

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4'-(3-Bromophenyl)-1'-methyldispiro-[indan-2,2'-pyrrolidine-3',2"-indan]-1,3,1"-trione

Ang Chee Wei,^a Mohamed Ashraf Ali,^a Tan Soo Choon,^a Suhana Arshad^b‡and Ibrahim Abdul Razak^b*§

^aInstitute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia, and ^bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: arazaki@usm.my

Received 29 August 2012; accepted 4 September 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.075; data-to-parameter ratio = 21.8.

In the title compound, $C_{27}H_{20}BrNO_3$, two intramolecular C– H···O hydrogen bonds both form S(6) rings. The pyrrolidine ring adopts a twisted conformation about the C–C bond bearing the indane ring systems. The other two five-membered rings within the indane systems are in shallow envelope conformations, with the spiro C atoms as the flap atoms. The mean plane of the pyrrolidine ring [maximum deviation = 0.275 (1) Å] makes dihedral angles of 65.25 (7), 78.33 (6) and 75.25 (6)° with the bromo-substituted benzene ring and the mean planes of the mono- and dioxo-substituted indane rings, respectively. In the crystal, molecules are linked by C–H···O and C–H···N hydrogen bonds into a three-dimensional network. In addition, C–H··· π interactions are observed.

Related literature

For related structures and medicinal background, see: Wei *et al.* (2011, 2012*a,b*). For ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

 $\gamma = 93.191 \ (1)^{\circ}$

Z = 2

V = 1075.28 (3) Å³

 $0.51 \times 0.31 \times 0.29 \text{ mm}$

23814 measured reflections

6318 independent reflections

5810 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 1.94 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.023$

Experimental

Crystal data

 $C_{27}H_{20}BrNO_3$ $M_r = 486.35$ Triclinic, $P\overline{1}$ a = 8.3998 (1) Å b = 11.2082 (2) Å c = 12.4816 (2) Å $\alpha = 112.004 (1)^{\circ}$ $\beta = 96.850 (1)^{\circ}$

Data collection

Bruker SMART APEXII CCD diffractometer

Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{min} = 0.436, T_{max} = 0.599$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.028 & 290 \text{ parameters} \\ wR(F^2) &= 0.075 & H\text{-atom parameters constrained} \\ S &= 1.04 & \Delta\rho_{\text{max}} = 0.52 \text{ e } \text{\AA}^{-3} \\ 6318 \text{ reflections} & \Delta\rho_{\text{min}} = -0.53 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C21-C26 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C18−H18B····O2	0.99	2.39	3.0787 (17)	126
C19−H19A…O1	1.00	2.53	3.1649 (17)	121
$C4-H4A\cdots O3^{i}$	0.95	2.53	3.4056 (18)	153
C16-H16A···N1 ⁱⁱ	0.95	2.58	3.4912 (16)	161
C20−H20B···O1 ⁱⁱⁱ	0.99	2.44	3.3586 (18)	153
$C23-H23A\cdotsO1^{iv}$	0.95	2.48	3.3847 (18)	160
$C5-H5A\cdots Cg1^{v}$	0.95	2.65	3.3386 (17)	130
$C15-H15A\cdots Cg1^{vi}$	0.95	2.82	3.6623 (15)	149
Symmetry codes: (i)	-x + 1, -y	+2, -z+2;	(ii) $-x, -y + 1$, -z + 1; (iii)

-x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

[‡]Thomson Reuters ResearcherID: F-9119-2012.

[§] Thomson Reuters ResearcherID: A-5599-2009.

organic compounds

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University grants (Nos. 1001/PFIZIK/811151 and 1001/PSK/8620012) and HiCoE research grant (No. 311.CIPPM.4401005). The authors also wish to express their thanks to the Pharmacogenetic and Novel Therapeutic Research, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, for supporting this work. SA thanks the Malaysian Government and USM for an Academic Staff Training Scheme (ASTS) fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6949).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wei, A. C., Ali, M. A., Choon, T. S., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, 01340–01341.
- Wei, A. C., Ali, M. A., Choon, T. S., Razak, I. A. & Arshad, S. (2012b). Acta Cryst. E68, 0560–0561.
- Wei, A. C., Ali, M. A., Yoon, Y. K., Quah, C. K. & Fun, H.-K. (2011). Acta Cryst. E67, 03274.

supporting information

Acta Cryst. (2012). E68, o2907–o2908 [https://doi.org/10.1107/S1600536812037993] 4'-(3-Bromophenyl)-1'-methyldispiro[indan-2,2'-pyrrolidine-3',2''indan]-1,3,1''-trione

Ang Chee Wei, Mohamed Ashraf Ali, Tan Soo Choon, Suhana Arshad and Ibrahim Abdul Razak

S1. Comment

Tuberculosis (TB) remains a global health problem and has infected about one third of the world population. No new drugs have been discovered for the past 40 years and therefore new anti-TB agents are desperately needed. As part of our ongoing search for novel heterocyclic compounds with antitubercular activity (Wei *et al.*, 2011;, 2012*a*,*b*), our group has synthesized the title compound as described below.

The molecular structure of the title compound is shown in Fig. 1. The intramolecular C18—H18B···O2 and C19— H19A···O1 hydrogen bonds (Table 1) form two *S*(6) ring motifs (Bernstein *et al.*, 1995). The pyrrolidine ring (N1/C9/C10/C19/C20) is twisted about C9–C10 bond [puckering parameters, Q= 0.4492 (14) Å and φ = 242.64 (18)°], thereby adopting half-chair comformation (Cremer & Pople, 1975). Meanwhile, the other two five-membered rings within the indane moiety (C1/C2/C7–C9 & C10–C12/C17/C18) are in envelope conformation with puckering parameters, Q = 0.1825 (14) Å and φ = 148.5 (4)° in which C9 at the flap and Q = 0.1694 (14) Å and φ = 172.8 (5)° in which C10 at the flap, respectively. The mean plane of the pyrrolidine ring [N1/C9/C10/C19/C20, with maximum deviation of 0.275 (1) Å at atom C10] makes dihedral angles of 65.25 (7), 78.33 (6) and 75.25 (6)° with the bromo-substituted benzene ring (C21–C26) and the mean planes of the mono-oxo substituted [C10–C18; maximum deviation of 0.145 (1) Å at atom C10] and di-oxo substituted [C1–C9; maximum deviation of 0.180 (1) Å at atom C9] indane rings, respectively. The bond lengths and angles are within normal ranges and comparable to the related structure (Wei, Ali, Yoon *et al.*, 2011; Wei, Ali, Choon *et al.*, 2012*a*,*b*).

In the crystal (Fig. 2), C4—H4A···O3, C20—H20B···O1, C16—H16A···N1 and C23—H23A···O1 hydrogen bonds (Table 1) connect the molecules into a three-dimensional network. The crystal structure are further stabilized by the intermolecular C5—H5A···Cg1 and C15—H15A···Cg1 (Table 1) interactions (Cg1 is the centroid of C21–C26).

S2. Experimental

A mixture of (E)-2-(3-bromobenzylidene)-2,3-dihydro-1*H*-indene-1 -one (0.001 mol), ninhydrin (0.001 mol) and sarcosine (0.002 mol) (1:1:2) were dissolved in methanol (10 ml) and refluxed for 4 h. After completion of the reaction as evident from TLC, the excess solvent was evaporated slowly and the product was separated and recrystallized from methanol to reveal the title compound as yellow blocks.

S3. Refinement

All H atoms were positioned geometrically [C-H = 0.95 and 1.00 Å] and refined using a riding model with $U_{iso}(H) = 1.2$ and 1.5 $U_{eq}(C)$. A rotating group model was applied to the methyl group. One outliner -9 -1 2 was omitted in the final refinement.

Figure 2

The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

4'-(3-Bromophenyl)-1'-methyldispiro[indan-2,2'-pyrrolidine-3',2''-indan]- 1,3,1''-trione

Crystal data	
$C_{27}H_{20}BrNO_3$	Z = 2
$M_r = 486.35$	F(000) = 496
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.502 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 8.3998 (1) Å	Cell parameters from 9917 reflections
b = 11.2082 (2) Å	$\theta = 3.0 - 30.1^{\circ}$
c = 12.4816(2) Å	$\mu = 1.94 \text{ mm}^{-1}$
$\alpha = 112.004 (1)^{\circ}$	T = 100 K
$\beta = 96.850 (1)^{\circ}$	Block, yellow
$\gamma = 93.191 (1)^{\circ}$	$0.51 \times 0.31 \times 0.29 \text{ mm}$
V = 1075.28 (3) Å ³	

Data collection

Bruker SMART APEXII CCD	23814 measured reflections
diffractometer	6318 independent reflections
Radiation source: fine-focus sealed tube	5810 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.023$
φ and ω scans	$\theta_{max} = 30.1^{\circ}, \theta_{min} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(<i>SADABS</i> ; Bruker, 2009)	$k = -15 \rightarrow 15$
$T_{\min} = 0.436, T_{\max} = 0.599$	$l = -17 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.028$	Hydrogen site location: inferred from
$wR(F^2) = 0.075$	neighbouring sites
S = 1.04	H-atom parameters constrained
6318 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0394P)^2 + 0.5548P]$
290 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.52$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.53$ e Å ⁻³

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	v	Z	U_{iso}^*/U_{ea}
Br1	0.225327 (19)	-0.034338 (13)	0.491671 (13)	0.02629 (5)
01	0.13721 (12)	0.70139 (9)	1.01601 (8)	0.01768 (18)
02	-0.06941 (12)	0.68997 (9)	0.64765 (8)	0.01841 (18)
03	0.45101 (11)	0.66808 (9)	0.88616 (8)	0.01675 (18)
N1	-0.05884 (13)	0.52853 (10)	0.78612 (9)	0.01380 (19)
C1	0.12730 (14)	0.72671 (12)	0.92921 (10)	0.0133 (2)
C2	0.15991 (15)	0.85606 (12)	0.92485 (11)	0.0147 (2)
C3	0.24222 (17)	0.96921 (13)	1.01069 (12)	0.0197 (3)
H3A	0.2879	0.9714	1.0849	0.024*
C4	0.25502 (19)	1.07871 (13)	0.98385 (12)	0.0233 (3)
H4A	0.3133	1.1565	1.0398	0.028*
C5	0.18338 (19)	1.07629 (13)	0.87559 (13)	0.0226 (3)
H5A	0.1907	1.1534	0.8606	0.027*
C6	0.10196 (17)	0.96343 (13)	0.78980 (12)	0.0188 (2)

H6A	0.0534	0.9617	0.7164	0.023*
C7	0.09426 (15)	0.85257 (12)	0.81561 (11)	0.0144 (2)
C8	0.01860 (14)	0.72063 (12)	0.73996 (11)	0.0134 (2)
C9	0.06749 (14)	0.62884 (11)	0.80214 (10)	0.0118 (2)
C10	0.20794 (14)	0.54710 (11)	0.75111 (10)	0.0117 (2)
C11	0.37225 (14)	0.63118 (11)	0.78907 (11)	0.0128 (2)
C12	0.41207 (14)	0.65657 (12)	0.68743 (10)	0.0128 (2)
C13	0.53931 (15)	0.73898 (12)	0.68183 (11)	0.0152 (2)
H13A	0.6138	0.7891	0.7497	0.018*
C14	0.55375 (16)	0.74547 (13)	0.57472 (12)	0.0172 (2)
H14A	0.6395	0.8002	0.5683	0.021*
C15	0.44190 (16)	0.67141 (13)	0.47562 (11)	0.0172 (2)
H15A	0.4525	0.6778	0.4030	0.021*
C16	0.31575 (15)	0.58883 (12)	0.48106 (11)	0.0152 (2)
H16A	0.2412	0.5388	0.4132	0.018*
C17	0.30179 (14)	0.58155 (11)	0.58869 (10)	0.0126 (2)
C18	0.18261 (15)	0.49507 (12)	0.61636 (10)	0.0129 (2)
H18A	0.2052	0.4037	0.5829	0.016*
H18B	0.0707	0.5013	0.5852	0.016*
C19	0.19356 (15)	0.44614 (12)	0.80828 (11)	0.0137 (2)
H19A	0.2382	0.4924	0.8930	0.016*
C20	0.01072 (16)	0.41788 (13)	0.80165 (13)	0.0186 (2)
H20A	-0.0317	0.3363	0.7348	0.022*
H20B	-0.0147	0.4104	0.8745	0.022*
C21	0.28456 (15)	0.32899 (12)	0.76277 (11)	0.0141 (2)
C22	0.43223 (16)	0.32640 (13)	0.82660 (12)	0.0183 (2)
H22A	0.4753	0.3995	0.8952	0.022*
C23	0.51708 (17)	0.21825 (15)	0.79110 (14)	0.0230 (3)
H23A	0.6175	0.2186	0.8353	0.028*
C24	0.45598 (17)	0.11009 (14)	0.69174 (14)	0.0224 (3)
H24A	0.5124	0.0356	0.6678	0.027*
C25	0.31020 (17)	0.11346 (12)	0.62810 (12)	0.0182 (2)
C26	0.22394 (15)	0.22029 (12)	0.66123 (11)	0.0156 (2)
H26A	0.1248	0.2198	0.6156	0.019*
C27	-0.19926 (16)	0.56775 (13)	0.84332 (12)	0.0185 (2)
H27A	-0.2416	0.6379	0.8236	0.028*
H27B	-0.1682	0.5980	0.9282	0.028*
H27C	-0.2825	0.4938	0.8167	0.028*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.03101 (9)	0.01684 (7)	0.02711 (8)	0.00156 (5)	0.01300 (6)	0.00162 (5)
O1	0.0203 (4)	0.0199 (4)	0.0145 (4)	0.0010 (4)	0.0044 (3)	0.0082 (4)
O2	0.0171 (4)	0.0200 (4)	0.0177 (4)	0.0007 (3)	-0.0005 (3)	0.0080 (4)
O3	0.0142 (4)	0.0212 (4)	0.0140 (4)	-0.0012 (3)	0.0008 (3)	0.0067 (3)
N1	0.0116 (4)	0.0132 (4)	0.0174 (5)	-0.0003(4)	0.0051 (4)	0.0062 (4)
C1	0.0120 (5)	0.0145 (5)	0.0135 (5)	0.0006 (4)	0.0039 (4)	0.0052 (4)

Acta Cryst. (2012). E68, o2907–o2908

supporting information

C2	0.0161 (5)	0.0141 (5)	0.0140 (5)	0.0001 (4)	0.0048 (4)	0.0051 (4)
C3	0.0250 (7)	0.0161 (6)	0.0157 (6)	-0.0022 (5)	0.0023 (5)	0.0045 (5)
C4	0.0316 (7)	0.0152 (6)	0.0200 (6)	-0.0049 (5)	0.0047 (5)	0.0041 (5)
C5	0.0326 (7)	0.0151 (6)	0.0222 (6)	-0.0016 (5)	0.0081 (5)	0.0088 (5)
C6	0.0236 (6)	0.0172 (6)	0.0179 (6)	0.0008 (5)	0.0059 (5)	0.0088 (5)
C7	0.0145 (5)	0.0141 (5)	0.0150 (5)	0.0004 (4)	0.0044 (4)	0.0057 (4)
C8	0.0121 (5)	0.0149 (5)	0.0148 (5)	0.0016 (4)	0.0044 (4)	0.0069 (4)
C9	0.0119 (5)	0.0124 (5)	0.0117 (5)	-0.0003 (4)	0.0030 (4)	0.0051 (4)
C10	0.0110 (5)	0.0126 (5)	0.0118 (5)	-0.0006 (4)	0.0029 (4)	0.0050 (4)
C11	0.0115 (5)	0.0129 (5)	0.0143 (5)	0.0011 (4)	0.0039 (4)	0.0050 (4)
C12	0.0120 (5)	0.0141 (5)	0.0135 (5)	0.0014 (4)	0.0034 (4)	0.0062 (4)
C13	0.0130 (5)	0.0160 (5)	0.0168 (5)	-0.0006 (4)	0.0026 (4)	0.0066 (4)
C14	0.0160 (6)	0.0177 (5)	0.0203 (6)	-0.0007 (4)	0.0060 (5)	0.0094 (5)
C15	0.0186 (6)	0.0201 (6)	0.0166 (5)	0.0023 (5)	0.0065 (4)	0.0102 (5)
C16	0.0154 (5)	0.0169 (5)	0.0138 (5)	0.0003 (4)	0.0035 (4)	0.0063 (4)
C17	0.0125 (5)	0.0129 (5)	0.0137 (5)	0.0014 (4)	0.0042 (4)	0.0058 (4)
C18	0.0133 (5)	0.0140 (5)	0.0112 (5)	-0.0018 (4)	0.0026 (4)	0.0048 (4)
C19	0.0157 (5)	0.0136 (5)	0.0140 (5)	0.0011 (4)	0.0048 (4)	0.0069 (4)
C20	0.0171 (6)	0.0155 (5)	0.0280 (7)	0.0027 (4)	0.0109 (5)	0.0114 (5)
C21	0.0150 (5)	0.0147 (5)	0.0157 (5)	0.0014 (4)	0.0053 (4)	0.0084 (4)
C22	0.0161 (6)	0.0201 (6)	0.0205 (6)	0.0007 (5)	0.0022 (5)	0.0101 (5)
C23	0.0160 (6)	0.0273 (7)	0.0309 (7)	0.0049 (5)	0.0034 (5)	0.0167 (6)
C24	0.0211 (6)	0.0215 (6)	0.0313 (7)	0.0083 (5)	0.0116 (5)	0.0148 (6)
C25	0.0204 (6)	0.0148 (5)	0.0208 (6)	0.0015 (5)	0.0092 (5)	0.0067 (5)
C26	0.0163 (5)	0.0160 (5)	0.0168 (5)	0.0020 (4)	0.0052 (4)	0.0081 (5)
C27	0.0138 (5)	0.0205 (6)	0.0226 (6)	0.0018 (4)	0.0074 (5)	0.0084 (5)

Geometric parameters (Å, °)

Br1—C25	1.9019 (14)	C13—H13A	0.9500
01—C1	1.2135 (15)	C14—C15	1.4030 (18)
O2—C8	1.2100 (15)	C14—H14A	0.9500
O3—C11	1.2165 (15)	C15—C16	1.3925 (17)
N1-C9	1.4416 (15)	C15—H15A	0.9500
N1-C27	1.4553 (16)	C16—C17	1.3943 (16)
N1-C20	1.4665 (16)	C16—H16A	0.9500
C1—C2	1.4827 (17)	C17—C18	1.5120 (16)
С1—С9	1.5544 (17)	C18—H18A	0.9900
C2—C3	1.3935 (17)	C18—H18B	0.9900
С2—С7	1.3939 (17)	C19—C21	1.5123 (17)
C3—C4	1.3900 (19)	C19—C20	1.5369 (18)
С3—НЗА	0.9500	C19—H19A	1.0000
C4—C5	1.402 (2)	C20—H20A	0.9900
C4—H4A	0.9500	C20—H20B	0.9900
C5—C6	1.3887 (19)	C21—C22	1.4000 (18)
C5—H5A	0.9500	C21—C26	1.4035 (18)
С6—С7	1.3956 (17)	C22—C23	1.3938 (19)
С6—Н6А	0.9500	C22—H22A	0.9500

supporting information

C7 $C9$	1 4702 (17)	C22 C24	1 207 (2)
$C/-C\delta$	1.4/93 (17)	C25-C24	1.387 (2)
C8—C9	1.5488 (16)	C23—H23A	0.9500
C9—C10	1.5809 (17)	C24—C25	1.388 (2)
C10—C18	1.5427 (16)	C24—H24A	0.9500
C10—C11	1.5434 (16)	C25—C26	1.3881 (18)
C10—C19	1.5540 (16)	C26—H26A	0.9500
C11—C12	1.4708 (16)	С27—Н27А	0.9800
C12—C17	1.3959 (17)	C27—H27B	0.9800
C12—C13	1.3988 (16)	С27—Н27С	0.9800
C13 - C14	1 3849 (17)		0.0000
	1.5047 (17)		
C9_N1_C27	117 31 (10)	C16-C15-C14	121 67 (11)
C_{0} N1 C_{20}	117.51(10) 110.00(10)	C_{16} C_{15} H_{15A}	110.2
$C_{2} = N_{1} = C_{2} O_{2}$	110.09(10) 115.27(10)	C_{10} C_{15} H_{15A}	119.2
$C_2 / - N_1 - C_2 0$	115.57(10)		119.2
01	126.85 (11)	C15—C16—C17	118.25 (11)
01	125.46 (11)	C15—C16—H16A	120.9
C2—C1—C9	107.59 (10)	C17—C16—H16A	120.9
C3—C2—C7	121.15 (11)	C16—C17—C12	119.94 (11)
C3—C2—C1	129.27 (11)	C16—C17—C18	128.53 (11)
C7—C2—C1	109.57 (11)	C12—C17—C18	111.46 (10)
C4—C3—C2	117.60 (13)	C17—C18—C10	104.24 (9)
С4—С3—НЗА	121.2	C17—C18—H18A	110.9
C2—C3—H3A	121.2	C10-C18-H18A	110.9
C_{3} C_{4} C_{5}	121.2 121.12(13)	C17— $C18$ — $H18B$	110.9
$C_3 = C_4 = C_3$	110.4	C_{10} C_{10} H_{10}	110.9
$C_5 = C_4 = H_{4A}$	119.4		10.9
C5—C4—H4A	119.4	H18A - C18 - H18B	108.9
C6C4	121.28 (12)	C21—C19—C20	115.88 (10)
С6—С5—Н5А	119.4	C21—C19—C10	116.93 (10)
C4—C5—H5A	119.4	C20—C19—C10	103.69 (10)
C5—C6—C7	117.38 (12)	С21—С19—Н19А	106.5
С5—С6—Н6А	121.3	С20—С19—Н19А	106.5
С7—С6—Н6А	121.3	С10—С19—Н19А	106.5
C2—C7—C6	121.37 (12)	N1-C20-C19	105.19 (10)
C2—C7—C8	110.26 (10)	N1—C20—H20A	110.7
C6—C7—C8	128.36 (11)	C19—C20—H20A	110.7
02	126 41 (11)	N1—C20—H20B	110.7
02 - 03 - 09	125.88 (11)	C19 - C20 - H20B	110.7
C_{7} C_{8} C_{9}	125.60(11) 107.69(10)	$H_{20A} = C_{20} = H_{20B}$	108.8
$C_{1} = C_{3} = C_{3}$	107.09(10) 112.45(10)	1120A - C20 - 1120B	100.0
N1 = C9 = C6	117.20 (10)	$C_{22} = C_{21} = C_{20}$	118.46 (12)
	117.20 (10)		118.89 (11)
C8—C9—C1	101.52 (9)	C26—C21—C19	122.59 (11)
N1—C9—C10	101.75 (9)	C23—C22—C21	121.04 (13)
C8—C9—C10	113.18 (9)	C23—C22—H22A	119.5
C1—C9—C10	110.18 (9)	C21—C22—H22A	119.5
C18—C10—C11	104.54 (9)	C24—C23—C22	120.48 (13)
C18—C10—C19	117.18 (10)	C24—C23—H23A	119.8
C11—C10—C19	113.68 (10)	С22—С23—Н23А	119.8
C18—C10—C9	111.30 (9)	C23—C24—C25	118.31 (13)

C11—C10—C9	111.58 (9)	C23—C24—H24A	120.8
C19—C10—C9	98.74 (9)	C25—C24—H24A	120.8
O3—C11—C12	127.83 (11)	C26—C25—C24	122.29 (13)
O3—C11—C10	124.83 (11)	C26—C25—Br1	119.05 (10)
C12—C11—C10	107.34 (10)	C24—C25—Br1	118.66 (10)
C17—C12—C13	121.81 (11)	C25—C26—C21	119.40 (12)
C17—C12—C11	109.50 (10)	C25—C26—H26A	120.3
C13—C12—C11	128.68 (11)	C21—C26—H26A	120.3
C14-C13-C12	118 21 (11)	N1—C27—H27A	109.5
C14—C13—H13A	120.9	N1—C27—H27B	109.5
C12— $C13$ — $H13A$	120.9	H27A - C27 - H27B	109.5
C12 - C13 - C14 - C15	120.9 120.12(12)	N1H27C	109.5
$C_{13} = C_{14} = C_{13}$	110.0	$H_{27A} = C_{27} = H_{27C}$	109.5
C15 - C14 - H14A	119.9	$H_2/A = C_2/=H_2/C$	109.5
С15—С14—П14А	119.9	HZ/B = CZ/=HZ/C	109.3
$O_1 C_1 C_2 C_3$	16.5 (2)	C0 C10 C11 O3	75 27 (15)
01 - 01 - 02 - 03	10.3(2)	C_{9} C_{10} C_{11} C_{12}	15.27(13)
$C_{9} - C_{1} - C_{2} - C_{3}$	-100.90(13)	C10 - C10 - C11 - C12	13.70(12)
01 - 01 - 02 - 07	-103.84(13)	C19 - C10 - C11 - C12	144./5(10)
$C_{2} = C_{1} = C_{2} = C_{1}$	12.81 (14)	C_{9} C_{10} C_{11} C_{12} C_{12}	-104.65 (11)
C/-C2-C3-C4	0.6 (2)	03-011-012-017	171.44 (12)
C1 - C2 - C3 - C4	-1/9.67 (13)		-8.65 (13)
C2—C3—C4—C5	1.9 (2)	03-C11-C12-C13	-7.4 (2)
C3—C4—C5—C6	-2.3 (2)	C10-C11-C12-C13	172.53 (12)
C4—C5—C6—C7	0.0 (2)	C17—C12—C13—C14	0.34 (19)
C3—C2—C7—C6	-3.0 (2)	C11—C12—C13—C14	179.03 (12)
C1—C2—C7—C6	177.30 (12)	C12—C13—C14—C15	0.47 (19)
C3—C2—C7—C8	178.12 (12)	C13—C14—C15—C16	-0.9 (2)
C1—C2—C7—C8	-1.62 (14)	C14—C15—C16—C17	0.40 (19)
C5—C6—C7—C2	2.6 (2)	C15—C16—C17—C12	0.41 (18)
C5—C6—C7—C8	-178.72 (13)	C15—C16—C17—C18	-176.36 (12)
C2—C7—C8—O2	167.84 (13)	C13—C12—C17—C16	-0.79 (18)
C6—C7—C8—O2	-11.0(2)	C11—C12—C17—C16	-179.71 (11)
C2—C7—C8—C9	-10.25 (14)	C13—C12—C17—C18	176.50 (11)
C6—C7—C8—C9	170.92 (13)	C11—C12—C17—C18	-2.42 (14)
C27—N1—C9—C8	-69.28 (14)	C16—C17—C18—C10	-170.69(12)
C20—N1—C9—C8	156.11 (10)	C12—C17—C18—C10	12.31 (13)
C27—N1—C9—C1	48.61 (15)	C11—C10—C18—C17	-16.54(12)
C20—N1—C9—C1	-86.00(13)	C19—C10—C18—C17	-143.39(10)
C27 - N1 - C9 - C10	168.82 (10)	C9-C10-C18-C17	104.06 (11)
$C_{20} = N_1 = C_{20} = C_{10}$	$34\ 20\ (12)$	C18 - C10 - C19 - C21	48 01 (15)
02-C8-C9-N1	-34.63(17)	C_{11} C_{10} C_{19} C_{21}	-74 23 (13)
C_{7} C_{8} C_{9} N_{1}	$143\ 47\ (10)$	C9-C10-C19-C21	167.49(10)
$O_2 C_8 C_9 C_1$	-161.28(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-80.86(12)
$C_{2} = C_{3} = C_{2} = C_{1}$	16.82 (12)	$C_{11} = C_{10} = C_{10} = C_{20}$	156.90 (12)
0^{2} 0^{8} 0^{9} 0^{10}	80.66 (15)	$C_{10} = C_{10} = C_{10} = C_{20}$	38 62 (11)
$C_{2} = C_{0} = C_{2} = C_{10}$	-101.24(11)	$C_{9} = C_{10} = C_{19} = C_{20}$	-0.38(14)
$C_{1} = C_{0} = C_{1} = C_{10}$	101.24(11) 24.70(19)	C_{2} N1 C_{20} C_{10}	-144.05(14)
$C_{1} = C_{1} = C_{2} = N_{1}$	34./9(18) 141.02(11)	$C_2 / - N_1 - C_2 U - C_1 Y$	-144.95 (11)
U2-UI-U9-NI	-141.92 (11)	U21-U19-U20-NI	-149.54 (10)

O1—C1—C9—C8	158.94 (12)	C10-C19-C20-N1	-20.02 (13)
C2-C1-C9-C8	-17.76 (12)	C20-C19-C21-C22	-136.87 (12)
O1—C1—C9—C10	-80.86 (15)	C10-C19-C21-C22	100.35 (13)
C2-C1-C9-C10	102.43 (11)	C20-C19-C21-C26	40.61 (16)
N1-C9-C10-C18	79.65 (11)	C10-C19-C21-C26	-82.17 (15)
C8—C9—C10—C18	-42.44 (13)	C26—C21—C22—C23	-0.50 (19)
C1—C9—C10—C18	-155.32 (9)	C19—C21—C22—C23	177.08 (12)
N1-C9-C10-C11	-163.99 (9)	C21—C22—C23—C24	-0.5 (2)
C8—C9—C10—C11	73.92 (12)	C22—C23—C24—C25	1.0 (2)
C1—C9—C10—C11	-38.96 (12)	C23—C24—C25—C26	-0.6 (2)
N1-C9-C10-C19	-44.13 (10)	C23—C24—C25—Br1	179.99 (10)
C8—C9—C10—C19	-166.22 (10)	C24—C25—C26—C21	-0.34 (19)
C1—C9—C10—C19	80.89 (11)	Br1-C25-C26-C21	179.05 (9)
C18—C10—C11—O3	-164.32 (12)	C22—C21—C26—C25	0.89 (18)
C19—C10—C11—O3	-35.33 (17)	C19—C21—C26—C25	-176.60 (11)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C21–C26 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
С18—Н18В…О2	0.99	2.39	3.0787 (17)	126
C19—H19A…O1	1.00	2.53	3.1649 (17)	121
C4—H4A···O3 ⁱ	0.95	2.53	3.4056 (18)	153
C16—H16A…N1 ⁱⁱ	0.95	2.58	3.4912 (16)	161
C20—H20 <i>B</i> …O1 ⁱⁱⁱ	0.99	2.44	3.3586 (18)	153
C23—H23A····O1 ^{iv}	0.95	2.48	3.3847 (18)	160
C5—H5 A ··· $Cg1^{v}$	0.95	2.65	3.3386 (17)	130
C15—H15 A ··· $Cg1^{vi}$	0.95	2.82	3.6623 (15)	149

Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+1, -z+1; (iii) -x, -y+1, -z+2; (iv) -x+1, -y+1, -z+2; (v) x, y+1, z; (vi) -x+1, -y+1, -z+1.