Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

4-Ethoxybenzohydrazide

Muhammad Farman, ${ }^{\text {a }}$ Saira Khanum, ${ }^{\text {a }}$ Shahid Hameed, ${ }^{\text {a }}$ Peter G. Jones ${ }^{\text {b }}$ and Tanveer Ahmad ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and ${ }^{\mathbf{b}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany Correspondence e-mail: farman@qau.edu.pk

Received 10 August 2012; accepted 12 September 2012

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.034 ; w R$ factor $=0.106 ;$ data-to-parameter ratio $=21.9$.

The title compound, $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$, is approximately planar (r.m.s. deviation $=0.13 \AA$ for all non-H atoms). The carbonyl O atom is involved as acceptor in three different hydrogenbond interactions. One $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and the $\mathrm{C}-\mathrm{H} \cdots$ O (carbonyl) contact together with a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (ethoxy) hoxy) interaction link the molecules into sheets parallel to (102). These are further linked into a three-dimensional network via the remaining $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ (carbonyl) hydrogen bond and a $\mathrm{C}($ methylene $)-\mathrm{H} \cdots \pi$ interaction

Related literature

For the methoxy analogue of the title compound, see: Ashiq et al. (2009). For biological properties of hydrazides, see: Gohil et al. (2010); Bordoloi et al. (2009); Kumar et al. (2009). For the use of hydrazides as precursors for the syntheses of heterocyclic compounds, see: Akhtar et al. (2010); Akhtar, Hameed, Al-Masoudi et al. (2008); Akhtar, Hameed, Khan et al. (2008); Khan, Akhtar et al. (2010); Khan, Hameed et al. (2010); Serwar et al. (2009); Syed et al. (2011); Zahid et al. (2009); Zia et al. (2012). For a description of the Cambridge Structural Database, see: Allen (2002); For details of the preparation, see: Furniss et al. (1989).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
$M_{r}=180.21$
Monoclinic, $P 2_{1} / c$
$V=863.64(4) \AA^{3}$
$Z=4$
$a=10.8848$ (3) \AA
Mo $K \alpha$ radiation
$b=10.0453$ (2) A
$\mu=0.10 \mathrm{~mm}^{-1}$
$c=8.4420$ (3) \AA
$T=100 \mathrm{~K}$
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

Data collection
Oxford Diffraction Xcalibur Eos diffractometer
42766 measured reflections
2874 independent reflections 2478 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
H atoms treated by a mixture of independent and constrained refinement
$S=1.10$
2874 reflections
131 parameters
$\Delta \rho_{\max }=0.48 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.22 \mathrm{e}^{\AA^{-3}}$

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).
Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 03 \cdots \mathrm{O}^{\mathrm{i}}$	$0.865(13)$	$2.083(13)$	$2.9290(9)$	$165.6(11)$
$\mathrm{C} 6-\mathrm{H} 6 \cdots 1^{\mathrm{i}}$	0.95	2.39	$3.3149(9)$	165
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{ii}}$	0.95	2.61	$3.5428(9)$	168
$\mathrm{~N} 1-\mathrm{H} 01 \cdots \mathrm{O}^{\text {iii }}$	$0.933(13)$	$2.212(14)$	$3.1207(9)$	164.1 (12)
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{Cg}^{\text {iv }}$	0.99	2.65	$3.499(1)$	145
Symmetry codes:	(i) $-x, y+\frac{1}{2},-z+\frac{3}{2} ;$	(ii)	$-x+1,-y+1,-z+1 ;$	(iii)
$-x,-y+1,-z+2 ;$ (iv) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.				

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2080).

References

Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. \& Colla, P. L. (2008). Acta Pharm. 58, 135-149.
Akhtar, T., Hameed, S., Khan, K. M., Khan, A. \& Choudhary, M. I. (2008). Med. Chem. 4, 539-543
Akhtar, T., Hameed, S., Khan, K. M., Khan, A. \& Choudhary, M. I. (2010). J. Enzyme Inhib. Med. Chem. 25, 572-576.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Ashiq, U., Jamal, R. A., Tahir, M. N., Yousuf, S. \& Khan, I. U. (2009). Acta Cryst. E65, o1551.
Bordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. \& Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754-2757.
Furniss, B. S., Hannaford, A. J., Smith, P. W. G. \& Tatchell, A. R. (1989). Vogel's Text Book of Practical Organic Chemistry, 5th ed, p. 1269. New York: Longman Scientific and Technical, John Wiley and Sons Inc.
Gohil, M. V., Agrawal, S. K., Saxena, A. K., Garg, D., Gopimohan, C. \& Bhutani, K. K. (2010). Indian J. Exp. Biol. 48, 265-268.
Khan, M. H., Akhtar, T., Yasin, K. A., Al-Masoudi, N. A., Jones, P. G. \& Hameed, S. (2010). Z. Naturforsch. Teil B, 65, 178-184.

organic compounds

Khan, M. H., Hameed, S., Yasin, K. A., Akhtar, T. \& Khan, K. M. (2010). Monatsh. Chem. 141, 479-484
Kumar, P., Naarasimhan, B., Sharma, D., Judge, V. \& Narang, R. (2009). Eur. J. Med. Chem. 44, 1853-1863.
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Serwar, M., Akhtar, T., Hameed, S. \& Khan, K. M. (2009). ARKIVOC, vii, 210-221.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Syed, T., Akhtar, T., Al-Masoudi, N. A., Jones, P. G. \& Hameed, S. (2011). J Enzyme Inhib. Med. Chem. 25, 668-680.
Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al-Masoudi, N. A., Loddo, R. \& Colla, P. L. (2009). ARKIVOC, vii, 85-93.

Zia, M., Akhtar, T., Hameed, S. \& Al-Masoudi, N. A. (2012). Z. Naturforsch. Teil B, 67, 747-758.

supporting information

Acta Cryst. (2012). E68, o2955-o2956 [https://doi.org/10.1107/S1600536812038998]

4-Ethoxybenzohydrazide

Muhammad Farman, Saira Khanum, Shahid Hameed, Peter G. Jones and Tanveer Ahmad

S1. Comment

Hydrazides represent one of the most biologically active classes of compounds reported in the chemical literature; they display a wide variety of biological activities such as antimicrobial (Kumar et al., 2009) anticancer (Gohil et al., 2010) and antigenotoxic (Bordoloi et al., 2009). They have been employed as synthetic precursors for a number of hetero-cyclic compounds such as oxadiazoles, triazoles and thiadiazoles (Zia et al., 2012; Syed et al., 2011; Akhtar et al., 2010; Akhtar, Hameed, Al-Masoudi et al., 2008; Akhtar, Hameed, Khan et al., 2008; Khan, Akhtar et al., 2010; Khan, Hameed et al., 2010; Serwar et al., 2009; Zahid et al., 2009). The title compound (1) was synthesized as an intermediate for its subsequent conversion to 1,2,4-triazoles and 1,3,4-thiadiazoles in order to explore their potential as antibacterial or antifungal agents or urease inhibitors.

The structure of (1) is shown in Fig. 1. Molecular dimensions may be regarded as normal, e.g. the $\mathrm{N}-\mathrm{N}$ bond length of 1.4117 (9) \AA; a search of the Cambridge Structural Database (CSD, CONQUEST Version 1.14; Allen, 2002) for the benzohydrazine fragment gave 37 hits (41 molecules) with an average $\mathrm{N}-\mathrm{N}$ bond length of 1.415 (5) \AA. The molecule is approximately planar, with an r.m.s. deviation of $0.13 \AA$ for all non-H atoms. The angle between the phenyl and CON_{2} planes is $14.65(6)^{\circ}$. The hydrogen atoms of the NH_{2} group lie to either side of the CON_{2} plane, with torsion angles $\mathrm{C} 7-$ $\mathrm{N} 2-\mathrm{N} 1-\mathrm{H} 0161.8(9)^{\circ}$ and C7-N2—N1—H02-53.1 (8) ${ }^{\circ}$.

The carbonyl oxygen is involved as acceptor in three different hydrogen bond interactions. Two of them form a bifurcated $\mathrm{N} 2-\mathrm{H} 03 \cdots \mathrm{O} 1{ }^{(\mathrm{i})}, \mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 1^{(\mathrm{i})}$ system, these interactions together with a very weak $\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{O} 2{ }^{(\mathrm{ii)}}$ (ethoxy) hydrogen bond link the molecules into sheets parallel to (102). These layers are further linked into a three-dimensional network via the remaining $\mathrm{N} 1-\mathrm{H} 01 \cdots \mathrm{O} 1^{\text {(iii) }}$ (carbonyl) hydrogen bond and a $\mathrm{C} 8 — \mathrm{H} 8 \mathrm{~B} \cdots \mathrm{Cg}^{(\mathrm{iv})} \pi$ interaction, where Cg is the centroid of the C1-C6 benzene ring [symmetry codes: (i) $-\mathrm{x}, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2$;(ii) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$; (iii) $-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+2$ and (iv) $x,-y+3 / 2, z-1 / 2]$. The hydrogen H 02 is not involved in hydrogen bonding interactions.

Compound (1) is not isotypic to its methoxy analogue (Ashiq et al., 2009), which crystallizes in $P 2_{1} 2_{1} 2_{1}$.

S2. Experimental

3.6 g of methyl p-ethoxybenzoate was added to 40 ml freshly distilled methanol in a round-bottomed flask. The content was stirred until completely dissolved and the flask was fitted with a reflux condenser bearing a calcium chloride guard tube. Then 2.0 g of 80% hydrazine hydrate was added slowly. The reaction was monitored by thin layer chromatography. Upon completion of the reaction, the content was concentrated in vacuo (Furniss et al., 1989). The resulting crude solid was filtered, washed with water and agitated with freshly distilled acetone for 1 h . The product was then recrystallized from aqueous ethanol.

S3. Refinement

The NH hydrogen atoms were refined freely. Methyl H atoms were identified in difference syntheses, idealized and refined corresponding to a rigid group with $\mathrm{C}-\mathrm{H} 0.98 \AA$ and $\mathrm{H}-\mathrm{C}-\mathrm{H}$ angles 109.5°, allowed to rotate but not tip. Other H atoms were placed in calculated positions and refined using a riding model with $\mathrm{C}-\mathrm{H}_{\text {arom }}=0.95$ and $C-\mathrm{H}_{\text {methylene }}$ $=0.99 \AA$; the hydrogen U values were fixed at 1.5 (methyl) or $1.2 \times U(\mathrm{eq})$ of the parent atom.

Figure 1
Molecular structure of the title compound. Ellipsoids represent 50\% probability levels.

Figure 2
A view of the packing scheme, showing the layers parallel to (102). Thick dashed bonds represent classical H bonds and thin dashed bonds represent weak hydrogen bonds.

4-Ethoxybenzohydrazide

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$
Monoclinic, $P 2{ }_{1} / c$
$M_{r}=180.21$
Hall symbol: -P 2ybc
$a=10.8848$ (3) \AA
$b=10.0453(2) \AA$
$c=8.4420(3) \AA$
$\beta=110.669(4)^{\circ}$
$V=863.64(4) \AA^{3}$
$Z=4$
$F(000)=384$
$D_{\mathrm{x}}=1.386 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Oxford Diffraction Xcalibur Eos
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1419 pixels mm^{-1}
ω scan
42766 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.106$
$S=1.10$
2874 reflections
131 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Melting point: 403 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 23790 reflections
$\theta=2.6-32.6^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, colourless
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$

2874 independent reflections
2478 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=31.5^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-15 \rightarrow 15$
$k=-14 \rightarrow 14$
$l=-12 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0734 P)^{2}+0.0351 P\right]$
where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.002$
$\Delta \rho_{\text {max }}=0.48 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.22 \mathrm{e}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Least-squares planes (x, y, z in crystal coordinates) and deviations from them (* indicates atom used to define plane)
$3.5814(0.0029) x-0.3102(0.0031) y+6.4744(0.0016) z=4.7086(0.0021)$

* $0.0107(0.0005) \mathrm{C} 1 *{ }_{-0} 0.0025(0.0005) \mathrm{C} 2 *-0.0096(0.0005) \mathrm{C} 3 * 0.0135(0.0005) \mathrm{C} 4 *-0.0052(0.0005) \mathrm{C} 5 *$
$-0.0070(0.0005) \mathrm{C} 60.1090(0.0011) \mathrm{C} 70.1528(0.0013) \mathrm{C} 80.3370(0.0017) \mathrm{C} 90.4145(0.0012) \mathrm{O} 10.0757(0.0010) \mathrm{O} 2$
- 0.0498 (0.0016) N1-0.1309 (0.0013) N2

Rms deviation of fitted atoms $=0.0089$
$3.5873(0.0049) x+2.2383(0.0045) y+6.2646(0.0032) z=6.0909(0.0020)$
Angle to previous plane (with approximate e.s.d.) $=14.65(0.06)$

* $0.0002(0.0004) \mathrm{C} 7 *-0.0001(0.0002) \mathrm{O} 1 * 0.0001(0.0002) \mathrm{N} 1 *-0.0002(0.0004) \mathrm{N} 2$

Rms deviation of fitted atoms $=0.0001$
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\mathrm{eq}}$
C1	$0.14875(7)$	$0.60114(7)$	$0.67544(8)$	$0.01178(14)$

C2	$0.21991(7)$	$0.50128(7)$	$0.62925(9)$	$0.01315(14)$
H2	0.1982	0.4104	0.6363	0.016^{*}
C3	$0.32166(7)$	$0.53422(7)$	$0.57344(9)$	$0.01377(14)$
H3	0.3685	0.4660	0.5411	0.017^{*}
C4	$0.35534(7)$	$0.66779(7)$	$0.56479(9)$	$0.01238(14)$
C5	$0.28323(7)$	$0.76797(7)$	$0.60658(9)$	$0.01476(15)$
H5	0.3040	0.8589	0.5977	0.018^{*}
C6	$0.18082(7)$	$0.73392(7)$	$0.66132(9)$	$0.01406(15)$
H6	0.1319	0.8023	0.6896	0.017^{*}
C7	$0.04616(7)$	$0.56096(7)$	$0.74544(9)$	$0.01238(14)$
C8	$0.50091(7)$	$0.82661(7)$	$0.51338(10)$	$0.01446(15)$
H8A	0.5170	0.8694	0.6245	0.017^{*}
H8B	0.4315	0.8771	0.4259	0.017^{*}
C9	$0.62551(8)$	$0.82519(8)$	$0.47285(10)$	$0.01797(16)$
H9A	0.6925	0.7725	0.5582	0.027^{*}
H9B	0.6572	0.9165	0.4733	0.027^{*}
H9C	0.6076	0.7856	0.3608	0.027^{*}
N1	$-0.13631(7)$	$0.63025(7)$	$0.82516(9)$	$0.01874(15)$
H01	$-0.0919(13)$	$0.6029(13)$	$0.9364(17)$	$0.039(3)^{*}$
H02	$-0.1806(12)$	$0.5584(13)$	$0.7605(16)$	$0.033(3)^{*}$
N2	$-0.03653(6)$	$0.65623(6)$	$0.75869(8)$	$0.01518(14)$
H03	$-0.0305(11)$	$0.7382(13)$	$0.7308(14)$	$0.026(3)^{*}$
O1	$0.03801(5)$	$0.44481(5)$	$0.79156(7)$	$0.01735(13)$
O2	$0.46083(5)$	$0.69025(5)$	$0.51711(7)$	$0.01480(13)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0120(3)$	$0.0097(3)$	$0.0148(3)$	$0.0001(2)$	$0.0061(2)$	$0.0006(2)$
C2	$0.0147(3)$	$0.0096(3)$	$0.0165(3)$	$-0.0004(2)$	$0.0072(2)$	$-0.0006(2)$
C3	$0.0156(3)$	$0.0104(3)$	$0.0175(3)$	$0.0008(2)$	$0.0086(3)$	$-0.0006(2)$
C4	$0.0129(3)$	$0.0112(3)$	$0.0149(3)$	$0.0005(2)$	$0.0073(2)$	$0.0006(2)$
C5	$0.0167(3)$	$0.0095(3)$	$0.0216(3)$	$0.0006(2)$	$0.0112(3)$	$0.0012(2)$
C6	$0.0151(3)$	$0.0103(3)$	$0.0198(3)$	$0.0012(2)$	$0.0100(3)$	$0.0008(2)$
C7	$0.0122(3)$	$0.0109(3)$	$0.0147(3)$	$-0.0008(2)$	$0.0057(2)$	$-0.0002(2)$
C8	$0.0163(3)$	$0.0102(3)$	$0.0197(3)$	$-0.0009(2)$	$0.0099(3)$	$0.0001(2)$
C9	$0.0170(3)$	$0.0150(3)$	$0.0261(4)$	$-0.0019(2)$	$0.0128(3)$	$-0.0007(3)$
N1	$0.0168(3)$	$0.0200(3)$	$0.0247(3)$	$0.0005(2)$	$0.0139(3)$	$0.0032(3)$
N2	$0.0152(3)$	$0.0117(3)$	$0.0232(3)$	$0.0008(2)$	$0.0125(2)$	$0.0025(2)$
O1	$0.0196(3)$	$0.0106(3)$	$0.0260(3)$	$0.00006(19)$	$0.0133(2)$	$0.0031(2)$
O2	$0.0159(3)$	$0.0105(2)$	$0.0229(3)$	$-0.00056(18)$	$0.0128(2)$	$0.00054(19)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 6$	$1.3944(10)$	$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	$1.4041(10)$	$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 1-\mathrm{C} 7$	$1.4916(10)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.3879(10)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500

C3-C4	1.3997 (10)	C8-H8A	0.9900
$\mathrm{C} 4-\mathrm{O} 2$	1.3630 (8)	С8-H8B	0.9900
C4-C5	1.3959 (10)	C9-H9A	0.9800
C5-C6	1.3917 (10)	C9-H9B	0.9800
C7-O1	1.2431 (8)	C9-H9C	0.9800
C7-N2	1.3452 (9)	N1-H01	0.933 (13)
C8-O2	1.4413 (9)	N1-H02	0.931 (13)
C8-C9	1.5114 (10)	N2-H03	0.865 (13)
N1-N2	1.4117 (9)		
C6- $\mathrm{C} 1-\mathrm{C} 2$	118.70 (6)	C6-C5-H5	120.2
C6- $\mathrm{C} 1-\mathrm{C} 7$	122.53 (6)	C4-C5-H5	120.2
C2-C1-C7	118.70 (6)	C5-C6-H6	119.4
C3-C2-C1	120.56 (6)	C1-C6-H6	119.4
C2-C3-C4	120.09 (6)	O2-C8-H8A	110.2
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5$	124.25 (6)	C9-C8-H8A	110.2
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	115.95 (6)	$\mathrm{O} 2-\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	110.2
C5-C4-C3	119.79 (6)	C9-C8-H8B	110.2
C6-C5-C4	119.63 (7)	H8A-C8-H8B	108.5
C5-C6-C1	121.17 (6)	C8-C9-H9A	109.5
O1-C7-N2	121.19 (6)	C8-C9-H9B	109.5
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	121.62 (6)	H9A-C9-H9B	109.5
N2-C7-C1	117.19 (6)	C8-C9-H9C	109.5
$\mathrm{O} 2-\mathrm{C} 8-\mathrm{C} 9$	107.38 (6)	H9A-C9-H9C	109.5
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 1$	122.19 (6)	H9B-C9-H9C	109.5
C4-O2-C8	117.18 (5)	N2-N1-H01	104.9 (8)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.7	N2-N1-H02	102.9 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.7	H01-N1-H02	109.8 (11)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.0	C7-N2-H03	122.5 (8)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	120.0	N1—N2-H03	115.3 (8)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	1.10 (10)	C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	-164.06 (7)
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-176.01 (6)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	12.93 (10)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	0.82 (11)	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 2$	15.13 (10)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2$	176.66 (6)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 2$	-167.88 (6)
C2-C3-C4-C5	-2.32 (11)	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 1$	0.05 (11)
O2-C4-C5-C6	-177.01 (6)	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 1$	-179.15 (6)
C3-C4-C5-C6	1.89 (11)	C5-C4-O2-C8	1.26 (10)
C4-C5-C6-C1	0.05 (11)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 2-\mathrm{C} 8$	-177.68 (6)
C2- $21-\mathrm{C} 6-\mathrm{C} 5$	-1.54 (11)	C9-C8-O2-C4	174.98 (6)
C7-C1-C6-C5	175.46 (6)		

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ benzene ring

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 03 \cdots \mathrm{O1}^{\mathrm{i}}$	$0.865(13)$	$2.083(13)$	$2.9290(9)$	$165.6(11)$
$\mathrm{C} 6-\mathrm{H} 6 \cdots 1^{\mathrm{i}}$	0.95	2.39	$3.3149(9)$	165

supporting information

$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{O} 2^{\mathrm{ii}}$	0.95	2.61	$3.5428(9)$	168
$\mathrm{~N} 1 — \mathrm{H} 01 \cdots \mathrm{O}^{\mathrm{iii}}$	$0.933(13)$	$2.212(14)$	$3.1207(9)$	$164.1(12)$
$\mathrm{C} 8 — \mathrm{H} 8 B \cdots \mathrm{Cg}^{\mathrm{iv}}$	0.99	2.65	$3.499(1)$	145

Symmetry codes: (i) $-x, y+1 / 2,-z+3 / 2$; (ii) $-x+1,-y+1,-z+1$; (iii) $-x,-y+1,-z+2$; (iv) $x,-y+3 / 2, z-1 / 2$.

