Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Z)-1,4-Diphenylbut-1-en-3-ynyl acetate

Zheng-Wang Chen, Hai-Chuan Chen, Dong-Nai Ye and Qiao-Sheng Hu*

Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Gan Zhou 341000, People's Republic of China Correspondence e-mail: huqiaosheng@yahoo.com.cn

Received 29 July 2012; accepted 30 August 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.041 ; w R$ factor $=0.123$; data-to-parameter ratio $=14.3$.

The title compound, $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$, is almost planar with a dihedral angle of $1.24(2)^{\circ}$ between the phenylethynyl and styryl groups. The acetoxy group is tilted by 82.46 (2) and $82.26(3)^{\circ}$ with respect to the benzene ring planes.

Related literature

For general background to title compound, see: Goossen \& Paetzold (2004); Debergh et al. (2008); Li et al. (2010); Nakao et al. (2008); Chen et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

[^0]$\beta=91.558$ (2) ${ }^{\circ}$
$V=1451.93(9) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Bruker APEXII area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.987, T_{\max }=0.998$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 182$ parameters
$w R\left(F^{2}\right)=0.123$
$S=1.02$
2611 reflections
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.33 \times 0.28 \times 0.20 \mathrm{~mm}$

8119 measured reflections
2611 independent reflections 1678 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.021$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.09 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{\AA^{-3}}$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We thank the Natural Science Foundation of Jiangxi Province (20114BAB213006) and the Educational Commission of Jiangxi Province (GJJ12579) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5238).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, Z., Huang, G., Jiang, H., Huang, H. \& Pan, X. (2011). J. Org. Chem. 76, 1134-1139.
Debergh, J. R., Spivey, K. M. \& Ready, J. M. (2008). J. Am. Chem. Soc. 130, 7828-7829.
Goossen, L. J. \& Paetzold, J. (2004). Angew. Chem. Int. Ed. 43, 1095-1098.
Li, Y., Liu, X., Jiang, H. \& Feng, Z. (2010). Angew. Chem. Int. Ed. 49, 33383341.

Nakao, Y., Hirata, Y., Tanaka, M. \& Hiyama, T. (2008). Angew. Chem. Int. Ed. 47, 385-387.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o2847 [https://doi.org/10.1107/S1600536812037439]

(Z)-1,4-Diphenylbut-1-en-3-ynyl acetate

Zheng-Wang Chen, Hai-Chuan Chen, Dong-Nai Ye and Qiao-Sheng Hu

S1. Comment

The title compound, (I), $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$, is a multifunctional compound, which can achieve varieties of conversion. For example, enol acetates was frequently used as intermediates in organic synthesis and pharmaceutical chemistry (Goossen et al., 2004; Debergh et al., 2008), the enyne derivatives had high synthetic potential due to wide applicability (Li et al., 2010; Nakao et al., 2008), and the enyne acetate could be converted to heterocyclic compounds through metal-catalyzed transformation or electrophilic cyclization (Chen et al., 2011). Moreover, the (Z)-enyne acetate was obtained from (Z)-2bromoenol acetate and phenylacetylene, it proved that the Sonogashira coupling reaction was in stereospecific manner. In view of this, the crystal structure determination of the title compound was carried out and the results are presented here.
As depicted in Fig. 1, the phenylethynyl group (C1-C8) [maximum deviations of 0.007 (2) and $0.028 \AA$ for the C 7 and C8 atoms, respectively] and the styryl group (C9—C16) [maximum deviations of 0.058 (2) and 0.041 (3) \AA for the C9 and C10 atoms, respectively] are almost planar with maximum deviation of $1.24(2)^{\circ}$. The acetoxy group ($\mathrm{C} 17 / \mathrm{C} 18 / \mathrm{O} 1 / \mathrm{O} 2$) is slight tilted with respect to the benzene mean planes by $82.46(2)(\mathrm{C} 11-\mathrm{C} 16)$ and $82.26(3){ }^{\circ}(\mathrm{C} 1-$ C6). The bond lengths are within normal range (Allen et al., 1987). The molecules are linked into an infinite chain through intermolecular $\mathrm{C} 18-\mathrm{H} 18 \mathrm{~A} \cdots \mathrm{O} 2$ hydrogen bonding interactions. In addition, intramolecular $\mathrm{C} 16-\mathrm{H} 16 \cdots \mathrm{O} 1$ are also observed.

S2. Experimental

To the mixture of (Z)-2-bromoenol acetate $(1 \mathrm{mmol}, 0.241 \mathrm{~g}), \mathrm{Pd}(\mathrm{OAc})_{2}(0.05 \mathrm{mmol}, 0.011 \mathrm{~g})$ and $\mathrm{PPh}_{3}(0.1 \mathrm{mmol}, 0.026$ $\mathrm{g})$ in THF $(2 \mathrm{ml})$ solvent, TEA $(1 \mathrm{mmol}, 0.101 \mathrm{~g})$ and $\mathrm{CuI}(0.05 \mathrm{mmol}, 0.0098 \mathrm{~g})$ were added successively, stirred for five minutes at room temperature, phenylacetylene ($2.0 \mathrm{mmol}, 0.204 \mathrm{~g}$) was added, the flask was then sealed and stirred at 323 K for 6 h . The solution was washed with water (10 ml) and extracted with ethyl acetate (24 ml), and the combined extract was dried with anhydrous MgSO_{4}. Solvent was removed, and the residue was purified by silica gel (200-300 mesh) column by elution with petroleum ether: ethyl acetate ($10: 1$) to give 20 fractions (200 ml per fraction). The title compound (252.8 mg) was isolated from the fractions $5-16$ (yield 96.5%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

S3. Refinement

All H atoms were located on the difference maps, and were treated as riding atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ for methyl, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl C-atoms) and $1.2 U_{\text {eq }}$ (non-methyl C-atoms). The hightest peak is located $1.07 \AA$ from O2 and the deepest hole is located $0.97 \AA$ from C6.

Figure 1
The molecular structure of the tile compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
An infinite chain of the title compound; $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are shown as dashed lines. The $\mathrm{H}-\mathrm{atoms}$ not involved in $\mathrm{H}-$ bonds have been excluded for clarity.
(Z)-1,4-Diphenylbut-1-en-3-ynyl acetate

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$
$M_{r}=262.29$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2 ybc
$a=13.1480$ (5) \AA
$b=5.5912(2) \AA$
$c=19.7579(7) \AA$
$\beta=91.558(2)^{\circ}$
$V=1451.93(9) \AA^{3}$
$Z=4$
$F(000)=552$
$D_{\mathrm{x}}=1.200 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 5837 reflections
$\theta=2.8-27.9^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colorless
$0.33 \times 0.28 \times 0.20 \mathrm{~mm}$

Data collection

Bruker APEXII area-detector
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scan
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.987, T_{\text {max }}=0.998$

> 8119 measured reflections
> 2611 independent reflections
> 1678 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.021$
> $\theta_{\max }=25.2^{\circ}, \theta_{\min }=2.6^{\circ}$
> $h=-15 \rightarrow 15$
> $k=-6 \rightarrow 6$
> $l=-23 \rightarrow 23$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.123$
$S=1.02$
2611 reflections
182 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} U_{\text {eq }}$
C1	$0.30322(13)$	$-0.0799(4)$	$0.49684(9)$	$0.0692(5)$
C2	$0.28690(17)$	$-0.2708(5)$	$0.53970(12)$	$0.0953(7)$
H2	0.2419	-0.3916	0.5266	0.114^{*}
C3	$0.3369(3)$	$-0.2826(7)$	$0.60151(15)$	$0.1280(11)$
H3	0.3254	-0.4111	0.6302	0.154^{*}
C4	$0.4031(3)$	$-0.1080(9)$	$0.62109(15)$	$0.1426(16)$
H4	0.4372	-0.1181	0.6628	0.171^{*}
C5	$0.4196(2)$	$0.0823(8)$	$0.57961(17)$	$0.1327(12)$
H5	0.4647	0.2021	0.5933	0.159^{*}
C6	$0.36951(17)$	$0.0975(5)$	$0.51739(11)$	$0.0974(7)$
H6	0.3807	0.2280	0.4894	0.117^{*}
C7	$0.25155(13)$	$-0.0651(4)$	$0.43211(10)$	$0.0701(5)$
C8	$0.20928(13)$	$-0.0556(4)$	$0.37789(10)$	$0.0685(5)$
C9	$0.15912(12)$	$-0.0526(4)$	$0.31331(9)$	$0.0652(5)$
H9	0.1158	-0.1790	0.3023	0.078^{*}
C10	$0.17019(11)$	$0.1197(3)$	$0.26765(8)$	$0.0550(4)$

C11	$0.11939(11)$	$0.1374(3)$	$0.20075(8)$	$0.0536(4)$
C12	$0.04989(12)$	$-0.0339(3)$	$0.17850(8)$	$0.0650(5)$
H12	0.0366	-0.1650	0.2058	0.078^{*}
C13	$0.00025(14)$	$-0.0127(4)$	$0.11645(10)$	$0.0748(5)$
H13	-0.0463	-0.1290	0.1024	0.090^{*}
C14	$0.01901(15)$	$0.1784(4)$	$0.07548(9)$	$0.0752(6)$
H14	-0.0148	0.1929	0.0337	0.090^{*}
C15	$0.08782(15)$	$0.3482(4)$	$0.09637(10)$	$0.0799(6)$
H15	0.1012	0.4776	0.0684	0.096^{*}
C16	$0.13779(13)$	$0.3297(3)$	$0.15865(10)$	$0.0708(5)$
H16	0.1840	0.4472	0.1723	0.085^{*}
C17	$0.33312(11)$	$0.2969(3)$	$0.28114(8)$	$0.0565(4)$
C18	$0.38508(13)$	$0.5103(4)$	$0.30975(10)$	$0.0770(6)$
H18A	0.4559	0.5052	0.2992	0.116^{*}
H18B	0.3783	0.5121	0.3580	0.116^{*}
H18C	0.3548	0.6521	0.2906	0.116^{*}
O1	$0.23034(7)$	$0.3175(2)$	$0.28623(6)$	$0.0629(3)$
O2	$0.37147(8)$	$0.1261(2)$	$0.25663(7)$	$0.0784(4)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0638(10)$	$0.0764(14)$	$0.0674(11)$	$0.0162(10)$	$0.0031(9)$	$-0.0050(11)$
C2	$0.0945(15)$	$0.0937(18)$	$0.0979(16)$	$0.0216(13)$	$0.0047(12)$	$0.0187(14)$
C3	$0.146(3)$	$0.151(3)$	$0.0871(19)$	$0.074(2)$	$0.0098(17)$	$0.0319(19)$
C4	$0.136(3)$	$0.212(5)$	$0.0786(19)$	$0.094(3)$	$-0.0156(18)$	$-0.027(2)$
C5	$0.122(2)$	$0.164(3)$	$0.111(2)$	$0.018(2)$	$-0.0324(18)$	$-0.054(2)$
C6	$0.0986(16)$	$0.1039(19)$	$0.0890(15)$	$-0.0034(15)$	$-0.0102(12)$	$-0.0148(14)$
C7	$0.0626(10)$	$0.0702(14)$	$0.0776(13)$	$0.0052(9)$	$0.0032(9)$	$0.0003(10)$
C8	$0.0592(10)$	$0.0669(13)$	$0.0792(12)$	$-0.0019(9)$	$0.0016(9)$	$0.0049(10)$
C9	$0.0571(9)$	$0.0617(13)$	$0.0767(12)$	$-0.0069(9)$	$-0.0037(8)$	$0.0016(10)$
C10	$0.0426(8)$	$0.0485(11)$	$0.0743(11)$	$-0.0014(7)$	$0.0055(7)$	$-0.0032(9)$
C11	$0.0447(8)$	$0.0499(11)$	$0.0667(10)$	$0.0022(8)$	$0.0108(7)$	$-0.0005(8)$
C12	$0.0709(11)$	$0.0572(12)$	$0.0670(11)$	$-0.0081(9)$	$0.0066(8)$	$0.0003(9)$
C13	$0.0796(12)$	$0.0722(14)$	$0.0725(12)$	$-0.0078(11)$	$-0.0020(9)$	$-0.0111(11)$
C14	$0.0783(12)$	$0.0820(15)$	$0.0654(11)$	$0.0095(12)$	$0.0042(9)$	$-0.0022(11)$
C15	$0.0782(12)$	$0.0777(15)$	$0.0842(13)$	$0.0033(11)$	$0.0102(10)$	$0.0242(12)$
C16	$0.0594(10)$	$0.0629(13)$	$0.0900(13)$	$-0.0070(9)$	$0.0010(9)$	$0.0126(11)$
C17	$0.0472(9)$	$0.0560(11)$	$0.0664(10)$	$0.0011(8)$	$0.0024(7)$	$0.0011(9)$
C18	$0.0659(11)$	$0.0718(14)$	$0.0930(13)$	$-0.0169(10)$	$-0.0036(9)$	$-0.0095(11)$
O1	$0.0477(6)$	$0.0512(8)$	$0.0900(8)$	$-0.0005(5)$	$0.0040(5)$	$-0.0097(6)$
O2	$0.0554(7)$	$0.0700(9)$	$0.1103(10)$	$0.0034(6)$	$0.0143(6)$	$-0.0190(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.374(3)$	$\mathrm{C} 11-\mathrm{C} 16$	$1.385(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.383(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.387(2)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.434(2)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.378(2)$

C2-C3	1.373 (4)	C12-H12	0.9300
C2-H2	0.9300	C13-C14	1.367 (3)
C3-C4	1.357 (5)	C13-H13	0.9300
C3-H3	0.9300	C14-C15	1.367 (3)
C4-C5	1.364 (5)	C14-H14	0.9300
C4-H4	0.9300	C15-C16	1.383 (2)
C5-C6	1.381 (3)	C15-H15	0.9300
C5-H5	0.9300	C16-H16	0.9300
C6-H6	0.9300	C17-O2	1.1894 (19)
C7-C8	1.194 (2)	C17-O1	1.3626 (18)
C8-C9	1.420 (2)	C17-C18	1.479 (2)
C9-C10	1.330 (2)	C18-H18A	0.9600
C9-H9	0.9300	C18-H18B	0.9600
C10-O1	1.4025 (18)	C18-H18C	0.9600
C10-C11	1.468 (2)		
C6- $\mathrm{C} 1-\mathrm{C} 2$	118.9 (2)	C16-C11-C10	120.70 (15)
C6-C1-C7	120.2 (2)	C12-C11-C10	121.23 (15)
C2- $\mathrm{C} 1-\mathrm{C} 7$	120.9 (2)	C13-C12-C11	120.95 (18)
C3-C2-C1	120.2 (3)	C13-C12-H12	119.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.9	C11-C12-H12	119.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9	C14-C13-C12	120.35 (19)
C4-C3-C2	120.5 (3)	C14-C13-H13	119.8
C4-C3-H3	119.8	C12-C13-H13	119.8
C2-C3-H3	119.8	C13-C14-C15	119.51 (18)
C3-C4-C5	120.1 (3)	C13-C14-H14	120.2
C3-C4-H4	120.0	C15-C14-H14	120.2
C5-C4-H4	120.0	C14-C15-C16	120.74 (18)
C4-C5-C6	120.2 (3)	C14-C15-H15	119.6
C4-C5-H5	119.9	C16-C15-H15	119.6
C6-C5-H5	119.9	C15-C16-C11	120.39 (17)
C1-C6-C5	120.1 (3)	C15-C16-H16	119.8
C1-C6-H6	120.0	C11-C16-H16	119.8
C5-C6-H6	120.0	$\mathrm{O} 2-\mathrm{C} 17-\mathrm{O} 1$	122.01 (16)
C8-C7- 1	179.1 (2)	O2-C17-C18	127.35 (15)
C7-C8-C9	178.1 (2)	O1-C17-C18	110.64 (15)
C10-C9-C8	124.12 (17)	C17-C18-H18A	109.5
C10-C9-H9	117.9	C17-C18-H18B	109.5
C8-C9-H9	117.9	H18A-C18-H18B	109.5
C9-C10-O1	117.69 (15)	C17-C18-H18C	109.5
C9-C10-C11	127.15 (15)	H18A-C18-H18C	109.5
O1-C10-C11	114.96 (14)	H18B-C18-H18C	109.5
C16-C11-C12	118.06 (16)	C17-O1-C10	117.88 (12)

[^0]: $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{2}$
 $M_{r}=262.29$
 Monoclinic, $P 2_{1} / c$

