Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Chloromethyl-2-hydroxybenzaldehyde

Wei-Wei Fu

Key Laboratory of Functional Organometallic Materials of General Colleges and Universities in Hunan Province, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China Correspondence e-mail: w.w.fu@hotmail.com

Received 9 August 2012; accepted 7 September 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.033; wR factor = 0.133; data-to-parameter ratio = 13.6.

In the title compound, $C_8H_7ClO_2$, the hydroxyl and aldehyde groups are co-planar with the benzene ring [maximum deviation 0.018 (3) Å], and the Cl-C-C plane is almost perpendicular to the benzene ring [dihedral angle 83.7 (2)°]. An intramolecular O-H···O hydrogen bond occurs between the hydroxyl and aldehyde groups.

Related literature

For related structures, see: Zondervan *et al.* (1997); Tang *et al.* (2010). For the synthesis, see: Song & Liu (2004).

Experimental

Crystal	data	
C ₈ H ₇ Clo	O_2	

 $M_r = 170.59$ Orthorhombic, $P2_12_12_1$ a = 4.483 (6) Åb = 12.521 (18) Åc = 13.71 (2) Å $V = 769.6 (19) \text{ Å}^3$ Z = 4Mo *K*\alpha radiation

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2001) $T_{\rm min} = 0.88, T_{\rm max} = 0.92$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ $wR(F^2) = 0.133$ S = 0.981369 reflections 101 parameters H-atom parameters constrained

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
O1−H1···O2	0.82	1.91	2.628 (5)	146

 $\mu = 0.44 \text{ mm}^{-1}$ T = 293 K

 $R_{\rm int} = 0.052$

 $\Delta \rho_{\text{max}} = 0.31 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

6571 Friedel pairs

Flack parameter: -0.06 (13)

 $0.30 \times 0.23 \times 0.18 \text{ mm}$

3730 measured reflections

1369 independent reflections

1075 reflections with $I > 2\sigma(I)$

Absolute structure: Flack (1983),

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The author thanks the doctoral startup foundation of Hengyang Normal University (09B02) and the foundation of Hengyang Bureau of Science and Technology (2011 K J21) for financial support. He also thanks Dr L.-S. Wang for help with the structure determination.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5608).

References

Bruker (2001). SADABS. Bruker AXS Ins. Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Ins. Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, S.-H. & Liu, S.-Z. (2004). J. Henan Normal Univ. (Nat. Sci.), 32, 101–103.
 Tang, B., Chen, G., Song, X., Cen, C. & Han, C. (2010). Acta Cryst. E66, o1912.
 Zondervan, V., van den Beuken, E. K., Kooijman, H., Spek, A. L. & Feringa, B. L. (1997). Tetrahedron Lett. 38, 3111–3114.

supporting information

Acta Cryst. (2012). E68, o2928 [https://doi.org/10.1107/S1600536812038421]

3-Chloromethyl-2-hydroxybenzaldehyde

Wei-Wei Fu

S1. Comment

5-(Chloromethyl)-2-hydroxybenzaldehyde are well investigated just as it can be a precusor to an inhibitor-schiff bases for metal. However, just as we synthesize 5-(chloromethyl)-2-hydroxybenzaldehyde following one mehtod(Song & Liu, 2004) an unexpected byprodut 3-(chloromethyl)-2-hydroxybenzaldehyde was found and its cystal structure was determined.

S2. Experimental

Following a reference (Song *et al.* 2004), salicylaldehyde (30.5 g), paraformaldehyde (13.5 g) and conc. HCl (150 ml) were mixed and stirred at room temperature for 48 h. The precipitated benzylchloride derivatives which mostly are 5-(chloromethyl)-2-hydroxybenzaldehyde were filtered off then washed with 0.5% NaHCO₃ solution and water slightly. These humid precipitate were then dried in vac. for about 3 months. There are block colorless crystals appeared on the surface of precipitate.

S3. Refinement

H atoms were positioned geometrically and refined using a riding model.

Figure 1 The molecular structure of title compound, with atom labels and 30% probability displacement ellipsoids for all atoms.

Figure 2

The cell packing diagram of title compound, viewed down the *a* axis.

3-Chloromethyl-2-hydroxybenzaldehyde

Crystal data

F(000) = 352
$D_{\rm x} = 1.472 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1369 reflections
$\theta = 2.2 - 25.0^{\circ}$
$\mu = 0.44 \text{ mm}^{-1}$
T = 293 K
Block, colorless
$0.30 \times 0.23 \times 0.18 \text{ mm}$
3730 measured reflections
1369 independent reflections
1075 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.052$
$\theta_{\rm max} = 25.2^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
$h = -5 \rightarrow 5$
$k = -15 \rightarrow 14$
$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.033$	H-atom parameters constrained
$wR(F^2) = 0.133$	$w = 1/[\sigma^2(F_o^2) + (0.P)^2]$
S = 0.98	where $P = (F_o^2 + 2F_c^2)/3$
1369 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
101 parameters	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta ho_{\min} = -0.32 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 6571 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: -0.06 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	r	12	7	I 7. */ I 7
	л	у	2	0 ₁₅₀ / 0 eq
Cl1	0.5383 (2)	0.21212 (5)	0.21927 (5)	0.0606 (3)
O1	0.3758 (7)	-0.05428 (14)	0.16474 (16)	0.0558 (7)
H1	0.2636	-0.1057	0.1598	0.084*
O2	0.0222 (7)	-0.18989 (15)	0.07502 (19)	0.0640 (7)
C11	0.6216 (8)	0.07288 (19)	0.0685 (2)	0.0440 (7)
C12	0.4289 (7)	-0.01314 (17)	0.0756 (2)	0.0384 (7)
C13	0.2937 (8)	-0.05626 (17)	-0.0076 (2)	0.0403 (7)
C14	0.3593 (9)	-0.0101 (2)	-0.0985 (2)	0.0509 (9)
H14A	0.2719	-0.0378	-0.1546	0.061*
C15	0.5488 (10)	0.0745 (2)	-0.1057 (2)	0.0560 (9)
H15A	0.5907	0.1043	-0.1663	0.067*
C16	0.6779 (9)	0.1157 (2)	-0.0228 (3)	0.0507 (8)
H16A	0.8062	0.1738	-0.0282	0.061*
C17	0.7744 (9)	0.1173 (3)	0.1567 (3)	0.0572 (9)
H17A	0.9581	0.1522	0.1371	0.069*
H17B	0.8252	0.0594	0.2007	0.069*
C18	0.0905 (9)	-0.14473 (19)	-0.0012 (2)	0.0504 (9)
H18A	0.0050	-0.1695	-0.0587	0.060*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
Cl1	0.0771 (7)	0.0537 (4)	0.0510 (5)	-0.0025 (4)	-0.0076 (4)	-0.0126 (3)

supporting information

O1	0.078 (2)	0.0496 (10)	0.0400 (12)	-0.0038 (11)	-0.0019 (12)	0.0056 (7)	
O2	0.074 (2)	0.0533 (9)	0.0649 (15)	-0.0091 (11)	0.0058 (15)	0.0042 (9)	
C11	0.045 (2)	0.0425 (11)	0.0443 (16)	0.0089 (12)	-0.0040 (13)	-0.0039 (10)	
C12	0.0424 (18)	0.0371 (9)	0.0358 (13)	0.0089 (11)	0.0027 (14)	0.0003 (9)	
C13	0.042 (2)	0.0386 (10)	0.0398 (16)	0.0085 (12)	-0.0002 (13)	-0.0032 (9)	
C14	0.067 (3)	0.0507 (12)	0.0353 (15)	0.0082 (14)	-0.0039 (16)	-0.0031 (10)	
C15	0.067 (3)	0.0583 (14)	0.0427 (17)	0.0024 (16)	0.0070 (17)	0.0048 (11)	
C16	0.050(2)	0.0474 (12)	0.055 (2)	-0.0035 (14)	0.0055 (17)	0.0036 (12)	
C17	0.054 (2)	0.0597 (14)	0.058 (2)	0.0024 (15)	-0.0145 (17)	-0.0069 (14)	
C18	0.053 (2)	0.0412 (11)	0.057 (2)	0.0004 (12)	0.0011 (17)	-0.0076 (11)	

Geometric parameters (Å, °)

Cl1—C17	1.808 (4)	C13—C18	1.437 (4)
O1—C12	1.348 (4)	C14—C15	1.362 (5)
O1—H1	0.8200	C14—H14A	0.9300
O2—C18	1.227 (4)	C15—C16	1.376 (5)
C11—C12	1.384 (4)	C15—H15A	0.9300
C11—C16	1.386 (5)	C16—H16A	0.9300
C11—C17	1.496 (5)	C17—H17A	0.9700
C12—C13	1.400 (4)	С17—Н17В	0.9700
C13—C14	1.404 (4)	C18—H18A	0.9300
C12 O1 U1	100.5	C14 C15 1115A	120.2
C12 - C11 - C16	109.3	C14 $C15$ $H15A$	120.2
C12-C11-C16	118.0(3)	C16 - C15 - H15A	120.2
	121.2(3)		121.7 (3)
	120.2(3)	C15 - C16 - H16A	119.2
01 - C12 - C11	118.1 (3)		119.2
01 - 012 - 013	121.0 (3)		111.1 (3)
CII = CI2 = CI3	120.9 (3)		109.4
C12-C13-C14	118.2 (3)	CII—CI7—HI7A	109.4
C12—C13—C18	121.5 (3)		109.4
C14—C13—C18	120.3 (3)	CII—CI7—HI7B	109.4
C15—C14—C13	121.0 (3)	Н17А—С17—Н17В	108.0
C15—C14—H14A	119.5	02	124.5 (3)
C13—C14—H14A	119.5	O2—C18—H18A	117.8
C14—C15—C16	119.6 (3)	C13—C18—H18A	117.8
C16-C11-C12-O1	180.0 (3)	C18—C13—C14—C15	179.3 (3)
C17—C11—C12—O1	1.8 (4)	C13—C14—C15—C16	-0.1 (5)
C16—C11—C12—C13	0.1 (4)	C14—C15—C16—C11	0.4 (5)
C17—C11—C12—C13	-178.1 (3)	C12—C11—C16—C15	-0.4 (5)
O1—C12—C13—C14	-179.7(3)	C17—C11—C16—C15	177.8 (3)
C11—C12—C13—C14	0.2 (4)	C12—C11—C17—Cl1	-84.7 (3)
Q1—C12—C13—C18	0.9 (4)	C16—C11—C17—C11	97.2 (4)
C11—C12—C13—C18	-179.3 (3)	C12—C13—C18—O2	-0.9(5)
C12—C13—C14—C15	-0.2 (5)	C14—C13—C18—O2	179.7 (4)

supporting information

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
01—H1···O2	0.82	1.91	2.628 (5)	146