

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(Anilino)(2-nitrophenyl)methyl]cyclohexanone

Bagher Eftekhari-Sis,^a* Sahar Mohajer^a and Orhan **Büyükgüngör^b**

^aDepartment of Chemistry, University of Maragheh, Maragheh, Iran, and ^bDepartment of Physics, Ondokuz Mavis University, TR-55139 Samsun, Turkey Correspondence e-mail: eftekharisis@maragheh.ac.ir

Received 17 August 2012; accepted 26 August 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.160; data-to-parameter ratio = 15.5.

In the title compound, $C_{19}H_{20}N_2O_3$, the cyclohexanone ring adopts a chair conformation with the aminomethyl group is positioned equatorially. An intramolecular N-H···O hydrogen bond occurs. In the crystal, molecules are linked by $N - H \cdots O$ hydrogen bonds.

Related literature

For the synthesis of the title compound and related compounds, see: Eftekhari-Sis et al. (2012a,b). For the biological activity of β -amino ketones, see: Arend *et al.* (1998). For the anti-inflammatory and antimicrobial activity of β -amino ketones, see: Jadhav et al. (2008) and Kalluraya et al. (2001), respectively. For information on the Mannich reaction, see: Eftekhari-Sis et al. (2006); Samet et al. (2009); Azizi et al. (2006); Cordova (2004). For related structures, see: Eftekhari-Sis et al. (2012b); Yuan et al. (2007); Fun et al. (2009).

Experimental

Crystal data

C19H20N2O3 $M_r = 324.37$ Monoclinic, $P2_1/c$ a = 9.0535 (8) Å b = 11.9947 (7) Å c = 17.2267 (15) Å $\beta = 117.355 \ (6)^{\circ}$

V = 1661.5 (2) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$ T = 296 K $0.62 \times 0.43 \times 0.21 \ \mathrm{mm}$ 10888 measured reflections

 $R_{\rm int} = 0.043$

3434 independent reflections

2210 reflections with $I > 2\sigma(I)$

Data collection

Stoe IPDS 2 diffractometer Absorption correction: integration (X-RED32; Stoe & Cie, 2002) $T_{\min} = 0.784, \ T_{\max} = 0.958$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	H atoms treated by a mixture of
$vR(F^2) = 0.160$	independent and constrained
S = 0.97	refinement
434 reflections	$\Delta \rho_{\rm max} = 0.79 \ {\rm e} \ {\rm \AA}^{-3}$
21 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
6 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{ \begin{array}{c} N1 - H1A \cdots O1 \\ N1 - H1A \cdots O2^{i} \end{array} } $	0.85 (2)	2.31 (2)	2.906 (3)	127.0 (18)
	0.85 (2)	2.48 (2)	3.246 (3)	150.2 (19)

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2-8); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

The research council of the University of Maragheh is acknowledged for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2593).

References

- Arend, M., Westermann, B. & Risch, N. (1998). Angew. Chem. Int. Ed. 37, 1044-1070.
- Azizi, N., Torkiyan, L. & Saidi, M. R. (2006). Org. Lett. 8, 2079-2082.
- Cordova, A. (2004). Acc. Chem. Res. 37, 102-112.
- Eftekhari-Sis, B., Abdollahifar, A., Hashemi, M. M. & Zirak, M. (2006). Eur. J. Org. Chem. pp. 5152-5157.
- Eftekhari-Sis, B., Mohajer, S., Mahdavinia, G. R. & Büyükgüngör, O. (2012a). Tetrahedron Lett. Submitted.
- Eftekhari-Sis, B., Mohajer, S., Mozaffarnia, S. & Büyükgüngör, O. (2012b). Acta Cryst. E68. Submitted [FB2265].
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fun, H.-K., Chantrapromma, S., Rai, S., Shetty, P. & Isloor, A. M. (2009). Acta Crvst. E65. 0539-0540.
- Jadhav, V. J., Kulkarni, M. V., Rasal, V. P., Biradar, S. S. & Vinay, M. D. (2008). Eur. J. Med. Chem. 43, 1721-1729.
- Kalluraya, B., Isloor, A. M., Chimbalkar, R. & Shenoy, S. (2001). Indian J. Heterocycl. Chem. pp. 239-240.
- Samet, M., Eftekhari-Sis, B., Hashemi, M. M. & Farmad, F. (2009). Synth. Commun. 39, 4441-4453.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.
- Yuan, G.-X., Sun, J.-B., Zhang, L.-H. & Lu, G. (2007). Acta Cryst. E63, 03960.

supporting information

Acta Cryst. (2012). E68, o2829 [https://doi.org/10.1107/S1600536812036859]

2-[(Anilino)(2-nitrophenyl)methyl]cyclohexanone

Bagher Eftekhari-Sis, Sahar Mohajer and Orhan Büyükgüngör

S1. Comment

 β -amino ketones are widely found in natural and un-natural products, which exhibit anti-inflammatory (Jadhav *et al.*, 2008) and antimicrobial (Kalluraya *et al.*, 2001) activities. Mannich reaction (Eftekhari-Sis *et al.*, 2006; Samet *et al.*, 2009; Azizi *et al.*, 2006; Cordova, 2004) is one of the most important basic reactions in organic chemistry for its use in synthesis of β -Amino ketones. We have synthesized the title compound and report its structure here, Fig 1. The cyclohexanone ring adopts chair conformation, and aminomethyl moiety is positioned equatorially on ring at C1.

S2. Experimental

The title compound was obtained by adding of 0.04 g of Laponite-HMPC nano composite (Eftekhari-Sis *et al.*, 2012*a*,b) to a mixture of 0.5 mmol of 2-nitrobenzaldehyde, 0.5 mmol of aniline and 3 equiv. of cyclohexanone and stirring at room temperature for 24 h. After completion of the reaction, 5 ml EtOH was added and catalyst was removed by filtration, and filtrate was concentrated under reduced pressure. The obtained crud product was recrystallized from EtOH to afford title compound in 62% yield. Colorless crystals suitable for crystal structure determination were grown from EtOH.

S3. Refinement

Carbon bound H atoms were positioned geometrically, with C—H=0.93, 0.97, and 0.98 Å for aromatic, methylene and methine H, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2Ueq(C)$. The nitrogen H atoms were located from the difference Fourier map allowed to refine freely.

Figure 1

The structure of title compound, showing 35% probability displacement ellipsoids and the atom numbering scheme. Intramolecular hydrogen bond are shown as dashed lines.

Figure 2

The stabilization of molecules in the crystal by inter- and intramolecular N—H…O hydrogen bonds and C—H…O interactions.

2-[(Anilino)(2-nitrophenyl)methyl]cyclohexanone

2	
$C_{19}H_{20}N_2O_3$	$\beta = 117.355 \ (6)^{\circ}$
$M_r = 324.37$	V = 1661.5 (2) Å ³
Monoclinic, $P2_1/c$	Z = 4
Hall symbol: -P 2ybc	F(000) = 688
a = 9.0535 (8) Å	$D_{\rm x} = 1.297 {\rm ~Mg} {\rm ~m}^{-3}$
b = 11.9947 (7) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
c = 17.2267 (15) Å	Cell parameters from 10888 reflections

 $\theta = 1.7-28.1^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

Data collection

Stoe IPDS 2
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
rotation method scans
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
$T_{\min} = 0.784, \ T_{\max} = 0.958$

Refinement

Кејтетет	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.160$	neighbouring sites
S = 0.97	H atoms treated by a mixture of independent
3434 reflections	and constrained refinement
221 parameters	$w = 1/[\sigma^2(F_o^2) + (0.099P)^2]$
16 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.79 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.23$ e Å ⁻³

Prism, colorless

 $R_{\rm int} = 0.043$

 $h = -11 \rightarrow 11$ $k = -15 \rightarrow 14$ $l = -21 \rightarrow 20$

 $0.62 \times 0.43 \times 0.21 \text{ mm}$

10888 measured reflections 3434 independent reflections 2210 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 2.5^{\circ}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.3530(2)	0.26145 (18)	0.22061 (12)	0.0453 (5)	
H1	0.2966	0.3031	0.2482	0.054*	
C2	0.2739 (2)	0.1473 (2)	0.19939 (13)	0.0505 (5)	
C3	0.0911 (3)	0.1470 (3)	0.13652 (16)	0.0690 (7)	
H3A	0.0301	0.1828	0.1635	0.083*	
H3B	0.0522	0.0707	0.1229	0.083*	
C4	0.0580 (3)	0.2080 (3)	0.05272 (15)	0.0731 (8)	
H4A	0.1080	0.1670	0.0223	0.088*	
H4B	-0.0610	0.2115	0.0149	0.088*	
C5	0.1274 (3)	0.3236 (3)	0.07141 (16)	0.0730 (8)	
H5A	0.0699	0.3667	0.0969	0.088*	
H5B	0.1089	0.3592	0.0172	0.088*	

C6	0.3130 (3)	0.3223 (2)	0.13399 (16)	0.0660 (7)
H6A	0.3532	0.3984	0.1468	0.079*
H6B	0.3713	0.2856	0.1059	0.079*
C7	0.5407 (2)	0.26636 (18)	0.28430 (12)	0.0429 (5)
H7	0.5759	0.3436	0.2840	0.052*
C8	0.5807 (2)	0.23927 (17)	0.37935 (12)	0.0414 (4)
C9	0.5888 (2)	0.31751 (17)	0.44110 (13)	0.0448 (5)
C10	0.6289 (3)	0.2903 (2)	0.52741 (15)	0.0574 (6)
H10	0.6344	0.3455	0.5666	0.069*
C11	0.6599 (3)	0.1815 (2)	0.55354 (16)	0.0655 (7)
H11	0.6837	0.1613	0.6102	0.079*
C12	0.6555 (3)	0.1022 (2)	0.49480 (16)	0.0636 (6)
H12	0.6772	0.0281	0.5123	0.076*
C13	0.6193 (3)	0.13097 (19)	0.41035 (14)	0.0531 (5)
H13	0.6209	0.0757	0.3729	0.064*
C14	0.8043 (2)	0.20265 (19)	0.28812 (12)	0.0455 (5)
C15	0.8911 (3)	0.3024 (2)	0.31590 (16)	0.0613 (6)
H15	0.8341	0.3686	0.3111	0.074*
C16	1.0631 (3)	0.3029 (3)	0.35075 (17)	0.0752 (8)
H16	1.1208	0.3698	0.3693	0.090*
C17	1.1495 (3)	0.2056 (3)	0.35827 (16)	0.0750 (9)
H17	1.2650	0.2063	0.3830	0.090*
C18	1.0634 (3)	0.1077 (3)	0.32882 (17)	0.0726 (8)
H18	1.1208	0.0422	0.3320	0.087*
C19	0.8934 (3)	0.1054 (2)	0.29467 (15)	0.0580 (6)
H19	0.8370	0.0381	0.2757	0.070*
N1	0.6308 (2)	0.19843 (17)	0.25075 (11)	0.0467 (4)
N2	0.5569 (2)	0.43539 (16)	0.41868 (13)	0.0545 (5)
01	0.3490 (2)	0.06234 (15)	0.22935 (12)	0.0718 (5)
O2	0.4393 (2)	0.46052 (15)	0.34977 (12)	0.0711 (5)
O3	0.6465 (3)	0.50448 (17)	0.47103 (14)	0.0861 (6)
H1A	0.593 (3)	0.133 (2)	0.2363 (14)	0.046 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0372 (9)	0.0539 (13)	0.0416 (10)	0.0030 (8)	0.0155 (8)	0.0015 (9)
C2	0.0409 (10)	0.0643 (13)	0.0424 (11)	-0.0054 (8)	0.0158 (8)	0.0008 (9)
C3	0.0425 (11)	0.090 (2)	0.0587 (14)	-0.0105 (11)	0.0094 (10)	0.0033 (13)
C4	0.0445 (12)	0.115 (3)	0.0449 (12)	0.0038 (13)	0.0080 (10)	-0.0011 (13)
C5	0.0605 (14)	0.093 (2)	0.0534 (14)	0.0169 (13)	0.0157 (11)	0.0192 (13)
C6	0.0604 (13)	0.0680 (17)	0.0568 (14)	0.0042 (11)	0.0160 (11)	0.0186 (12)
C7	0.0384 (9)	0.0447 (11)	0.0438 (10)	-0.0013 (8)	0.0173 (8)	-0.0015 (9)
C8	0.0294 (8)	0.0471 (12)	0.0420 (10)	-0.0005 (7)	0.0116 (7)	-0.0023 (9)
C9	0.0356 (9)	0.0486 (12)	0.0474 (11)	0.0007 (8)	0.0166 (8)	-0.0039 (9)
C10	0.0526 (12)	0.0719 (17)	0.0474 (12)	0.0040 (10)	0.0226 (10)	-0.0071 (11)
C11	0.0619 (13)	0.086 (2)	0.0441 (11)	0.0112 (12)	0.0205 (10)	0.0105 (12)
C12	0.0692 (14)	0.0574 (16)	0.0569 (14)	0.0108 (11)	0.0227 (11)	0.0139 (12)

supporting information

C13	0.0545 (11)	0.0482 (13)	0.0485 (11)	0.0039 (9)	0.0168 (9)	0.0007 (10)
C14	0.0387 (9)	0.0631 (14)	0.0350 (9)	-0.0016 (8)	0.0171 (8)	0.0002 (9)
C15	0.0499 (12)	0.0755 (17)	0.0601 (13)	-0.0119 (11)	0.0267 (10)	-0.0143 (12)
C16	0.0541 (14)	0.111 (2)	0.0618 (15)	-0.0289 (14)	0.0275 (12)	-0.0200 (15)
C17	0.0396 (11)	0.135 (3)	0.0495 (13)	-0.0052 (14)	0.0200 (10)	0.0048 (15)
C18	0.0518 (13)	0.104 (2)	0.0636 (15)	0.0196 (14)	0.0278 (11)	0.0205 (15)
C19	0.0481 (11)	0.0691 (16)	0.0570 (13)	0.0066 (10)	0.0243 (10)	0.0072 (11)
N1	0.0382 (8)	0.0505 (12)	0.0492 (10)	-0.0036 (7)	0.0184 (7)	-0.0092 (8)
N2	0.0535 (10)	0.0533 (12)	0.0605 (12)	-0.0005 (8)	0.0294 (9)	-0.0071 (9)
01	0.0614 (10)	0.0610 (11)	0.0812 (12)	-0.0048 (7)	0.0226 (9)	0.0008 (9)
O2	0.0737 (11)	0.0559 (11)	0.0707 (11)	0.0117 (8)	0.0220 (9)	0.0046 (9)
O3	0.0958 (14)	0.0607 (12)	0.0903 (13)	-0.0195 (10)	0.0329 (11)	-0.0274 (10)

Geometric parameters (Å, °)

C1—C2	1.510 (3)	C9—N2	1.459 (3)
C1—C7	1.543 (2)	C10-C11	1.367 (4)
C1—C6	1.547 (3)	C10—H10	0.9300
C1—H1	0.9800	C11—C12	1.376 (4)
C2—O1	1.202 (3)	C11—H11	0.9300
C2—C3	1.505 (3)	C12—C13	1.380 (3)
C3—C4	1.521 (4)	C12—H12	0.9300
С3—НЗА	0.9700	C13—H13	0.9300
С3—Н3В	0.9700	C14—C15	1.391 (3)
C4—C5	1.494 (4)	C14—C19	1.392 (3)
C4—H4A	0.9700	C14—N1	1.399 (2)
C4—H4B	0.9700	C15—C16	1.388 (3)
C5—C6	1.523 (3)	C15—H15	0.9300
C5—H5A	0.9700	C16—C17	1.378 (4)
С5—Н5В	0.9700	C16—H16	0.9300
С6—Н6А	0.9700	C17—C18	1.371 (4)
С6—Н6В	0.9700	C17—H17	0.9300
C7—N1	1.448 (3)	C18—C19	1.373 (3)
С7—С8	1.541 (3)	C18—H18	0.9300
С7—Н7	0.9800	C19—H19	0.9300
C8—C13	1.387 (3)	N1—H1A	0.85 (2)
С8—С9	1.395 (3)	N2—O2	1.214 (2)
C9—C10	1.398 (3)	N2—O3	1.219 (3)
C2—C1—C7	116.84 (17)	C9—C8—C7	124.96 (18)
C2—C1—C6	108.61 (18)	C8—C9—C10	123.4 (2)
C7—C1—C6	111.16 (16)	C8—C9—N2	121.02 (19)
C2-C1-H1	106.5	C10—C9—N2	115.56 (19)
С7—С1—Н1	106.5	C11—C10—C9	119.2 (2)
C6-C1-H1	106.5	C11—C10—H10	120.4
O1—C2—C3	121.7 (2)	C9—C10—H10	120.4
O1—C2—C1	123.57 (18)	C10-C11-C12	119.0 (2)
C3—C2—C1	114.8 (2)	C10-C11-H11	120.5

C2—C3—C4	110.71 (19)	C12—C11—H11	120.5
С2—С3—НЗА	109.5	C11—C12—C13	121.0 (2)
С4—С3—НЗА	109.5	C11—C12—H12	119.5
С2—С3—Н3В	109.5	C13—C12—H12	119.5
C4—C3—H3B	109.5	C12—C13—C8	122.4 (2)
НЗА—СЗ—НЗВ	108.1	C12—C13—H13	118.8
C5—C4—C3	111.2 (2)	С8—С13—Н13	118.8
C5—C4—H4A	109.4	C15—C14—C19	118.60 (19)
C3—C4—H4A	109.4	C15—C14—N1	121.8 (2)
C5—C4—H4B	109.4	C19—C14—N1	119.5 (2)
C3—C4—H4B	109.4	C16—C15—C14	119.8 (2)
H4A—C4—H4B	108.0	C16—C15—H15	120.1
C4—C5—C6	111.1 (2)	C14—C15—H15	120.1
C4—C5—H5A	109.4	C17—C16—C15	120.9 (3)
С6—С5—Н5А	109.4	C17—C16—H16	119.6
C4—C5—H5B	109.4	С15—С16—Н16	119.6
C6—C5—H5B	109.4	C18—C17—C16	119.3 (2)
H5A—C5—H5B	108.0	C18—C17—H17	120.4
C5-C6-C1	112.4 (2)	C16—C17—H17	120.4
C5—C6—H6A	109.1	C17 - C18 - C19	120.7(3)
C1—C6—H6A	109.1	C17—C18—H18	119.6
C5—C6—H6B	109.1	C19—C18—H18	119.6
C1—C6—H6B	109.1	C18—C19—C14	120.7 (2)
H6A—C6—H6B	107.9	C18—C19—H19	119.6
N1-C7-C8	113.92 (16)	C14—C19—H19	119.6
N1-C7-C1	109.45 (16)	C14 - N1 - C7	121.03 (17)
C8—C7—C1	113.04 (15)	C14— $N1$ — $H1A$	112.7 (14)
N1—C7—H7	106.6	C7—N1—H1A	114.4 (14)
С8—С7—Н7	106.6	O2—N2—O3	122.8 (2)
С1—С7—Н7	106.6	O2—N2—C9	118.52 (18)
C13—C8—C9	114.90 (19)	O3—N2—C9	118.7 (2)
C13—C8—C7	120.08 (18)		(_)
	120100 (10)		
C7—C1—C2—O1	0.1 (3)	C8—C9—C10—C11	-1.0(3)
C6-C1-C2-O1	126.8 (2)	N2-C9-C10-C11	179.8 (2)
C7—C1—C2—C3	-179.56 (18)	C9-C10-C11-C12	1.9 (3)
C6—C1—C2—C3	-52.9 (2)	C10—C11—C12—C13	-0.4(4)
01-C2-C3-C4	-125.0(3)	C11—C12—C13—C8	-2.1(4)
C1—C2—C3—C4	54.7 (3)	C9—C8—C13—C12	2.9 (3)
$C_2 - C_3 - C_4 - C_5$	-55.0 (3)	C7-C8-C13-C12	-179.79(19)
C_{3} C_{4} C_{5} C_{6}	56 5 (3)	C19 - C14 - C15 - C16	-12(3)
C4—C5—C6—C1	-56.3 (3)	N1-C14-C15-C16	-178.5(2)
$C^2 - C^1 - C^6 - C^5$	52.8 (3)	C14-C15-C16-C17	0.0(4)
C7—C1—C6—C5	-177.3(2)	C_{15} C_{16} C_{17} C_{18}	1.6 (4)
C_{2} C_{1} C_{7} N_{1}	56.4 (2)	C16-C17-C18-C19	-2.0(4)
C6-C1-C7-N1	-69.0 (2)	C17-C18-C19-C14	0.8 (4)
C_{2} C_{1} C_{7} C_{8}	-71.8(2)	C15-C14-C19-C18	0.8 (3)
C_{6} C_{1} C_{7} C_{8}	162 83 (19)	N1-C14-C19-C18	178 2 (2)
	102.03 (17)		1,0.2 (2)

supporting information

N1—C7—C8—C13	-32.7 (2)	C15—C14—N1—C7	-39.6 (3)
C1—C7—C8—C13	93.1 (2)	C19—C14—N1—C7	143.1 (2)
N1—C7—C8—C9	144.35 (18)	C8—C7—N1—C14	-63.0(2)
C1—C7—C8—C9	-89.9 (2)	C1—C7—N1—C14	169.39 (18)
C13—C8—C9—C10	-1.4 (3)	C8—C9—N2—O2	44.2 (3)
C7—C8—C9—C10	-178.57 (17)	C10—C9—N2—O2	-136.5 (2)
C13—C8—C9—N2	177.87 (17)	C8—C9—N2—O3	-137.9 (2)
C7—C8—C9—N2	0.7 (3)	C10-C9-N2-O3	41.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1A…O1	0.85 (2)	2.31 (2)	2.906 (3)	127.0 (18)
N1— $H1A$ ···O2 ⁱ	0.85 (2)	2.48 (2)	3.246 (3)	150.2 (19)

Symmetry code: (i) -x+1, y-1/2, -z+1/2.