## Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## S-Phenyl benzothioate

Yonas H. Belay, Henok H. Kinfe and Alfred Muller*

Research Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa

Correspondence e-mail: mullera@uj.ac.za

Received 22 August 2012; accepted 28 August 2012

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \mathrm{~A}$; $R$ factor $=0.032 ; w R$ factor $=0.082 ;$ data-to-parameter ratio $=12.9$.

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{OS}$, the phenyl rings are inclined to one another by $51.12(8)^{\circ}$. There is a short $\mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ contact in the molecule.In the crystal, molecules are linked via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds forming chains along the $a$ axis. Molecules are also linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ and weak $\pi-\pi$ interactions [centroid-centroid distance $=3.9543(10) \AA$ A .

## Related literature

The title compound was obtained by the reaction of thiophenolyate and benzoyl chloride in an alkaline medium. For background to the title compound, see: Reddy et al. (2010); Katritzky et al. (2007). For details of the Cambridge Structural Database, see: Allen (2002).


## Experimental

## Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{OS}$
$M_{r}=214.27$
${\text { Monoclinic, }, P 2_{1} / c}=2.7203(1) \AA$
$a=5.75 .1315(3) \AA$
$c=12.0606(3) \AA$
$\beta=96.867(1)^{\circ}$
$V=1036.44(4) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\mu=2.49 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.25 \times 0.12 \times 0.12 \mathrm{~mm}$

## Data collection

Bruker APEX DUO 4K-CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2008)
$T_{\min }=0.575, T_{\max }=0.754$

9164 measured reflections 1759 independent reflections 1702 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

## Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
136 parameters
$w R\left(F^{2}\right)=0.082$
H -atom parameters constrained
$S=1.04$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{\AA^{-3}}$
1759 reflections
$\Delta \rho_{\text {min }}=-0.26 \mathrm{e}^{\circ}{ }^{-3}$

Table 1
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 8-\mathrm{C} 13$ rings, respectively.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| C7-H7 . S 1 | 0.95 | 2.52 | 2.9592 (16) | 109 |
| $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1^{\text {i }}$ | 0.95 | 2.56 | 3.4889 (18) | 167 |
| $\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Cg} 1^{\text {ii }}$ | 0.95 | 2.97 | 3.506 (2) | 117 |
| $\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cg} 2{ }^{\text {iii }}$ | 0.95 | 2.73 | 3.5915 (19) | 152 |

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2,-y+1,-z$; (iii) $-x+2, y+\frac{1}{2},-z+\frac{1}{2}$.

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg \& Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged. Mrs Z. H. Phasha is thanked for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DS2217).

## References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Brandenburg, K. \& Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2008). SADABS, SAINT and XPREP. BrukerAXS Inc., Madison, Wisconsin, USA.
Bruker (2011). APEX2. BrukerAXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Katritzky, A. R., Shestopalov, A. A. \& Suzuki, K. (2007). Synthesis, 11, 18061813.

Reddy, M. V. R., Pallela, V. R., Cosenza, S. C., Mallireddigari, M. R., Patti, R., Bonagura, M., Truongcao, M., Akula, B., Jatiani, S. S. \& Reddy, E. P. (2010). Bioorg. Med. Chem. 18, Issue 6, 2317-2326.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

## supporting information

Acta Cryst. (2012). E68, o2825 [https://doi.org/10.1107/S1600536812037142]

## $S$-Phenyl benzothioate

Yonas H. Belay, Henok H. Kinfe and Alfred Muller

## S1. Comment

Reaction of thiophenolyate and benzyol chloride in alkaline medium was described previously by Reddy et al., 2010. We have repeated the preparation of this compound to be used as starting material in some of our research. Benzoylation of thiophenol afforded colorless crystals of the title compound (see scheme and Figure 1) suitable for single crystal X-ray analysis of which the structure is reported herein. Molecules of the title compound crystalizes in the $P 2_{1} / c(Z=4)$ space group. All bond lengths are within their normal ranges (Allen, 2002). In the crystal packing several $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{S} / \pi$ interactions (see table 1, Fig. 2) as well as $\pi-\pi$ stacking are observed (centroid to centroid distance $=3.9543$ (10) $\AA$, ring slippage $=1.366 \AA$ ).

## S2. Experimental

A mixture of sodium hydroxide ( $344 \mathrm{mg}, 8.61 \mathrm{mmol}$ ) and thiophenol ( $0.9 \mathrm{ml}, 8.61 \mathrm{mmol}$ ) were dissolved in methanol (22 ml ) for about 10 minutes. Benzoyl chloride ( 1 ml ) was added to $i t$. The reaction mixture was stirred overnight and then poured into ice-cold water. Afterwards it was filtered and dried to afford the title compound as white crystals in $63 \%$ yield.

## S3. Refinement

All hydrogen atoms were positioned in geometrically idealized positions with $\mathrm{C}-\mathrm{H}=0.95 \AA$ and were allowed to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$. A discrepant reflection (1 322$)$ was removed in the final stages of refinement


Figure 1
A view of (1). Displacement ellipsoids are drawn at the $50 \%$ probability level.


Figure 2
Packing diagram of (1) showing the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O} / \mathrm{S} / \pi$ interactions as well as the $\pi-\pi$ stacking.

## S-Phenyl benzothioate

## Crystal data

$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{OS}$
$M_{r}=214.27$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=5.7203$ (1) $\AA$
$b=15.1315$ (3) $\AA$
$c=12.0606(3) \AA$
$\beta=96.867$ (1) ${ }^{\circ}$
$V=1036.44(4) \AA^{3}$
$Z=4$

## Data collection

## Bruker APEX DUO 4K-CCD

diffractometer
Radiation source: Incoatec $\mathrm{I} \mu \mathrm{S}$ microfocus Xray source
Incoatec Quazar Multilayer Mirror monochromator
Detector resolution: 8.4 pixels $\mathrm{mm}^{-1}$
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$F(000)=448$
$D_{\mathrm{x}}=1.373 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54178 \AA$
Cell parameters from 6683 reflections
$\theta=4.7-65.8^{\circ}$
$\mu=2.49 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Rectangular, colourless
$0.25 \times 0.12 \times 0.12 \mathrm{~mm}$
$T_{\min }=0.575, T_{\text {max }}=0.754$
9164 measured reflections
1759 independent reflections
1702 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=66.4^{\circ}, \theta_{\text {min }}=4.7^{\circ}$
$h=-2 \rightarrow 6$
$k=-17 \rightarrow 17$
$l=-14 \rightarrow 13$

## Refinement

Refinement on $F^{2}$
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.082$
$S=1.04$
1759 reflections
136 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0364 P)^{2}+0.7558 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.35$ e $\AA^{-3}$
$\Delta \rho_{\text {min }}=-0.26$ e $\AA^{-3}$

## Special details

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of $5 \mathrm{~s} /$ frame. A total of 2274 frames were collected with a frame width of $1^{\circ}$ covering up to $\theta=66.38^{\circ}$ with $96.3 \%$ completeness accomplished.
Analytical data: mp: 53-55 ${ }^{\circ} \mathrm{C}$ (Lit. $54-55^{\circ} \mathrm{C}$; Katritzky et al., 2007); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ : d $8.03(\mathrm{~d}, J=0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 7 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \mathrm{d} 190.1,136.6,135.1$, 133.6, 129.5, 129.2, 128.7, 127.5, 127.3.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of $F^{2}$ against ALL reflections. The weighted $R$-factor $w R$ and goodness of fit $S$ are based on $F^{2}$, conventional $R$-factors $R$ are based on $F$, with $F$ set to zero for negative $F^{2}$. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating $R$-factors (gt) etc. and is not relevant to the choice of reflections for refinement. $R$-factors based on $F^{2}$ are statistically about twice as large as those based on $F$, and $R$ - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ( $\AA^{2}$ )

|  | $x$ | $y$ | $z$ | $U_{\mathrm{iso}} * / U_{\mathrm{eq}}$ |
| :--- | :--- | :--- | :--- | :--- |
| S1 | $0.66521(7)$ | $0.44609(2)$ | $0.09450(3)$ | $0.02499(16)$ |
| O1 | $1.05856(19)$ | $0.36323(7)$ | $0.17500(9)$ | $0.0242(3)$ |
| C1 | $0.9304(3)$ | $0.42516(10)$ | $0.18525(12)$ | $0.0180(3)$ |
| C2 | $0.9751(3)$ | $0.49420(10)$ | $0.27395(12)$ | $0.0174(3)$ |
| C3 | $1.1950(3)$ | $0.49605(10)$ | $0.33797(13)$ | $0.0210(3)$ |
| H3 | 1.3106 | 0.4531 | 0.3262 | $0.025^{*}$ |
| C4 | $1.2443(3)$ | $0.56059(11)$ | $0.41871(14)$ | $0.0237(4)$ |
| H4 | 1.3943 | 0.5619 | 0.462 | $0.028^{*}$ |
| C5 | $1.0767(3)$ | $0.62332(11)$ | $0.43703(13)$ | $0.0234(3)$ |
| H5 | 1.1117 | 0.6673 | 0.4928 | $0.028^{*}$ |
| C6 | $0.8580(3)$ | $0.62174(11)$ | $0.37383(13)$ | $0.0239(4)$ |
| H6 | 0.7429 | 0.6647 | 0.3863 | $0.029^{*}$ |
| C7 | $0.8067(3)$ | $0.55781(11)$ | $0.29258(13)$ | $0.0214(3)$ |
| H7 | 0.6566 | 0.5571 | 0.2493 | $0.026^{*}$ |
| C8 | $0.6486(3)$ | $0.35922(10)$ | $-0.00504(12)$ | $0.0182(3)$ |
| C9 | $0.8130(3)$ | $0.35150(10)$ | $-0.08087(13)$ | $0.0211(3)$ |
| H9 | 0.9497 | 0.3877 | -0.0737 | $0.025^{*}$ |
| C10 | $0.7749(3)$ | $0.29047(11)$ | $-0.16688(13)$ | $0.0231(4)$ |
| H10 | 0.8871 | 0.2843 | -0.2184 | $0.028^{*}$ |
| C11 | $0.5735(3)$ | $0.23835(10)$ | $-0.17811(13)$ | $0.0221(3)$ |


| H11 | 0.5472 | 0.1972 | -0.2378 | $0.027^{*}$ |
| :--- | :--- | :--- | :--- | :--- |
| C12 | $0.4107(3)$ | $0.24634(10)$ | $-0.10217(13)$ | $0.0210(3)$ |
| H12 | 0.2734 | 0.2105 | -0.1097 | $0.025^{*}$ |
| C13 | $0.4483(3)$ | $0.30674(10)$ | $-0.01499(12)$ | $0.0192(3)$ |
| H13 | 0.3376 | 0.312 | 0.0374 | $0.023^{*}$ |

Atomic displacement parameters $\left(\AA^{2}\right)$

|  | $U^{11}$ | $U^{22}$ | $U^{33}$ | $U^{12}$ | $U^{13}$ | $U^{23}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| S1 | $0.0287(3)$ | $0.0191(2)$ | $0.0243(2)$ | $0.00622(15)$ | $-0.00893(16)$ | $-0.00571(15)$ |
| O1 | $0.0236(6)$ | $0.0242(6)$ | $0.0242(6)$ | $0.0056(5)$ | $0.0007(4)$ | $-0.0028(5)$ |
| C1 | $0.0190(7)$ | $0.0164(7)$ | $0.0181(8)$ | $-0.0014(6)$ | $0.0004(6)$ | $0.0032(6)$ |
| C2 | $0.0203(7)$ | $0.0174(8)$ | $0.0146(7)$ | $-0.0018(6)$ | $0.0027(6)$ | $0.0027(6)$ |
| C3 | $0.0211(8)$ | $0.0189(8)$ | $0.0224(8)$ | $0.0007(6)$ | $0.0002(6)$ | $0.0032(6)$ |
| C4 | $0.0235(8)$ | $0.0246(8)$ | $0.0215(8)$ | $-0.0034(6)$ | $-0.0043(6)$ | $0.0024(6)$ |
| C5 | $0.0298(8)$ | $0.0226(8)$ | $0.0174(7)$ | $-0.0044(6)$ | $0.0015(6)$ | $-0.0019(6)$ |
| C6 | $0.0245(8)$ | $0.0247(8)$ | $0.0233(8)$ | $0.0008(6)$ | $0.0055(6)$ | $-0.0040(7)$ |
| C7 | $0.0188(8)$ | $0.0259(9)$ | $0.0191(8)$ | $0.0003(6)$ | $0.0010(6)$ | $-0.0019(6)$ |
| C8 | $0.0223(8)$ | $0.0148(7)$ | $0.0161(7)$ | $0.0031(6)$ | $-0.0030(6)$ | $0.0010(6)$ |
| C9 | $0.0203(8)$ | $0.0205(8)$ | $0.0220(8)$ | $-0.0013(6)$ | $0.0006(6)$ | $0.0060(6)$ |
| C10 | $0.0248(8)$ | $0.0272(9)$ | $0.0181(8)$ | $0.0047(6)$ | $0.0054(6)$ | $0.0048(6)$ |
| C11 | $0.0285(8)$ | $0.0196(8)$ | $0.0171(8)$ | $0.0045(6)$ | $-0.0021(6)$ | $-0.0021(6)$ |
| C12 | $0.0195(7)$ | $0.0187(8)$ | $0.0242(8)$ | $-0.0010(6)$ | $-0.0005(6)$ | $-0.0006(6)$ |
| C13 | $0.0202(8)$ | $0.0191(8)$ | $0.0184(7)$ | $0.0030(6)$ | $0.0024(6)$ | $0.0010(6)$ |
|  |  |  |  |  |  |  |

Geometric parameters ( $A,{ }^{\circ}$ )

| S1-C8 | 1.7751 (15) | C6-H6 | 0.95 |
| :---: | :---: | :---: | :---: |
| S1-C1 | 1.7894 (15) | C7-H7 | 0.95 |
| O1-C1 | 1.2054 (19) | C8-C13 | 1.387 (2) |
| $\mathrm{C} 1-\mathrm{C} 2$ | 1.495 (2) | C8-C9 | 1.393 (2) |
| C2-C3 | 1.395 (2) | C9-C10 | 1.386 (2) |
| C2-C7 | 1.399 (2) | C9-H9 | 0.95 |
| C3-C4 | 1.384 (2) | C10-C11 | 1.390 (2) |
| C3-H3 | 0.95 | C10-H10 | 0.95 |
| C4-C5 | 1.385 (2) | C11-C12 | 1.387 (2) |
| C4-H4 | 0.95 | C11-H11 | 0.95 |
| C5-C6 | 1.385 (2) | C12-C13 | 1.390 (2) |
| C5-H5 | 0.95 | C12-H12 | 0.95 |
| C6-C7 | 1.383 (2) | C13-H13 | 0.95 |
| C8-S1-C1 | 104.81 (7) | C6-C7-H7 | 119.9 |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$ | 124.23 (13) | C2-C7-H7 | 119.9 |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{S} 1$ | 123.81 (12) | C13-C8-C9 | 120.70 (14) |
| $\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$ | 111.96 (10) | C13-C8-S1 | 117.35 (12) |
| C3-C2-C7 | 119.34 (14) | C9-C8-S1 | 121.36 (12) |
| C3-C2-C1 | 118.40 (13) | C10-C9-C8 | 119.29 (14) |
| C7-C2-C1 | 122.24 (13) | C10-C9-H9 | 120.4 |


| C4-C3-C2 | 119.85 (15) | C8-C9-H9 | 120.4 |
| :---: | :---: | :---: | :---: |
| $\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$ | 120.1 | C9-C10-C11 | 120.34 (14) |
| C2-C3-H3 | 120.1 | C9-C10-H10 | 119.8 |
| C3-C4-C5 | 120.60 (15) | C11-C10-H10 | 119.8 |
| C3-C4-H4 | 119.7 | C12-C11-C10 | 120.02 (15) |
| C5-C4-H4 | 119.7 | C12-C11-H11 | 120 |
| C6-C5-C4 | 119.80 (15) | C10-C11-H11 | 120 |
| C6-C5-H5 | 120.1 | C11-C12-C13 | 120.09 (14) |
| C4-C5-H5 | 120.1 | C11-C12-H12 | 120 |
| C7-C6-C5 | 120.21 (15) | C13-C12-H12 | 120 |
| C7-C6-H6 | 119.9 | C8-C13-C12 | 119.54 (14) |
| C5-C6-H6 | 119.9 | C8-C13-H13 | 120.2 |
| C6-C7-C2 | 120.20 (14) | C12-C13-H13 | 120.2 |
| C8-S1-C1-O1 | -0.46 (15) | C3-C2-C7-C6 | -0.1 (2) |
| C8-S1-C1-C2 | 178.75 (10) | C1-C2-C7-C6 | -178.42 (14) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | 10.8 (2) | C1-S1-C8-C13 | 122.78 (12) |
| $\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$ | -168.42 (11) | C1-S1-C8-C9 | -66.00 (14) |
| $\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 7$ | -170.86 (15) | C13-C8-C9-C10 | -0.1 (2) |
| S1-C1-C2-C7 | 9.93 (18) | S1-C8-C9-C10 | -171.00 (11) |
| C7-C2-C3-C4 | -0.1 (2) | C8-C9-C10-C11 | 0.8 (2) |
| C1-C2-C3-C4 | 178.26 (14) | C9-C10-C11-C12 | -0.9 (2) |
| C2-C3-C4-C5 | 0.3 (2) | C10-C11-C12-C13 | 0.3 (2) |
| C3-C4-C5-C6 | -0.2 (2) | C9-C8-C13-C12 | -0.5 (2) |
| C4-C5-C6-C7 | 0.0 (2) | S1-C8-C13-C12 | 170.75 (11) |
| C5-C6-C7-C2 | 0.2 (2) | C11-C12-C13-C8 | 0.4 (2) |

Hydrogen-bond geometry ( $A,{ }^{\circ}$ )
$C g 1$ and Cg 2 are the centroids of the $\mathrm{C} 2-\mathrm{C} 7$ and $\mathrm{C} 8-\mathrm{C} 13$ rings, respectively.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{~S} 1$ | 0.95 | 2.52 | $2.9592(16)$ | 109 |
| $\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 1^{\mathrm{i}}$ | 0.95 | 2.56 | $3.4889(18)$ | 167 |
| $\mathrm{C} 10-\mathrm{H} 10 \cdots C g 1^{\mathrm{ii}}$ | 0.95 | 2.97 | $3.506(2)$ | 117 |
| $\mathrm{C} 5-\mathrm{H} 5 \cdots C g 2^{\text {iii }}$ | 0.95 | 2.73 | $3.5915(19)$ | 152 |

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+2,-y+1,-z$; (iii) $-x+2, y+1 / 2,-z+1 / 2$.

