (2012). J. Mol. Struct. 1010, 79-84.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supporting information

Acta Cryst. (2012). E68, o3005 [https://doi.org/10.1107/S160053681203992X]

N-{2-[2-(2-Cyano-4,6-dinitrophenyl)diazenyl]-5-(diethylamino)phenyl}-acetamide

Lihua Lu

S1. Comment

It is well known that technical properties and functionalities of chemcial compounds are often related to their molecular structures and their inter/intra-molecular interactions in crystalline state. Hence, the structural investigation of different compounds in solid state is very important.

The title compound, $C_{19}H_{19}N_7O_5$, exhibits substitutional disorder of the nitro group at 2'-position and the cyano group at 6'-position, with site-occupancy factors of 0.686 (7): 0.314 (7). The main position of the disordered nitro group is close to the acetylamino group. The two aromatic rings are essentially coplanar, although they have a dihedral angle of 6.6 (5) °. In the *N*,*N*-diethylamino group at 4-positon, two ethyl chains tend to stand on the same side of the aminobenzene plane. The intramolecular N—H…N hydrogen bond links the amino and azo groups. (Table 1).

S2. Experimental

The crystals were obtained by dissolving 0.1 g of the title compound in 20 ml of acetone at room temperature and the resulting solution was covered with Parafilm plastic containing pin holes for slow evaporation of the solvent.

S3. Refinement

The nitro group at 2'-position and the cyano group at 6'-position are disordered over two sites with a refined siteoccupancy factors of 0.686 (7): 0.314 (7). All hydrogen atoms were placed in their calculated positions, with N—H = 0.86 Å, and C—H = 0.93 or 0.96 Å, and refined using a riding model, with $U_{iso} = 1.2 U_{eq}$ (N) and $U_{iso} = 1.2$ or 1.5 U_{eq} (C).

Figure 1 *ORTEP* drawing of 2-acetylamino-4-(*N*,*N*-diethylamino)-2',4'-dinitro-6'-cyanoazobenzene.

N-{2-[2-(2-Cyano-4,6-dinitrophenyl)diazenyl]- 5-(diethylamino)phenyl}acetamide

Crystal data

C₁₉H₁₉N₇O₅ $M_r = 425.41$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 5.0995 (5) Å b = 30.792 (3) Å c = 12.7211 (11) Å $\beta = 93.569$ (1)° V = 1993.6 (3) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.962, T_{\max} = 0.993$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.157$ S = 1.003487 reflections 311 parameters 0 restraints F(000) = 888 $D_x = 1.417 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1060 reflections $\theta = 2.7-26.4^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 298 KPrism, blue $0.37 \times 0.11 \times 0.07 \text{ mm}$

10384 measured reflections 3487 independent reflections 1453 reflections with $I > 2\sigma(I)$ $R_{int} = 0.108$ $\theta_{max} = 25.0^\circ, \ \theta_{min} = 2.6^\circ$ $h = -6 \rightarrow 6$ $k = -35 \rightarrow 36$ $l = -15 \rightarrow 12$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

$w = 1/[\sigma^2(F_o^2) + (0.0376P)^2]$	$\Delta ho_{ m max} = 0.20$ e Å ⁻³
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
$(\Delta/\sigma)_{\rm max} = 0.001$	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.4053 (6)	0.60751 (10)	0.4507 (2)	0.0579 (9)	
N2	0.5520 (6)	0.63947 (10)	0.4218 (2)	0.0576 (9)	
N3	0.3410 (6)	0.69052 (10)	0.5644 (2)	0.0574 (9)	
H3	0.4695	0.6863	0.5249	0.069*	
N4	-0.2983 (6)	0.61740 (10)	0.7645 (2)	0.0557 (9)	
N5	0.8292 (11)	0.70338 (16)	0.3319 (4)	0.0671 (14)	0.686 (7)
C19′	0.8292 (11)	0.70338 (16)	0.3319 (4)	0.0671 (14)	0.314 (7)
N6	1.2621 (8)	0.59919 (14)	0.1118 (3)	0.0658 (10)	
N7	0.507 (2)	0.5147 (3)	0.3559 (8)	0.091 (3)	0.686 (7)
N7′	0.861 (6)	0.7323 (10)	0.367 (2)	0.100 (8)	0.314 (7)
01	0.1396 (6)	0.74446 (9)	0.6539 (2)	0.0863 (10)	
O2	0.6223 (11)	0.72310 (15)	0.3001 (4)	0.0819 (19)	0.686 (7)
O3	0.9997 (16)	0.7223 (4)	0.3842 (9)	0.096 (3)	0.686 (7)
O2′	0.410 (2)	0.5311 (5)	0.2877 (9)	0.079 (4)	0.314 (7)
O3′	0.697 (3)	0.5215 (4)	0.4102 (9)	0.089 (4)	0.314 (7)
O4	1.4090 (6)	0.62839 (10)	0.0872 (2)	0.0829 (10)	
O5	1.2586 (7)	0.56315 (12)	0.0723 (3)	0.1043 (12)	
C1	0.2380 (8)	0.61505 (12)	0.5298 (3)	0.0485 (10)	
C2	0.1973 (7)	0.65404 (12)	0.5871 (3)	0.0500 (10)	
C3	0.0152 (8)	0.65415 (13)	0.6638 (3)	0.0567 (11)	
H3A	-0.0135	0.6797	0.7003	0.068*	
C4	-0.1276 (8)	0.61654 (13)	0.6879 (3)	0.0526 (10)	
C5	-0.0889 (8)	0.57806 (13)	0.6280 (3)	0.0596 (11)	
H5	-0.1853	0.5531	0.6401	0.071*	
C6	0.0887 (8)	0.57827 (13)	0.5538 (3)	0.0583 (11)	
H6	0.1140	0.5528	0.5165	0.070*	
C7	0.3066 (9)	0.73243 (14)	0.5963 (4)	0.0672 (12)	
C8	0.4882 (9)	0.76442 (13)	0.5484 (4)	0.0805 (14)	
H8A	0.4524	0.7652	0.4735	0.121*	
H8B	0.6671	0.7557	0.5642	0.121*	
H8C	0.4608	0.7928	0.5771	0.121*	
C9	-0.4391 (8)	0.57792 (14)	0.7952 (3)	0.0706 (13)	

H9A	-0.4896	0.5615	0.7321	0.085*	
H9B	-0.5990	0.5866	0.8270	0.085*	
C10	-0.2868 (11)	0.54915 (15)	0.8696 (4)	0.0994 (17)	
H10A	-0.1265	0.5407	0.8395	0.149*	
H10B	-0.3886	0.5238	0.8831	0.149*	
H10C	-0.2465	0.5644	0.9345	0.149*	
C11	-0.3232 (8)	0.65583 (13)	0.8310 (3)	0.0612 (11)	
H11A	-0.4893	0.6544	0.8640	0.073*	
H11B	-0.3265	0.6815	0.7868	0.073*	
C12	-0.1039 (9)	0.66039 (14)	0.9157 (3)	0.0769 (13)	
H12A	-0.1042	0.6357	0.9618	0.115*	
H12B	-0.1297	0.6864	0.9554	0.115*	
H12C	0.0614	0.6620	0.8837	0.115*	
C13	0.7156 (8)	0.62571 (13)	0.3432 (3)	0.0499 (10)	
C14	0.8682 (8)	0.65840 (13)	0.3000 (3)	0.0521 (10)	
C15	1.0444 (8)	0.65038 (14)	0.2260 (3)	0.0585 (11)	
H15	1.1451	0.6728	0.2006	0.070*	
C16	1.0710 (8)	0.60897 (13)	0.1897 (3)	0.0549 (11)	
C17	0.9265 (8)	0.57544 (14)	0.2275 (3)	0.0620 (12)	
H17	0.9479	0.5473	0.2026	0.074*	
C18	0.7464 (8)	0.58378 (13)	0.3040 (3)	0.0539 (11)	
C19	0.6071 (11)	0.54535 (17)	0.3394 (4)	0.0660 (13)	0.686 (7)
N5′	0.6071 (11)	0.54535 (17)	0.3394 (4)	0.0660 (13)	0.314 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.047 (2)	0.064 (2)	0.062 (2)	-0.0022 (18)	0.0040 (19)	0.0079 (17)
N2	0.049 (2)	0.057 (2)	0.067 (2)	-0.0032 (18)	0.0078 (18)	0.0001 (17)
N3	0.044 (2)	0.055 (2)	0.076 (2)	0.0024 (17)	0.0234 (18)	-0.0031 (17)
N4	0.040(2)	0.058 (2)	0.071 (2)	-0.0015 (17)	0.0138 (18)	0.0028 (18)
N5	0.064 (4)	0.064 (3)	0.074 (3)	-0.009 (3)	0.017 (3)	-0.010 (2)
C19′	0.064 (4)	0.064 (3)	0.074 (3)	-0.009(3)	0.017 (3)	-0.010 (2)
N6	0.063 (3)	0.073 (3)	0.063 (3)	0.014 (2)	0.020 (2)	-0.001 (2)
N7	0.102 (8)	0.076 (6)	0.098 (7)	-0.011 (6)	0.025 (6)	-0.007 (5)
N7′	0.11 (3)	0.087 (18)	0.106 (17)	0.003 (16)	0.014 (19)	-0.014 (12)
01	0.073 (2)	0.068 (2)	0.123 (3)	-0.0030 (17)	0.052 (2)	-0.0156 (18)
O2	0.067 (4)	0.067 (3)	0.112 (4)	0.025 (3)	0.009 (3)	0.003 (3)
O3	0.078 (7)	0.091 (6)	0.116 (5)	0.001 (5)	-0.021 (5)	-0.022 (4)
O2′	0.066 (9)	0.094 (9)	0.075 (9)	-0.006 (7)	-0.013 (6)	-0.001 (7)
O3′	0.088 (11)	0.080 (8)	0.097 (10)	0.002 (7)	-0.001 (7)	0.035 (7)
O4	0.066 (2)	0.088 (2)	0.099 (2)	-0.0012 (18)	0.0371 (19)	0.0119 (18)
05	0.112 (3)	0.088 (3)	0.120 (3)	0.001 (2)	0.060 (2)	-0.023 (2)
C1	0.041 (3)	0.054 (2)	0.052 (3)	0.004 (2)	0.011 (2)	0.001 (2)
C2	0.036 (3)	0.053 (3)	0.062 (3)	-0.004(2)	0.007 (2)	0.007 (2)
C3	0.046 (3)	0.059 (3)	0.066 (3)	0.004 (2)	0.009 (2)	0.003 (2)
C4	0.037 (3)	0.060 (3)	0.061 (3)	-0.001 (2)	0.006 (2)	0.003 (2)
C5	0.051 (3)	0.062 (3)	0.067 (3)	-0.010 (2)	0.014 (2)	0.002 (2)

supporting information

C6	0.054 (3)	0.058 (3)	0.064 (3)	-0.003 (2)	0.008 (2)	0.001 (2)
C7	0.054 (3)	0.064 (3)	0.085 (3)	-0.005 (3)	0.019 (3)	-0.006 (2)
C8	0.069 (3)	0.067 (3)	0.109 (4)	-0.012 (3)	0.037 (3)	-0.004 (2)
C9	0.053 (3)	0.074 (3)	0.088 (3)	-0.008(2)	0.027 (3)	0.001 (3)
C10	0.122 (5)	0.080 (4)	0.097 (4)	-0.006 (3)	0.015 (3)	0.019 (3)
C11	0.045 (3)	0.061 (3)	0.080 (3)	0.005 (2)	0.025 (2)	-0.002(2)
C12	0.060 (3)	0.084 (3)	0.086 (3)	0.004 (3)	0.005 (3)	-0.016 (2)
C13	0.045 (3)	0.057 (3)	0.048 (3)	0.004 (2)	0.004 (2)	-0.005 (2)
C14	0.043 (3)	0.057 (3)	0.057 (3)	0.003 (2)	0.007 (2)	-0.004 (2)
C15	0.048 (3)	0.068 (3)	0.060 (3)	-0.001 (2)	0.008 (2)	0.004 (2)
C16	0.052 (3)	0.058 (3)	0.057 (3)	0.001 (2)	0.012 (2)	0.000(2)
C17	0.056 (3)	0.065 (3)	0.066 (3)	0.003 (2)	0.011 (2)	-0.004 (2)
C18	0.046 (3)	0.059 (3)	0.057 (3)	-0.005 (2)	0.006 (2)	0.007 (2)
C19	0.059 (4)	0.069 (3)	0.070 (4)	0.000 (3)	0.013 (3)	0.000 (3)
N5′	0.059 (4)	0.069 (3)	0.070 (4)	0.000 (3)	0.013 (3)	0.000 (3)

Geometric parameters (Å, °)

N1—N2	1.303 (4)	С7—С8	1.506 (5)
N1—C1	1.379 (4)	C8—H8A	0.9600
N2—C13	1.407 (4)	C8—H8B	0.9600
N3—C7	1.367 (5)	C8—H8C	0.9600
N3—C2	1.382 (4)	C9—C10	1.481 (6)
N3—H3	0.8600	С9—Н9А	0.9700
N4—C4	1.347 (4)	С9—Н9В	0.9700
N4—C11	1.465 (4)	C10—H10A	0.9600
N4—C9	1.477 (5)	C10—H10B	0.9600
N5—O3	1.211 (12)	C10—H10C	0.9600
N5—O2	1.262 (7)	C11—C12	1.510 (5)
N5—C14	1.460 (6)	C11—H11A	0.9700
N6—O5	1.218 (4)	C11—H11B	0.9700
N6—O4	1.224 (4)	C12—H12A	0.9600
N6—C16	1.464 (5)	C12—H12B	0.9600
N7—C19	1.099 (8)	C12—H12C	0.9600
O1—C7	1.215 (4)	C13—C18	1.396 (5)
C1—C6	1.409 (5)	C13—C14	1.405 (5)
C1—C2	1.426 (5)	C14—C15	1.364 (5)
C2—C3	1.388 (5)	C15—C16	1.366 (5)
C3—C4	1.412 (5)	С15—Н15	0.9300
С3—НЗА	0.9300	C16—C17	1.373 (5)
C4—C5	1.429 (5)	C17—C18	1.403 (5)
C5—C6	1.349 (5)	С17—Н17	0.9300
С5—Н5	0.9300	C18—C19	1.465 (6)
С6—Н6	0.9300		
N2—N1—C1	118.1 (3)	N4—C9—H9A	108.6
N1—N2—C13	110.4 (3)	С10—С9—Н9А	108.6
C7—N3—C2	128.8 (3)	N4—C9—H9B	108.6

C7N3H3	115.6	C10-C9-H9B	108.6
C2—N3—H3	115.6	H9A_C9_H9B	107.6
C4 N4 $C11$	121 1 (3)	C9-C10-H10A	109.5
C4 - N4 - C9	121.1(3) 121.4(3)	C9-C10-H10B	109.5
$C_{11} = N_{4} = C_{9}$	121.4(3) 116.8(3)	H_{10A} C_{10} H_{10B}	109.5
$O_2 N_5 O_2$	110.3(3)	$C_{0} C_{10} H_{10}C$	109.5
03 - N5 - 02	120.2(0) 120.2(7)		109.5
03 - N5 - C14	120.2(7)	H10R C10 H10C	109.5
02 - N5 - C14	119.3(3) 122.0(4)	$\mathbf{N}_{\mathbf{M}} = \mathbf{C}_{\mathbf{M}} = \mathbf{M}_{\mathbf{M}} = \mathbf{C}_{\mathbf{M}}$	109.3 112.6(2)
05 N6 C16	123.9 (4)	N4 - C11 - C12	115.0 (5)
03-N0-C10	117.9 (4)	N4—CII—HIIA	108.8
04—No—C10	117.8 (4)	CI2—CII—HIIA	108.8
	113.0 (3)		108.8
NI = CI = C2	129.1 (3)	CI2—CII—HIIB	108.8
C6-C1-C2	117.9 (4)	HIIA—CII—HIIB	107.7
N3—C2—C3	122.1 (3)	С11—С12—Н12А	109.5
N3—C2—C1	118.8 (3)	C11—C12—H12B	109.5
C3—C2—C1	119.1 (3)	H12A—C12—H12B	109.5
C2—C3—C4	121.8 (4)	C11—C12—H12C	109.5
С2—С3—НЗА	119.1	H12A—C12—H12C	109.5
С4—С3—Н3А	119.1	H12B—C12—H12C	109.5
N4—C4—C3	120.4 (4)	C18—C13—C14	116.4 (4)
N4—C4—C5	121.3 (4)	C18—C13—N2	128.1 (4)
C3—C4—C5	118.3 (4)	C14—C13—N2	115.5 (3)
C6—C5—C4	119.4 (4)	C15—C14—C13	123.1 (4)
С6—С5—Н5	120.3	C15—C14—N5	118.1 (4)
С4—С5—Н5	120.3	C13—C14—N5	118.8 (4)
C5—C6—C1	123.4 (4)	C14—C15—C16	119.0 (4)
С5—С6—Н6	118.3	C14—C15—H15	120.5
С1—С6—Н6	118.3	C16—C15—H15	120.5
O1—C7—N3	125.0 (4)	C15—C16—C17	121.1 (4)
O1—C7—C8	121.1 (4)	C15—C16—N6	120.3 (4)
N3—C7—C8	113.8 (4)	C17—C16—N6	118.5 (4)
С7—С8—Н8А	109.5	C16—C17—C18	119.6 (4)
C7—C8—H8B	109.5	С16—С17—Н17	120.2
H8A—C8—H8B	109.5	С18—С17—Н17	120.2
C7—C8—H8C	109.5	C13—C18—C17	120.7 (4)
H8A—C8—H8C	109.5	C13—C18—C19	124.7 (4)
H8B-C8-H8C	109.5	C17—C18—C19	114.6 (4)
N4—C9—C10	114 7 (4)	N7-C19-C18	172.6(7)
			1/2.0(/)
C1—N1—N2—C13	178 1 (3)	C9-N4-C11-C12	94.0(4)
$N_{2} N_{1} C_{1} C_{6}$	179.7 (3)	N1 - N2 - C13 - C18	-56(5)
$N_2 - N_1 - C_1 - C_2$	04(6)	N1 - N2 - C13 - C14	175 2 (3)
C7 - N3 - C2 - C3	-11 5 (6)	C18 - C13 - C14 - C15	-20(6)
$C_{7} = N_{3} = C_{2} = C_{3}$	168 6 (4)	$N_2 - C_{13} - C_{14} - C_{15}$	2.0(0) 177 A (A)
1 - 1 - 1 - 1 - 2 - 1 N1 C1 C2 N2	-0.5(6)	112 - 013 - 014 - 013 C18 C13 C14 N5	175 2 (4)
$1 \times 1 - C = C - 1 \times 3$ C6 C1 C2 N2	-170.7(4)	N2 C12 C14 N5	-5 A (6)
$C_0 - C_1 - C_2 - C_3$	-1/9.7 (4)	$\frac{1}{12} - \frac{1}{13} - \frac{1}{14} - \frac{1}{13}$	-3.4 (0)
N1 - C1 - C2 - C3	1/9.0 (4)	U3-N3-U14-U15	-/0./(8)

C6—C1—C2—C3	0.4 (5)	O2—N5—C14—C15	105.7 (5)
N3—C2—C3—C4	-178.8 (3)	O3—N5—C14—C13	111.9 (7)
C1—C2—C3—C4	1.1 (6)	O2-N5-C14-C13	-71.7 (6)
C11—N4—C4—C3	-5.6 (6)	C13—C14—C15—C16	1.7 (6)
C9—N4—C4—C3	-176.6 (4)	N5-C14-C15-C16	-175.6 (4)
C11—N4—C4—C5	175.4 (4)	C14—C15—C16—C17	-1.0 (6)
C9—N4—C4—C5	4.4 (6)	C14—C15—C16—N6	-178.8 (4)
C2-C3-C4-N4	178.4 (4)	O5—N6—C16—C15	-171.5 (4)
C2—C3—C4—C5	-2.6 (6)	O4—N6—C16—C15	5.6 (6)
N4—C4—C5—C6	-178.4 (4)	O5—N6—C16—C17	10.6 (6)
C3—C4—C5—C6	2.6 (6)	O4—N6—C16—C17	-172.3 (4)
C4—C5—C6—C1	-1.2 (6)	C15—C16—C17—C18	0.6 (6)
N1—C1—C6—C5	-179.6 (4)	N6-C16-C17-C18	178.5 (4)
C2-C1-C6-C5	-0.3 (6)	C14—C13—C18—C17	1.6 (6)
C2—N3—C7—O1	1.6 (7)	N2-C13-C18-C17	-177.7 (4)
C2—N3—C7—C8	-175.1 (4)	C14—C13—C18—C19	179.5 (4)
C4—N4—C9—C10	82.3 (5)	N2-C13-C18-C19	0.3 (7)
C11—N4—C9—C10	-89.0 (5)	C16—C17—C18—C13	-1.0 (6)
C4—N4—C11—C12	-77.3 (5)	C16—C17—C18—C19	-179.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N3—H3…N2	0.86	2.01	2.676 (4)	133