Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

6-Methyl-4-oxo-4H-chromene-3carbaldehyde

Sammer Yousuf,* Asma Mukhtar, Nida Ambreen, Syed Muhammad Saad and Khalid M. Khan

H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
Correspondence e-mail: dr.sammer.yousuf@gmail.com

Received 28 August 2012; accepted 31 August 2012

Key indicators: single-crystal X-ray study; $T=273 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.049 ; w R$ factor $=0.152$; data-to-parameter ratio $=12.7$.

In the title compound, $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$, the benzopyran-4-one or chromone ring system is almost planar, with a maximum deviation of 0.045 (2) \AA. The crystal structure is stablized by $\pi-\pi$ interactions between the benzene and pyran rings of inversion-related molecules stacked along the b axis, with a centroid-centroid distance of 3.5463 (12) A

Related literature

For the biological activity of chromone, see: Patel et al. (2011); Khan et al. (2009, 2010); Gautam et al. (2010); Ishar et al. (2006); Hassan (1992); Nohara et al. (1974). For a related structure, see: Wang \& Kong (2007).

Experimental

Crystal data
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$
Triclinic, $P \overline{1}$
$M_{r}=188.17$

$$
\begin{aligned}
& b=7.1079(7) \AA \\
& c=10.3032(11) \AA \\
& \alpha=71.593(2)^{\circ} \\
& \beta=84.962(2)^{\circ} \\
& \gamma=69.843(2)^{\circ} \\
& V=436.57(8) \AA^{3}
\end{aligned}
$$

$Z=2$

Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=273 \mathrm{~K}$
$0.26 \times 0.23 \times 0.11 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.973, T_{\text {max }}=0.989$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049 \quad 128$ parameters
$w R\left(F^{2}\right)=0.152$
$S=1.07$
1629 reflections

4974 measured reflections 1629 independent reflections 1300 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.019$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.26 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2009).

The authors are thankful to OPCW, The Netherlands, and the Higher Education Commission (HEC) Pakistan (project No. 1910) for their financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2798).

References

Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Gautam, R., Srivastava, A., Jachak, S. M. \& Saklani, A. (2010). Fitoterapia, 81, 45-49.
Hassan, A. M. A. (1992). J. Chem. Soc. Pak. 14, 108-110.
Ishar, M. P. S., Singh, G., Singh, S., Sreenivasan, K. K. \& Singh, G. (2006). Bioorg. Med. Chem. Lett. 16, 1366-1370.
Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. \& Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2987.
Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. \& Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nohara, A., Umetani, T., Ukawa, K. \& Sanno, Y. (1974). Chem. Pharm. Bull. 22, 2959-2965.
Patel, M. C., Nilesh, N. G. \& Rajani, D. P. (2011). Der Pharma Chem. 3, 422432.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Wang, X.-B. \& Kong, L.-Y. (2007). Acta Cryst. E63, 04340.

supporting information

Acta Cryst. (2012). E68, o2920 [https://doi.org/10.1107/S1600536812037555]

6-Methyl-4-oxo-4H-chromene-3-carbaldehyde

Sammer Yousuf, Asma Mukhtar, Nida Ambreen, Syed Muhammad Saad and Khalid M. Khan

S1. Comment

Chromone is a heterocyclic compound containing a benzene ring fused with a pyran ring, so it is also called as benzo-pyran-4-one. Chromone moieties are associated with various physiological and biological properties such as antibacterial (Patel et al., 2011), antioxidant (Gautam et al., 2010; Hassan et al., 1992), antianaphylactic (Nohara et al., 1974), antiinflammatory (Khan et al., 2010), anticancer (Ishar et al., 2006), and thymidine phosphorylase inhibitor (Khan et al., 2009) activities. The title compound is a chromone derivative synthesized as a part of our ongoing research to study different biological activities of this medicinally important class of organic compounds and establish their structureactivity relationship.
The structure of title compound (Fig. 1) is composed of a planar chromone moiety ($\mathrm{O} 1 / \mathrm{C} 1-\mathrm{C} 9$) with maximum deviation of 0.045 (2) \AA for atom C8. Bond lengths and angles are similar to those observed in a structurally related compound (Wang \& Kong, 2007). In the crystal (Fig. 2), inversion-related molecules are linked along the b axis by significant $\pi-\pi$ stacking interactions occurring between benzene and pyran rings of chromone moeities, with centroidcentroid distances of 3.5463 (12) \AA.

S2. Experimental

The title compound was synthesized by taking dry dimethylformamide (12.32 ml) into a three necked flask followed by slow addition of $\mathrm{POCl}_{3}(49 \mathrm{mmol})$ with intensive stirring at $50^{\circ} \mathrm{C}$. Heating and stirring was continued for 2 h at $45-55^{\circ} \mathrm{C}$. A solution of 5-methyl-2-hydroxyacetophenone (10 mmol) in DMF was then slowly added under stirring at $50^{\circ} \mathrm{C}$. The stirring was continued for additional 2 h at $55-60^{\circ} \mathrm{C}$. After cooling, the mixture was kept over night at room temperature and diluted slowly by adding crushed ice $(300 \mathrm{~g})$ and stirred again for 6 h to obtain the crude product. Recrystallization from ethanol afforded crystals in 78.7% yield $(1.48 \mathrm{~g})$ which were found suitable for single-crystal X-ray diffraction studies. All chemicals were purchased by sigma Aldrich Germany.

S3. Refinement

H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93-0.95 \AA$ and constrained to ride on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{CH}_{3}\right)$ or $1.2 U_{\text {eq }}(\mathrm{CH})$.

Figure 1
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

Figure 2
The crystal packing of the title compound viewed along the a axis.

6-Methyl-4-oxo-4H-chromene-3-carbaldehyde

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{O}_{3}$
$M_{r}=188.17$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=6.6945$ (7) A
$b=7.1079$ (7) \AA
$c=10.3032(11) \AA$
$\alpha=71.593(2)^{\circ}$
$\beta=84.962(2)^{\circ}$
$\gamma=69.843(2)^{\circ}$
$V=436.57(8) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& F(000)=196 \\
& D_{\mathrm{x}}=1.431 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 1636 \text { reflections } \\
& \theta=3.2-28.1^{\circ} \\
& \mu=0.11 \mathrm{~mm}^{-1} \\
& T=273 \mathrm{~K} \\
& \text { Block, colorles } \\
& 0.26 \times 0.23 \times 0.11 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω scan
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min }=0.973, T_{\text {max }}=0.989$

> 4974 measured reflections
> 1629 independent reflections
> 1300 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.019$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=2.1^{\circ}$
> $h=-8 \rightarrow 8$
> $k=-8 \rightarrow 8$
> $l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.049$
$w R\left(F^{2}\right)=0.152$
$S=1.07$
1629 reflections
128 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

> Hydrogen site location: inferred from \quad neighbouring sites
> H -atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0852 P)^{2}+0.0886 P\right]$
> \quad where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.26$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Extinction correction: SHELXTL (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.013 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
O1	$0.2834(2)$	$0.1857(2)$	$0.62203(13)$	$0.0573(4)$
O2	$-0.30931(18)$	$0.3149(2)$	$0.47149(12)$	$0.0476(4)$
O3	$-0.2182(3)$	$0.2434(3)$	$0.87960(15)$	$0.0749(5)$
C1	$0.2333(3)$	$0.2150(3)$	$0.34035(18)$	$0.0415(4)$
H1A	0.3724	0.1795	0.3703	0.050^{*}
C2	$0.1952(3)$	$0.2394(3)$	$0.20506(19)$	$0.0455(5)$
C3	$-0.0162(3)$	$0.2971(3)$	$0.16259(19)$	$0.0497(5)$
H3A	-0.0452	0.3169	0.0717	0.060^{*}
C4	$-0.1816(3)$	$0.3252(3)$	$0.25048(19)$	$0.0494(5)$
H4A	-0.3210	0.3642	0.2199	0.059^{*}
C5	$-0.1371(3)$	$0.2942(3)$	$0.38609(18)$	$0.0397(4)$
C6	$-0.2734(3)$	$0.2855(3)$	$0.60304(19)$	$0.0443(5)$
H6A	-0.3894	0.2953	0.6604	0.053^{*}
C7	$-0.0835(3)$	$0.2431(3)$	$0.65872(18)$	$0.0396(4)$
C8	$0.1067(3)$	$0.2197(3)$	$0.57661(18)$	$0.0386(4)$

C9	$0.0686(3)$	$0.2422(2)$	$0.43295(17)$	$0.0360(4)$
C10	$0.3734(4)$	$0.2037(4)$	$0.1063(2)$	$0.0654(6)$
H10A	0.5069	0.1645	0.1524	0.098^{*}
H10B	0.3537	0.3308	0.0316	0.098^{*}
H10C	0.3733	0.0931	0.0717	0.098^{*}
C11	$-0.0697(3)$	$0.2176(3)$	$0.8057(2)$	$0.0548(5)$
H11A	0.0649	0.1784	0.8440	0.066^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0400(8)$	$0.0876(10)$	$0.0504(8)$	$-0.0238(7)$	$-0.0042(6)$	$-0.0252(7)$
O2	$0.0330(7)$	$0.0611(8)$	$0.0441(7)$	$-0.0130(6)$	$-0.0026(5)$	$-0.0121(6)$
O3	$0.0733(11)$	$0.1117(13)$	$0.0537(9)$	$-0.0380(10)$	$0.0201(8)$	$-0.0413(9)$
C1	$0.0385(9)$	$0.0444(10)$	$0.0434(10)$	$-0.0157(8)$	$0.0003(7)$	$-0.0138(8)$
C2	$0.0522(11)$	$0.0442(10)$	$0.0401(10)$	$-0.0176(8)$	$0.0025(8)$	$-0.0117(8)$
C3	$0.0609(12)$	$0.0530(11)$	$0.0348(9)$	$-0.0209(9)$	$-0.0073(8)$	$-0.0087(8)$
C4	$0.0436(10)$	$0.0553(11)$	$0.0459(11)$	$-0.0163(9)$	$-0.0118(8)$	$-0.0077(8)$
C5	$0.0373(9)$	$0.0369(9)$	$0.0423(10)$	$-0.0120(7)$	$-0.0017(7)$	$-0.0085(7)$
C6	$0.0389(10)$	$0.0465(10)$	$0.0440(10)$	$-0.0114(8)$	$0.0043(7)$	$-0.0133(8)$
C7	$0.0419(10)$	$0.0387(9)$	$0.0403(10)$	$-0.0145(7)$	$0.0017(8)$	$-0.0141(7)$
C8	$0.0369(9)$	$0.0385(9)$	$0.0427(9)$	$-0.0131(7)$	$-0.0033(7)$	$-0.0137(7)$
C9	$0.0372(9)$	$0.0325(8)$	$0.0384(9)$	$-0.0124(7)$	$-0.0024(7)$	$-0.0094(7)$
C10	$0.0634(14)$	$0.0885(16)$	$0.0457(11)$	$-0.0245(12)$	$0.0091(10)$	$-0.0256(11)$
C11	$0.0550(12)$	$0.0696(13)$	$0.0482(11)$	$-0.0241(10)$	$0.0037(9)$	$-0.0262(10)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C8	1.227 (2)	C4-H4A	0.9300
O2-C6	1.335 (2)	C5-C9	1.385 (2)
O2-C5	1.383 (2)	C6-C7	1.339 (3)
O3-C11	1.196 (2)	C6-H6A	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.385 (3)	C7-C8	1.455 (2)
C1-C9	1.396 (2)	C7-C11	1.475 (3)
C1-H1A	0.9300	C8-C9	1.473 (2)
C2-C3	1.399 (3)	C10-H10A	0.9600
C2-C10	1.505 (3)	C10-H10B	0.9600
C3-C4	1.368 (3)	C10-H10C	0.9600
C3-H3A	0.9300	C11-H11A	0.9300
C4-C5	1.387 (3)		
C6-O2-C5	117.99 (13)	C6-C7-C8	120.85 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9$	121.75 (17)	C6-C7-C11	118.72 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	119.1	C8-C7-C11	120.43 (16)
C9-C1-H1A	119.1	O1-C8-C7	123.32 (16)
C1-C2-C3	117.68 (17)	O1-C8-C9	122.63 (16)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10$	121.76 (18)	C7-C8-C9	114.04 (15)
C3-C2-C10	120.56 (17)	C5-C9-C1	118.08 (16)

supporting information

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$122.15(17)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	118.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	118.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.60(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.7
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	120.7
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 9$	$122.29(16)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$116.01(15)$
$\mathrm{C} 9-\mathrm{C} 5-\mathrm{C} 4$	$121.69(16)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7$	$125.04(16)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	117.5
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	117.5
$\mathrm{C}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.3(3)$
$\mathrm{C} 9-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 10$	$-178.14(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.3(3)$
$\mathrm{C} 10-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$178.17(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.3(3)$
$\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 9$	$0.8(2)$
$\mathrm{C} 6-\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 4$	$179.73(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	$-176.99(15)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9$	$2.0(3)$
$\mathrm{C} 5-\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7$	$2.0(3)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-1.6(3)$
$\mathrm{O} 2-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 11$	$179.14(16)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 1$	$178.25(17)$
$\mathrm{C} 11-\mathrm{C} 7-\mathrm{C} 8-\mathrm{O} 1$	$-2.5(3)$

$\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 8$	$119.66(16)$
$\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 8$	$122.26(16)$
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{O} 3-\mathrm{C} 11-\mathrm{C} 7$	$125.06(19)$
$\mathrm{O} 3-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	117.5
$\mathrm{C} 7-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	117.5
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-1.3(2)$
$\mathrm{C} 11-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$177.95(15)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 1$	$176.96(14)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 1$	$-1.9(3)$
$\mathrm{O} 2-\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 8$	$-3.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 9-\mathrm{C} 8$	$177.44(15)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 5$	$0.3(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 9-\mathrm{C} 8$	$-179.10(15)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 5$	$-175.79(16)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 5$	$3.7(2)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 1$	$3.6(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 1$	$-176.89(14)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 11-\mathrm{O} 3$	$-4.4(3)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 11-\mathrm{O} 3$	$176.35(19)$

