

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2-aminopyrimidin-1-ium) sulfate

Hui-Ling Hu^a‡ and Chun-Wei Yeh^b*

^aDepartment of Chemical and Material Engineering, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan, and ^bDepartment of Chemistry, Chung-Yuan Christian University, Jhongli 32023, Taiwan Correspondence e-mail: cwyeh@cycu.org.tw

Received 21 August 2012; accepted 2 September 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.093; data-to-parameter ratio = 12.1.

In the title compound, $2C_4H_6N_3^+ \cdot SO_4^{2-}$, the cations are each essentially planar with r.m.s. deviations of the fitted atoms of 0.008 and 0.002 Å. In the crystal, adjacent ions are linked by N-H···O, C-H···O and C-H···N hydrogen bonds, forming a three-dimensional network.

Related literature

For the crystal structures of 2-aminopyrimidinium salts with other anions, see: Cheng et al. (2010); Eshtiagh-Hosseini et al. (2010).

Experimental

Crystal data

$2C_4H_6N_3^+ \cdot SO_4^{2-}$	V = 1206.8 (2) Å ³
$M_r = 288.30$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 8.1215 (8) Å	$\mu = 0.29 \text{ mm}^{-1}$
b = 11.4853 (12) Å	T = 293 K
c = 13.0407 (14) Å	$0.45 \times 0.29 \times 0.16 \text{ mm}$
$\beta = 97.206 \ (2)^{\circ}$	

6656 measured reflections

 $R_{\rm int} = 0.032$

2377 independent reflections

1976 reflections with $I > 2\sigma(I)$

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\rm min} = 0.880, \ T_{\rm max} = 0.955$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	H atoms treated by a mixture of
$wR(F^2) = 0.093$	independent and constrained
S = 1.05	refinement
2377 reflections	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
196 parameters	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1NA···O1	0.86 (2)	1.99 (2)	2.853 (2)	175.5 (17)
$N1 - H1NB \cdot \cdot \cdot O3^{i}$	0.91 (2)	1.97 (2)	2.882 (2)	176.9 (2)
$N2 - H2N \cdot \cdot \cdot O2$	0.86 (2)	1.79 (2)	2.640 (2)	174.7 (18)
$N4-H4NA\cdotsO1$	0.81 (2)	2.10 (2)	2.902 (2)	167.6 (19)
$N4 - H4NB \cdot \cdot \cdot O3^{ii}$	0.78 (2)	2.19 (2)	2.962 (2)	171.0 (2)
$N5-H5N\cdots O4^{ii}$	0.80(2)	1.84 (2)	2.631 (2)	172.6 (2)
$C2-H2A\cdots O4^{iii}$	0.93	2.50	3.295 (2)	144
C3-H3A···N6 ^{iv}	0.93	2.58	3.382 (2)	145
$C4-H4A\cdotsO1^{v}$	0.93	2.57	3.231 (2)	128
$C7 - H7A \cdot \cdot \cdot O2^{vi}$	0.93	2.51	3.101 (2)	121
$C8-H8A\cdots O4^{vii}$	0.93	2.59	3.237 (2)	127
Symmetry codes:	(i) $-x + \frac{1}{2}, y$	$-\frac{1}{2}, -z + \frac{3}{2};$ (i	i) $-x, -y + 1,$	-z + 1; (iii)

-y+1, -z+2; (iv) -x+1, -y+1, -z+2; (v) $x+\frac{1}{2}, -y+\frac{1}{2}, z+\frac{1}{2};$ (vi) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (vii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97.

We are grateful to the National Science Council of the Republic of China and the Taoyuan Innovation Institute of Technology for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2583).

References

Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cheng, X.-L., Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, 0127.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Eshtiagh-Hosseini, H., Mahjoobizadeh, M. & Mirzaei, M. (2010). Acta Cryst. E66. o2210.

[‡] Current address: Department of Hospitality Management, Taoyuan Innovation Institute of Technology, Jhongli 32091, Taiwan.

supporting information

Acta Cryst. (2012). E68, o2925 [https://doi.org/10.1107/S1600536812037725]

Bis(2-aminopyrimidin-1-ium) sulfate

Hui-Ling Hu and Chun-Wei Yeh

S1. Comment

There are several supramolecular structures containing 2-aminopyrimidinium cations with other anions constructed by hydrogen bonds (Cheng, *et al.* 2010; Eshtiagh-Hosseini, *et al.*, 2010). The asymmetric unit of the title compound, consists of two independent 2-aminopyrimidinium cations and a sulfate anion (Fig. 1). These two protonated pyrimidine rings are not co-planar but twisted with each other by an interplanar angle of 84.3 (1)°. The cations and anions are interlinked through N—H…O, C—H…O and C—H…N hydrogen bonds resulting in a three-dimensional net work (Fig. 2, Tab. 1).

S2. Experimental

An aqueous solution (5.0 ml) of zinc sulfate (1.0 mmol) was layered carefully over a methanolic solution (5.0 ml) of 2aminopyrimidine (1.0 mmol) in a tube. Colourless crystals were obtained after several weeks. These were washed with methanol and collected in 85.8% yield.

S3. Refinement

H atoms bound to C atoms were placed in idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$. The amine hydrogen atoms and the pyrimidinium hydrogen atoms were located in difference Fourier maps and were allowed to refine with isotropic displacement parameters U_{iso} .

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the N—H…O, C—H…O and C—H…N hydrogen bonds (dotted lines) in the crystal structure of the title compound.

Bis(2-aminopyrimidin-1-ium) sulfate

Crystal data

$2C_4H_6N_3^+ \cdot SO_4^{2-}$
$M_r = 288.30$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 8.1215 (8) Å
<i>b</i> = 11.4853 (12) Å
<i>c</i> = 13.0407 (14) Å
$\beta = 97.206 \ (2)^{\circ}$
$V = 1206.8 (2) \text{ Å}^3$
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\varphi \& \omega$ scans F(000) = 600 $D_x = 1.587 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3511 reflections $\theta = 2.5-26.0^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 293 KPlate, colourless $0.45 \times 0.29 \times 0.16 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.880, T_{max} = 0.955$ 6656 measured reflections 2377 independent reflections 1976 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.032$	$k = -14 \rightarrow 8$
$\theta_{\rm max} = 26.0^{\circ}, \theta_{\rm min} = 2.4^{\circ}$	$l = -16 \rightarrow 14$
$h = -10 \rightarrow 10$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.032$	Hydrogen site location: inferred from
$wR(F^2) = 0.093$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
2377 reflections	and constrained refinement
196 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0546P)^2 + 0.1486P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^{-3}$
	$\Delta ho_{ m min} = -0.40 \ { m e} \ { m \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S	0.01967 (5)	0.48062 (3)	0.75579 (3)	0.03308 (15)	
C1	0.4028 (2)	0.33089 (14)	0.95900 (13)	0.0353 (4)	
C2	0.3254 (2)	0.46070 (16)	1.08388 (13)	0.0422 (4)	
H2A	0.2577	0.5207	1.1019	0.051*	
C3	0.4431 (2)	0.41520 (16)	1.15527 (15)	0.0498 (5)	
H3A	0.4602	0.4431	1.2227	0.060*	
C4	0.5372 (2)	0.32455 (17)	1.12244 (15)	0.0507 (5)	
H4A	0.6183	0.2919	1.1706	0.061*	
C5	0.32224 (19)	0.58057 (14)	0.50457 (12)	0.0328 (4)	
C6	0.4389 (2)	0.72057 (15)	0.40373 (14)	0.0435 (4)	
H6A	0.4403	0.7583	0.3408	0.052*	
C7	0.5485 (2)	0.75007 (17)	0.48542 (16)	0.0514 (5)	
H7A	0.6271	0.8081	0.4808	0.062*	
C8	0.5392 (2)	0.69007 (16)	0.57723 (15)	0.0483 (5)	
H8A	0.6150	0.7092	0.6342	0.058*	
N1	0.3820 (2)	0.29315 (15)	0.86293 (12)	0.0455 (4)	
H1NA	0.312 (2)	0.3295 (18)	0.8188 (16)	0.050 (6)*	
H1NB	0.435 (3)	0.227 (2)	0.8471 (16)	0.065 (6)*	
N2	0.30658 (17)	0.41906 (12)	0.98686 (11)	0.0362 (3)	
H2N	0.230 (2)	0.4489 (17)	0.9436 (15)	0.042 (5)*	
N3	0.51952 (18)	0.28162 (13)	1.02800 (12)	0.0458 (4)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

N4	0.2118 (2)	0.49912 (14)	0.51195 (14)	0.0425 (4)
H4NA	0.207 (2)	0.4694 (18)	0.5680 (17)	0.047 (6)*
H4NB	0.157 (2)	0.4774 (17)	0.4623 (17)	0.044 (6)*
N5	0.32700 (18)	0.63601 (13)	0.41351 (11)	0.0365 (3)
H5N	0.258 (3)	0.6232 (18)	0.3654 (17)	0.055 (6)*
N6	0.43008 (17)	0.60804 (13)	0.58842 (11)	0.0407 (4)
01	0.16275 (15)	0.42397 (11)	0.71839 (9)	0.0458 (3)
O2	0.06654 (16)	0.51991 (11)	0.86283 (9)	0.0481 (3)
03	-0.03729 (15)	0.57920 (10)	0.68927 (9)	0.0455 (3)
O4	-0.11722 (15)	0.39661 (11)	0.75484 (9)	0.0470 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S	0.0389 (2)	0.0320 (2)	0.0269 (2)	-0.00002 (16)	-0.00122 (16)	0.00050 (15)
C1	0.0331 (8)	0.0321 (8)	0.0402 (9)	-0.0035 (6)	0.0027 (7)	0.0042 (7)
C2	0.0478 (10)	0.0425 (10)	0.0379 (10)	-0.0031 (8)	0.0115 (8)	0.0015 (7)
C3	0.0645 (12)	0.0507 (12)	0.0324 (9)	-0.0060 (9)	-0.0003 (8)	0.0056 (8)
C4	0.0527 (11)	0.0497 (11)	0.0454 (11)	-0.0019 (9)	-0.0103 (9)	0.0149 (8)
C5	0.0334 (8)	0.0348 (9)	0.0300 (8)	0.0057 (7)	0.0039 (6)	-0.0010 (6)
C6	0.0446 (10)	0.0397 (10)	0.0475 (10)	0.0027 (8)	0.0106 (8)	0.0083 (8)
C7	0.0492 (11)	0.0425 (11)	0.0611 (12)	-0.0085 (9)	0.0010 (9)	0.0039 (9)
C8	0.0470 (10)	0.0452 (11)	0.0496 (11)	-0.0040 (9)	-0.0064 (8)	-0.0052 (9)
N1	0.0529 (10)	0.0413 (9)	0.0402 (9)	0.0099 (7)	-0.0023 (7)	-0.0033 (7)
N2	0.0327 (7)	0.0390 (8)	0.0359 (8)	0.0016 (6)	0.0011 (6)	0.0042 (6)
N3	0.0454 (8)	0.0429 (9)	0.0468 (9)	0.0057 (7)	-0.0030 (7)	0.0083 (7)
N4	0.0437 (9)	0.0510 (10)	0.0318 (8)	-0.0089 (7)	0.0005 (7)	0.0033 (7)
N5	0.0367 (8)	0.0414 (8)	0.0306 (8)	0.0012 (6)	0.0013 (6)	0.0015 (6)
N6	0.0427 (8)	0.0446 (9)	0.0334 (7)	-0.0002 (6)	-0.0012 (6)	-0.0012 (6)
O1	0.0516 (7)	0.0509 (8)	0.0354 (7)	0.0103 (6)	0.0074 (5)	0.0021 (5)
O2	0.0541 (8)	0.0532 (8)	0.0334 (7)	0.0134 (6)	-0.0093 (5)	-0.0125 (5)
O3	0.0528 (7)	0.0358 (7)	0.0451 (7)	-0.0001 (5)	-0.0055 (6)	0.0084 (5)
O4	0.0518 (8)	0.0488 (8)	0.0387 (7)	-0.0128 (6)	-0.0012 (5)	0.0086 (5)

Geometric parameters (Å, °)

S-03	1.4656 (12)	C5—N6	1.350 (2)
S-01	1.4675 (13)	C5—N5	1.352 (2)
S—O4	1.4709 (12)	C6—C7	1.343 (3)
S—O2	1.4710 (12)	C6—N5	1.347 (2)
C1—N1	1.316 (2)	С6—Н6А	0.9300
C1—N3	1.347 (2)	С7—С8	1.392 (3)
C1—N2	1.356 (2)	С7—Н7А	0.9300
C2—N2	1.343 (2)	C8—N6	1.314 (2)
С2—С3	1.353 (3)	C8—H8A	0.9300
C2—H2A	0.9300	N1—H1NA	0.86 (2)
C3—C4	1.390 (3)	N1—H1NB	0.91 (2)
С3—НЗА	0.9300	N2—H2N	0.86 (2)

supporting information

C4—N3	1.318 (2)	N4—H4NA	0.81 (2)
C4—H4A	0.9300	N4—H4NB	0.78 (2)
C5—N4	1.308 (2)	N5—H5N	0.80 (2)
O3—S—O1	110.49 (8)	С7—С6—Н6А	120.2
O3—S—O4	108.64 (7)	N5—C6—H6A	120.2
O1—S—O4	109.60 (8)	C6—C7—C8	117.11 (17)
O3—S—O2	110.46 (7)	С6—С7—Н7А	121.4
O1—S—O2	109.27 (7)	С8—С7—Н7А	121.4
O4—S—O2	108.34 (8)	N6—C8—C7	124.08 (17)
N1—C1—N3	119.53 (16)	N6—C8—H8A	118.0
N1-C1-N2	119.43 (16)	С7—С8—Н8А	118.0
N3—C1—N2	121.03 (16)	C1—N1—H1NA	118.1 (14)
N2—C2—C3	119.86 (17)	C1—N1—H1NB	119.0 (14)
N2—C2—H2A	120.1	H1NA—N1—H1NB	122.7 (19)
C3—C2—H2A	120.1	C2—N2—C1	121.12 (15)
C2—C3—C4	116.45 (18)	C2—N2—H2N	117.7 (13)
С2—С3—НЗА	121.8	C1—N2—H2N	121.2 (13)
С4—С3—Н3А	121.8	C4—N3—C1	116.88 (16)
N3—C4—C3	124.65 (16)	C5—N4—H4NA	118.6 (14)
N3—C4—H4A	117.7	C5—N4—H4NB	119.6 (15)
C3—C4—H4A	117.7	H4NA—N4—H4NB	122 (2)
N4—C5—N6	119.26 (15)	C6—N5—C5	121.10 (16)
N4—C5—N5	119.79 (15)	C6—N5—H5N	118.3 (15)
N6—C5—N5	120.95 (15)	C5—N5—H5N	120.4 (15)
C7—C6—N5	119.64 (17)	C8—N6—C5	117.11 (15)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D···A	D—H···A
N1—H1NA…O1	0.86 (2)	1.99 (2)	2.853 (2)	175.5 (17)
N1—H1 <i>NB</i> ···O3 ⁱ	0.91 (2)	1.97 (2)	2.882 (2)	176.9 (2)
N2—H2 <i>N</i> ···O2	0.86 (2)	1.79 (2)	2.640 (2)	174.7 (18)
N4—H4 <i>NA</i> ···O1	0.81 (2)	2.10 (2)	2.902 (2)	167.6 (19)
N4—H4 <i>NB</i> ···O3 ⁱⁱ	0.78 (2)	2.19 (2)	2.962 (2)	171.0 (2)
N5—H5 <i>N</i> ···O4 ⁱⁱ	0.80 (2)	1.84 (2)	2.631 (2)	172.6 (2)
C2—H2A····O4 ⁱⁱⁱ	0.93	2.50	3.295 (2)	144
C3—H3A····N6 ^{iv}	0.93	2.58	3.382 (2)	145
C4—H4 A ···O1 ^v	0.93	2.57	3.231 (2)	128
C7— $H7A$ ···O2 ^{vi}	0.93	2.51	3.101 (2)	121
C8—H8A····O4 ^{vii}	0.93	2.59	3.237 (2)	127

Symmetry codes: (i) -*x*+1/2, *y*-1/2, -*z*+3/2; (ii) -*x*, -*y*+1, -*z*+1; (iii) -*x*, -*y*+1, -*z*+2; (iv) -*x*+1, -*y*+1, -*z*+2; (v) *x*+1/2, -*y*+1/2, *z*+1/2; (vi) *x*+1/2, -*y*+3/2, *z*-1/2; (vii) -*x*+1/2, *y*+1/2, -*z*+3/2.