Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,3'-(Piperazine-1,4-diium-1,4-diyl)dipropionate dihydrate

Shouwen Jin,* Yanfei Huang, Hao Fang, Tianyi Wang and Liangliang Ding

Tianmu College of ZheJiang A \& F University, Lin'An 311300, People's Republic of China
Correspondence e-mail: shouwenjin@yahoo.cn

Received 20 August 2012; accepted 29 August 2012

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$;
R factor $=0.040 ; w R$ factor $=0.111$; data-to-parameter ratio $=13.3$.

During the recrystallization of 3-[4-(2-carboxyethyl)piperazin-1-yl]propionic acid, the carboxylic acid H atoms were transferred to the piperazine N atoms, forming the title compound, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, in which the zwitterion lies about an inversion center. In the crystal, bifurcated N $\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bonds connect the zwitterions into a twodimensional framework parallel to ($\overline{1} 02$) forming $R_{4}^{4}(30)$ rings. $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving the solvent water molecules connect the two-dimensional framework into a three-dimensional network. In addition, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed.

Related literature

For general background and applications of carboxylic acids, see: Jin et al. (2012); Grossel et al. (2006); Rueff et al. (2001); Strachan et al. (2007); Desiraju (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

$2 \mathrm{H}_{2} \mathrm{O}$

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=266.30$
Monoclinic, $P 2_{1} / c$
$a=6.8028$ (6) A
$b=8.8925$ (7) A
$c=10.4301$ (11) \AA
$\beta=101.780(1)^{\circ}$

Data collection
Bruker SMART CCD
diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.951, T_{\text {max }}=0.963$
2951 measured reflections 1087 independent reflections 895 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.023$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040 \quad 82$ parameters
$w R\left(F^{2}\right)=0.111 \quad \mathrm{H}$-atom parameters constrained
$S=1.06$
1087 reflections
$\Delta \rho_{\text {max }}=0.21$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 3 F \cdots \mathrm{O} 2^{\text {i }}$	0.85	1.93	2.776 (2)	177
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{E} \cdots \mathrm{O} 1$	0.85	2.11	2.964 (2)	177
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\text {ii }}$	0.91	2.50	3.0577 (19)	120
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {ii }}$	0.91	1.80	2.7011 (18)	172
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 3^{\text {iii }}$	0.97	2.58	3.419 (2)	145
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 2^{\text {ii }}$	0.97	2.53	3.137 (2)	120
$\mathrm{C} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {iv }}$	0.97	2.51	3.477 (2)	172

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $x-1, y, z$; (iv) $x,-y+\frac{1}{2}, z-\frac{1}{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL.

We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the innovation project of Zhejiang A \& F University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5520).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565-573.
Grossel, C. M., Dwyer, A. N., Hursthouse, M. B. \& Orton, J. B. (2006). CrystEngComm, 8, 123-128.
Jin, S. W., Wang, D. Q., Huang, Y. F., Fang, H., Wang, T. Y., Fu, P. X. \& Ding, L. L. (2012). J. Mol. Struct. 1017, 51-59.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Rueff, J. M., Masciocchi, N., Rabu, P., Sironi, A. \& Skoulios, A. (2001). Eur. J. Inorg. Chem. pp. 2843-2848.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Strachan, C. J., Rades, T. \& Gordon, K. C. (2007). J. Pharm. Pharmacol. 59, 261-269.

supporting information

Acta Cryst. (2012). E68, o2827 [https://doi.org/10.1107/S1600536812037312]
3,3'-(Piperazine-1,4-diium-1,4-diyl)dipropionate dihydrate

Shouwen Jin, Yanfei Huang, Hao Fang, Tianyi Wang and Liangliang Ding

S1. Comment

Carboxylic acids are important compounds, which have been widely used in various fields as coordination chemistry (Rueff et al., 2001), pharmaceutical chemistry (Strachan et al., 2007), and supramolecular chemistry (Desiraju, 2002). Recently the main focus for carboxylic acids has been in crystal engineering via hydrogen bonded assembly of organic acids and organic bases (Grossel et al., 2006). As an extension of our study concentrating on hydrogen bonded assembly of organic acids and organic bases (Jin et al., 2012), herein we report the crystal structure of the title compound (I).
During the recrystallization of 3-[4-(2-carboxy-ethyl)-piperazin-1-yl]-propionic acid the carboxylic acid H atoms were transferred to the piperazine N atoms forming (I) (Fig. 1) in which the zwitterion lies across an inversion center. In the crystal, bifurcated $\mathrm{N}-\mathrm{H} \cdots(\mathrm{O}, \mathrm{O})$ hydrogen bonds connect the zwitterions a two-dimensional framework parallel to ($\overline{1} 02$) forming $\mathrm{R}_{4}^{4}(30)$ rings (Bernstein et al., 1995). Furthermore $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving sovent water molecules connect the two-dimensional framework into a three-dimensional network. In addition, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are observed (Fig. 2).

S2. Experimental

3-[4-(2-Carboxy-ethyl)-piperazin-1-yl]-propionic acid ($23.0 \mathrm{mg}, 0.10 \mathrm{mmol}$) was dissolved in 6 ml of ethanol, and pyridine ($15.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added to the ethanol solution. The solution was stirred for 1 h , and then filtered into a test tube. The solution was left standing at room temperature for about one week, colorless block crystals were obtained.

S3. Refinement

All H atoms were visible in difference Fourier maps. They were subsequently included in calculated positions with $\mathrm{C}-\mathrm{H}$ $=0.97 \AA, \mathrm{~N}-\mathrm{H}=0.91 \AA, \mathrm{O}-\mathrm{H}=0.85 \AA$ and were constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=$ $1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, \mathrm{N}, \mathrm{O})$.

Figure 1
The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. Unlabeled atoms are related by the symmetry operator $(-x,-y,-z)$. Only the symmetry unique solvent water molecule is shown.

Figure 2
Part of the crystal structure with hydrogen bonds shown as dotted lines.
3,3'-(Piperazine-1,4-diium-1,4-diyl)dipropionate dihydrate

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=266.30$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=6.8028$ (6) \AA
$b=8.8925$ (7) \AA
$c=10.4301(11) \AA$
$\beta=101.780(1)^{\circ}$
$V=617.67(10) \AA^{3}$
$Z=2$

$$
\begin{aligned}
& F(000)=288 \\
& D_{\mathrm{x}}=1.432 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1525 \text { reflections } \\
& \theta=3.0-28.2^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Block, colorless } \\
& 0.43 \times 0.40 \times 0.32 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\min }=0.951, T_{\text {max }}=0.963$

> 2951 measured reflections
> 1087 independent reflections
> 895 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.023$
> $\theta_{\max }=25.0^{\circ}, \theta_{\text {min }}=3.0^{\circ}$
> $h=-8 \rightarrow 7$
> $k=-10 \rightarrow 5$
> $l=-12 \rightarrow 11$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.111$
$S=1.06$
1087 reflections
82 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
N1	$0.15979(19)$	$0.08898(15)$	$0.08004(12)$	$0.0204(3)$
H1	0.2428	0.0121	0.1137	0.024^{*}
O1	$0.56844(18)$	$0.37957(15)$	$0.31249(12)$	$0.0340(4)$
O2	$0.7046(2)$	$0.4517(2)$	$0.14744(14)$	$0.0551(5)$
O3	$0.8070(2)$	$0.10838(18)$	$0.40824(15)$	$0.0541(5)$
H3E	0.7405	0.1861	0.3781	0.065^{*}
H3F	0.7788	0.0870	0.4818	0.065^{*}
C1	$0.5838(2)$	$0.3752(2)$	$0.19346(17)$	$0.0288(4)$
C2	$0.4531(3)$	$0.2636(2)$	$0.10320(18)$	$0.0335(5)$
H2A	0.4302	0.3019	0.0143	0.040^{*}
H2B	0.5256	0.1694	0.1049	0.040^{*}
C3	$0.2521(3)$	$0.23274(19)$	$0.13874(17)$	$0.0276(4)$
H3A	0.2697	0.2274	0.2333	0.033^{*}
H3B	0.1616	0.3154	0.1084	0.033^{*}
C4	$-0.0379(2)$	$0.06441(19)$	$0.11862(16)$	$0.0236(4)$
H4A	-0.1283	0.1462	0.0851	0.028^{*}

supporting information

H4B	-0.0187	0.0648	0.2134	0.028^{*}
C5	$0.1314(2)$	$0.08320(19)$	$-0.06607(15)$	$0.0230(4)$
H5A	0.2604	0.0950	-0.0910	0.028^{*}
H5B	0.0456	0.1656	-0.1042	0.028^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0183(7)$	$0.0214(7)$	$0.0211(7)$	$-0.0005(5)$	$0.0031(5)$	$-0.0011(6)$
O1	$0.0355(7)$	$0.0386(8)$	$0.0274(7)$	$-0.0108(6)$	$0.0049(5)$	$-0.0046(6)$
O2	$0.0584(9)$	$0.0713(11)$	$0.0388(8)$	$-0.0414(9)$	$0.0174(7)$	$-0.0142(8)$
O3	$0.0650(10)$	$0.0500(10)$	$0.0518(10)$	$0.0019(8)$	$0.0225(8)$	$0.0053(8)$
C1	$0.0261(9)$	$0.0297(9)$	$0.0300(10)$	$-0.0040(7)$	$0.0044(7)$	$-0.0036(8)$
C2	$0.0317(10)$	$0.0379(11)$	$0.0317(10)$	$-0.0112(8)$	$0.0084(8)$	$-0.0090(8)$
C3	$0.0249(9)$	$0.0256(9)$	$0.0317(9)$	$-0.0040(7)$	$0.0046(7)$	$-0.0064(7)$
C4	$0.0201(8)$	$0.0287(9)$	$0.0224(8)$	$0.0000(7)$	$0.0056(6)$	$-0.0013(7)$
C5	$0.0214(8)$	$0.0279(9)$	$0.0202(8)$	$-0.0010(7)$	$0.0050(6)$	$0.0022(7)$

Geometric parameters ($A,{ }^{\circ}$)

N1-C4	1.4966 (19)	C2-H2A	0.9700
N1-C5	1.4975 (19)	C2-H2B	0.9700
N1-C3	1.499 (2)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9700
N1-H1	0.9100	C3-H3B	0.9700
$\mathrm{O} 1-\mathrm{C} 1$	1.267 (2)	$\mathrm{C} 4-\mathrm{C} 5^{\text {i }}$	1.512 (2)
$\mathrm{O} 2-\mathrm{C} 1$	1.237 (2)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{E}$	0.8501	C4-H4B	0.9700
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~F}$	0.8500	C5-C4 ${ }^{\text {i }}$	1.512 (2)
C1-C2	1.523 (2)	C5-H5A	0.9700
C2-C3	1.513 (2)	C5-H5B	0.9700
C4-N1-C5	109.42 (12)	N1-C3-H3A	109.2
C4-N1-C3	109.84 (12)	C2-C3-H3A	109.2
C5-N1-C3	113.65 (13)	N1-C3-H3B	109.2
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{H} 1$	107.9	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.2
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{H} 1$	107.9	H3A-C3-H3B	107.9
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{H} 1$	107.9	N1-C4-C5 ${ }^{\text {i }}$	111.35 (13)
H3E-O3-H3F	108.3	N1-C4-H4A	109.4
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	123.88 (16)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.4
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	117.96 (16)	N1-C4-H4B	109.4
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	118.09 (15)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.4
C3-C2-C1	114.16 (15)	H4A-C4-H4B	108.0
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7	N1-C5-C4 ${ }^{\text {i }}$	110.85 (13)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	108.7	N1-C5-H5A	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7	N1-C5-H5B	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	107.6	C4- ${ }^{\text {i }} 5$ - H 5 B	109.5
N1-C3-C2	112.25 (14)	H5A-C5-H5B	108.1

$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-151.50(18)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$31.5(2)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$179.91(14)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 2$	$-57.14(19)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	$-160.56(15)$

$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5^{\mathrm{i}}$	$57.11(18)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 5^{\mathrm{i}}$	$-177.48(13)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4^{\mathrm{i}}$	$-56.82(18)$
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4^{\mathrm{i}}$	$-179.99(13)$

Symmetry code: (i) $-x,-y,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 3 F \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.85	1.93	$2.776(2)$	177
$\mathrm{O} 3 — \mathrm{H} 3 E \cdots \mathrm{O} 1$	0.85	2.11	$2.964(2)$	177
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.91	2.50	$3.0577(19)$	120
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots 1^{\mathrm{iii}}$	0.91	1.80	$2.7011(18)$	172
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots \mathrm{O} 3^{\mathrm{iv}}$	0.97	2.58	$3.419(2)$	145
$\mathrm{C} 4 — \mathrm{H} 4 B \cdots \mathrm{O}^{\mathrm{iii}}$	0.97	2.53	$3.137(2)$	120
$\mathrm{C} 5 — \mathrm{H} 5 A \cdots 1^{v}$	0.97	2.51	$3.477(2)$	172

Symmetry codes: (ii) $x,-y+1 / 2, z+1 / 2$; (iii) $-x+1, y-1 / 2,-z+1 / 2$; (iv) $x-1, y, z$; (v) $x,-y+1 / 2, z-1 / 2$.

