Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Pentacyclo[8.2.1.1^{4,7}.0^{2,9}.0^{3,8}]tetradeca-5.11-diene

Hsing-Yang Tsai, Ming-Hui Luo, Wei-Chi Lin, Che-Wei Chang and Kew-Yu Chen*

Department of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan

Correspondence e-mail: kyuchen@fcu.edu.tw

Received 4 September 2012; accepted 10 September 2012

Key indicators: single-crystal X-ray study: T = 297 K: mean σ (C–C) = 0.002 Å: R factor = 0.053; wR factor = 0.157; data-to-parameter ratio = 18.7.

The title compound, $C_{14}H_{16}$, was prepared through [2 + 2]cycloaddition of norbornadiene. There are two independent molecules in the asymmetric unit: each is centrosymmetric with the centroid of the four-membered ring located about an inversion center. Each molecule possesses an exo-trans-exo conformation.

Related literature

For the preparation of the title compound, see: Chen et al. (2002). For the spectroscopy of D-S-A molecules (electron donor-acceptor chromophores linked by spacers), see: Chen et al. (2002, 2006); Chow et al. (1999, 2005). For the electronic device applications of D-S-A molecules, see: Huang et al. (2011); Lee et al. (2011); Lin et al. (2010); Raposo et al. (2011); Wang et al. (2011); Wu et al. (2010); Xiang et al. (2011); Zhou et al. (2011). For related structures, see: Chen et al. (2011a,b); Tsai et al. (2012). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data

C14H16 $M_r = 184.27$ Monoclinic, $P2_1/c$ a = 10.7893 (7) Å b = 10.8730 (6) Å c = 9.2407 (6) Å $\beta = 109.022 \ (7)^{\circ}$

 $V = 1024.85 (11) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.07 \text{ mm}^-$ T = 297 K $0.70 \times 0.60 \times 0.50 \text{ mm}$

Data collection

Bruker SMART CCD area-detector	2375 independent reflections
diffractometer	1662 reflections with $I > 2\sigma(I)$
4696 measured reflections	$R_{\rm int} = 0.014$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	127 parameters
$wR(F^2) = 0.157$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
2375 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the National Science Council (grant No. NSC 101-2113-M-035-001-MY2) and Feng Chia University in Taiwan. The authors appreciate the Precision Instrument Support Center of Feng Chia University for providing fabrication and measurement facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5620).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, K.-Y., Chang, M.-J. & Fang, T.-C. (2011a). Acta Cryst. E67, o1147.
- Chen, K.-Y., Chang, M.-J., Fang, T.-C., Luo, M.-H. & Tsai, H.-Y. (2011b). Acta Cryst. E67, 03312
- Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115-8119.
- Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136-12144.
- Chow, T. J., Hon, Y. S., Chen, C. Y. & Huang, M. S. (1999). Tetrahedron Lett. 40, 7799-7801.
- Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967-6975.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Huang, X., Fang, Y., Li, X., Xie, Y. & Zhu, W. (2011). Dyes Pigm. 90, 297-303.
- Lee, C.-W., Lu, H.-P., Reddy, N. M., Lee, H.-W., Diau, E. W.-G. & Yeh, C.-Y. (2011). Dyes Pigm. 91, 317-323.
- Lin, C.-Y., Lo, C.-F., Hsieh, M.-H., Hsu, S.-J., Lu, H.-P. & Diau, E. W.-G. (2010). J. Chin. Chem. Soc. 57, 1136-1140.
- Raposo, M. M. M., Castro, M. C. R., Belsley, M. & Fonseca, A. M. C. (2011). Dyes Pigm. 91, 454-465.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tsai, H.-Y., Luo, M.-H., Chang, M.-J., Fang, T.-C. & Chen, K.-Y. (2012). Chin. Chem. Lett. 23, 1043-1046.
- Wang, Z., Zhang, W., Tao, F., Meng, K. G., Xi, L. Y., Li, Y. & Jiang, Q. (2011). Chin. Chem. Lett. 22, 1001-1004.
- Wu, S.-J., Chen, C.-Y., Li, J.-Y., Chen, J.-G., Lee, K.-M., Ho, K.-C. & Wu, C.-G. (2010). J. Chin. Chem. Soc. 57, 1127-1130.
- Xiang, N., Huang, X., Feng, X., Liu, Y., Zhao, B., Deng, L., Shen, P., Fei, J. & Tan, S. (2011). Dyes Pigm. 88, 75-83.
- Zhou, W., Zhao, B., Shen, P., Jiang, S., Huang, H., Deng, L. & Tan, S. (2011). Dyes Pigm. 91, 404-412.

supporting information

Acta Cryst. (2012). E68, o2945 [https://doi.org/10.1107/S1600536812038780]

Pentacyclo[8.2.1.1^{4,7}.0^{2,9}.0^{3,8}]tetradeca-5,11-diene

Hsing-Yang Tsai, Ming-Hui Luo, Wei-Chi Lin, Che-Wei Chang and Kew-Yu Chen

S1. Comment

Electron donor (D)-acceptor (A) chromophores linked by spacers (S), forming D–S–A dyads (Huang *et al.*, 2011; Lee *et al.*, 2011; Raposo *et al.*, 2011), have attracted considerable attention due to their potential applications in the design of molecular devices (Lin *et al.*, 2010; Wang *et al.*, 2011; Wu *et al.*, 2010; Xiang *et al.*, 2011; Zhou *et al.*, 2011). Numerous types of rigid spacers have also been reported (Chen *et al.*, 2002; Chow *et al.*, 1999). The highly symmetrical structures reduce the complexity due to the constraint of geometrical and conformational variations. Consequently, the rates of photoinduced electron transfer reactions across linearly fused oligo-norbornyl spacer groups can be extensively investigated (Chen *et al.*, 2005).

The *ORTEP* diagram of the title compound is shown in Figure 1. There are two crystallographically independent molecules in the asymmetric unit. The molecules possess an *exo-trans-exo* configuration. The puckering parameters (Cremer & Pople, 1975) of the five-membered rings A (C1–C3/C7/C6) and B (C3–C7) are $Q_2 = 0.5975$ (16) Å and $\varphi_2 = 287.85$ (15)°, and $Q_2 = 0.5504$ (17) Å and $\varphi_2 = 144.42$ (18)°, respectively. These results are slightly different from those of previous studies on other norbornane derivatives (Chen, *et al.*, 2011*a*,*b*, 2002).

S2. Experimental

The title compound was synthesized according to the literature (Chen *et al.*, 2002). Colorless parallelepiped-shaped crystals suitable for the crystallographic studies reported here were isolated over a period of five weeks by slow evaporation from a chloroform solution.

S3. Refinement

The C bound H atoms positioned geometrically and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Pentacyclo[8.2.1.1^{4,7}.0^{2,9}.0^{3,8}]tetradeca-5,11-diene

Crystal data	
$C_{14}H_{16}$ $M_r = 184.27$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc $a = 10.7893$ (7) Å $b = 10.8730$ (6) Å $c = 9.2407$ (6) Å $\beta = 109.022$ (7)° $V = 1024.85$ (11) Å ³ $Z = 4$	F(000) = 400 $D_x = 1.194 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2538 reflections $\theta = 3.0-29.2^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 297 K Parallelepiped, colorless $0.70 \times 0.60 \times 0.50 \text{ mm}$
Data collection	
 Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 4696 measured reflections 2375 independent reflections 	1662 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 29.2^{\circ}, \ \theta_{min} = 3.0^{\circ}$ $h = -13 \rightarrow 14$ $k = -13 \rightarrow 14$ $l = -12 \rightarrow 10$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.157$ S = 1.07 2375 reflections 127 parameters 0 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.098P)^2 + 0.0079P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.48726 (13)	0.60019 (11)	-0.00625 (14)	0.0354 (3)
H1A	0.4862	0.6542	0.0783	0.042*
C2	0.60674 (12)	0.51050 (12)	0.03238 (15)	0.0363 (3)
H2A	0.6678	0.5178	0.1370	0.044*
C3	0.66729 (14)	0.54040 (14)	-0.09413 (18)	0.0493 (4)
H3A	0.7283	0.4794	-0.1102	0.059*
C4	0.71928 (16)	0.66991 (16)	-0.05935 (19)	0.0626 (5)
H4A	0.8071	0.6926	-0.0217	0.075*
C5	0.61875 (17)	0.74451 (15)	-0.09167 (18)	0.0576 (5)
H5A	0.6226	0.8296	-0.0805	0.069*
C6	0.49605 (14)	0.66859 (12)	-0.15005 (16)	0.0414 (4)
H6A	0.4169	0.7122	-0.2113	0.050*
C7	0.54463 (14)	0.56681 (14)	-0.23163 (15)	0.0455 (4)
H7A	0.4851	0.4973	-0.2591	0.055*
H7B	0.5651	0.5961	-0.3204	0.055*
C8	0.89681 (12)	0.98409 (12)	-0.01155 (15)	0.0366 (3)
H8A	0.8246	0.9749	-0.1082	0.044*
C9	0.98405 (13)	1.09971 (11)	-0.00363 (15)	0.0377 (3)
H9A	0.9572	1.1510	-0.0959	0.045*
C10	0.97907 (14)	1.16558 (13)	0.14375 (18)	0.0485 (4)
H10A	1.0466	1.2278	0.1875	0.058*
C11	0.83794 (17)	1.20757 (15)	0.1034 (2)	0.0606 (5)
H11A	0.8086	1.2884	0.0865	0.073*
C12	0.76413 (15)	1.11028 (15)	0.09629 (19)	0.0572 (5)
H12A	0.6736	1.1098	0.0736	0.069*
C13	0.85276 (13)	0.99966 (13)	0.13162 (17)	0.0436 (4)
H13A	0.8180	0.9259	0.1658	0.052*
C14	0.97517 (14)	1.05643 (14)	0.24666 (16)	0.0477 (4)
H14A	1.0517	1.0039	0.2680	0.057*
H14B	0.9617	1.0811	0.3413	0.057*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0424 (7)	0.0336 (7)	0.0330 (7)	0.0020 (5)	0.0163 (6)	0.0007 (5)
C2	0.0315 (7)	0.0444 (8)	0.0324 (6)	0.0012 (5)	0.0095 (5)	0.0066 (5)

supporting information

C3	0.0415 (8)	0.0599 (9)	0.0551 (9)	0.0096 (7)	0.0276 (7)	0.0171 (8)
C4	0.0453 (9)	0.0788 (12)	0.0611 (10)	-0.0188 (8)	0.0140 (8)	0.0218 (9)
C5	0.0699 (12)	0.0488 (9)	0.0535 (9)	-0.0171 (8)	0.0190 (8)	0.0093 (7)
C6	0.0450 (8)	0.0404 (7)	0.0397 (7)	0.0059 (6)	0.0151 (6)	0.0111 (6)
C7	0.0552 (9)	0.0520 (8)	0.0348 (7)	0.0004 (7)	0.0223 (7)	0.0053 (6)
C8	0.0320 (7)	0.0425 (7)	0.0348 (7)	-0.0061 (5)	0.0103 (5)	-0.0051 (5)
C9	0.0418 (8)	0.0336 (7)	0.0389 (7)	-0.0026 (5)	0.0150 (6)	0.0015 (5)
C10	0.0528 (9)	0.0404 (8)	0.0573 (9)	-0.0115 (6)	0.0249 (7)	-0.0150 (7)
C11	0.0694 (12)	0.0495 (9)	0.0710 (11)	0.0158 (8)	0.0340 (9)	-0.0025 (8)
C12	0.0446 (9)	0.0711 (12)	0.0600 (10)	0.0089 (8)	0.0228 (8)	-0.0068 (8)
C13	0.0410 (8)	0.0490 (8)	0.0464 (8)	-0.0058 (6)	0.0217 (7)	-0.0023 (6)
C14	0.0481 (9)	0.0603 (9)	0.0363 (7)	-0.0013 (7)	0.0159 (6)	-0.0069 (7)

Geometric parameters (Å, °)

C1—C6	1.5525 (16)	С8—С9 ^{іі}	1.5443 (17)	
C1-C2 ⁱ	1.5413 (17)	C8—C13	1.5539 (18)	
C1—C2	1.5621 (17)	C8—C9	1.5578 (17)	
C1—H1A	0.9800	C8—H8A	0.9800	
C2-C1 ⁱ	1.5413 (17)	C9—C10	1.5551 (18)	
C2—C3	1.5483 (17)	C9—C8 ⁱⁱ	1.5442 (17)	
C2—H2A	0.9800	С9—Н9А	0.9800	
C3—C4	1.511 (2)	C10—C11	1.515 (2)	
С3—С7	1.534 (2)	C10-C14	1.530 (2)	
С3—НЗА	0.9800	C10—H10A	0.9800	
C4—C5	1.309 (2)	C11—C12	1.313 (2)	
C4—H4A	0.9300	C11—H11A	0.9300	
C5—C6	1.503 (2)	C12—C13	1.505 (2)	
C5—H5A	0.9300	C12—H12A	0.9300	
С6—С7	1.5249 (19)	C13—C14	1.5298 (19)	
С6—Н6А	0.9800	C13—H13A	0.9800	
C7—H7A	0.9700	C14—H14A	0.9700	
С7—Н7В	0.9700	C14—H14B	0.9700	
C6	117 43 (11)	C9 ⁱⁱ —C8—C13	117 61 (11)	
$C_{0} C_{1} C_{2}$	102 62 (9)	$C_{0ii} = C_{8} = C_{9}$	89.98 (9)	
$C_{0}^{i} - C_{1}^{i} - C_{2}^{i}$	90.01 (9)	$C_{13} - C_{8} - C_{9}$	$102\ 70\ (10)$	
C6-C1-H1A	114 5	$C9^{ii}$ $C8$ $H8A$	114 4	
$C2^{i}$ — $C1$ — $H1A$	114.5	C13 - C8 - H8A	114.4	
C2 $C1$ $H1A$	114.5	C9 - C8 - H8A	114 4	
$C1^{i}$ $C2^{-}C3$	117.63 (11)	$C10-C9-C8^{ii}$	117 23 (12)	
$C1^{i} - C2 - C1$	89 99 (9)	C10 - C9 - C8	102.70(9)	
$C_{3} - C_{2} - C_{1}$	102.49(10)	$C8^{ii}$ $C9$ $C8$	90.02 (9)	
$C1^{i}$ $C2^{-}$ $H2A$	114 5	C10-C9-H9A	114 6	
C3 - C2 - H2A	114 5	C8 ⁱⁱ —C9—H9A	114.6	
C1 - C2 - H2A	114.5	C8—C9—H9A	114.6	
C4-C3-C7	99.32 (12)	C11—C10—C9	104.01 (12)	
C4—C3—C2	104.70 (12)	C11—C10—C14	99.07 (12)	
	、 /		· · ·	

C7—C3—C2	101.67 (10)	C9—C10—C14	101.71 (10)
С4—С3—Н3А	116.2	C11—C10—H10A	116.5
С7—С3—НЗА	116.2	С9—С10—Н10А	116.5
С2—С3—НЗА	116.2	C14—C10—H10A	116.5
C5—C4—C3	107.85 (14)	C12—C11—C10	108.30 (14)
C5—C4—H4A	126.1	C12—C11—H11A	125.8
C3—C4—H4A	126.1	C10—C11—H11A	125.8
C4—C5—C6	108.00 (14)	C11—C12—C13	107.52 (13)
С4—С5—Н5А	126.0	C11—C12—H12A	126.2
С6—С5—Н5А	126.0	C13—C12—H12A	126.2
C5—C6—C7	99.87 (11)	C12—C13—C14	99.90 (12)
C5—C6—C1	104.38 (11)	C12—C13—C8	104.56 (11)
C7—C6—C1	101.67 (10)	C14—C13—C8	101.61 (9)
С5—С6—Н6А	116.2	C12—C13—H13A	116.1
С7—С6—Н6А	116.2	C14—C13—H13A	116.1
С1—С6—Н6А	116.2	C8—C13—H13A	116.1
C3—C7—C6	93.97 (11)	C13—C14—C10	94.21 (11)
С3—С7—Н7А	112.9	C13—C14—H14A	112.9
С6—С7—Н7А	112.9	C10-C14-H14A	112.9
С3—С7—Н7В	112.9	C13—C14—H14B	112.9
С6—С7—Н7В	112.9	C10-C14-H14B	112.9
H7A—C7—H7B	110.3	H14A—C14—H14B	110.3
C6-C1-C2-C1 ⁱ	-118.17 (11)	C9 ⁱⁱ —C8—C9—C10	-117.97 (12)
$C6-C1-C2-C1^{i}$ $C2^{i}-C1-C2-C1^{i}$	-118.17 (11) 0.0	C9 ⁱⁱ —C8—C9—C10 C13—C8—C9—C10	-117.97 (12) 0.39 (13)
$C6-C1-C2-C1^{i} \\ C2^{i}-C1-C2-C1^{i} \\ C6-C1-C2-C3$	-118.17 (11) 0.0 0.19 (13)	C9 ⁱⁱ —C8—C9—C10 C13—C8—C9—C10 C9 ⁱⁱ —C8—C9—C8 ⁱⁱ	-117.97 (12) 0.39 (13) 0.0
C6-C1-C2-C1 ⁱ C2 ⁱ -C1-C2-C1 ⁱ C6-C1-C2-C3 C2 ⁱ -C1-C2-C3	-118.17 (11) 0.0 0.19 (13) 118.36 (12)	C9 ⁱⁱ —C8—C9—C10 C13—C8—C9—C10 C9 ⁱⁱ —C8—C9—C8 ⁱⁱ C13—C8—C9—C8 ⁱⁱ	-117.97 (12) 0.39 (13) 0.0 118.36 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-118.17 (11) 0.0 0.19 (13) 118.36 (12) 163.80 (12)	C9 ⁱⁱ —C8—C9—C10 C13—C8—C9—C10 C9 ⁱⁱ —C8—C9—C8 ⁱⁱ C13—C8—C9—C8 ⁱⁱ C8 ⁱⁱ —C9—C10—C11	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-118.17 (11) 0.0 0.19 (13) 118.36 (12) 163.80 (12) 67.16 (13)	C9 ⁱⁱ —C8—C9—C10 C13—C8—C9—C10 C9 ⁱⁱ —C8—C9—C8 ⁱⁱ C13—C8—C9—C8 ⁱⁱ C8 ⁱⁱ —C9—C10—C11 C8—C9—C10—C11	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-118.17 (11) 0.0 0.19 (13) 118.36 (12) 163.80 (12) 67.16 (13) 60.79 (15)	$\begin{array}{c} C9^{ii} - C8 - C9 - C10 \\ C13 - C8 - C9 - C10 \\ C9^{ii} - C8 - C9 - C8^{ii} \\ C13 - C8 - C9 - C8^{ii} \\ C8^{ii} - C9 - C10 - C11 \\ C8^{ii} - C9 - C10 - C11 \\ C8^{ii} - C9 - C10 - C14 \end{array}$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-118.17 (11) 0.0 0.19 (13) 118.36 (12) 163.80 (12) 67.16 (13) 60.79 (15) -35.86 (14)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-118.17 (11) 0.0 0.19 (13) 118.36 (12) 163.80 (12) 67.16 (13) 60.79 (15) -35.86 (14) 33.64 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13) 71.17 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-118.17 (11) 0.0 0.19 (13) 118.36 (12) 163.80 (12) 67.16 (13) 60.79 (15) -35.86 (14) 33.64 (15) -71.14 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13) 71.17 (16) -33.41 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-118.17 (11) 0.0 0.19 (13) 118.36 (12) 163.80 (12) 67.16 (13) 60.79 (15) -35.86 (14) 33.64 (15) -71.14 (15) -0.36 (17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13) 71.17 (16) -33.41 (16) 0.03 (18)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-118.17 (11) 0.0 0.19 (13) 118.36 (12) 163.80 (12) 67.16 (13) 60.79 (15) -35.86 (14) 33.64 (15) -71.14 (15) -0.36 (17) -33.32 (15)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13) 71.17 (16) -33.41 (16) 0.03 (18) 33.45 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -118.17\ (11)\\ 0.0\\ 0.19\ (13)\\ 118.36\ (12)\\ 163.80\ (12)\\ 67.16\ (13)\\ 60.79\ (15)\\ -35.86\ (14)\\ 33.64\ (15)\\ -71.14\ (15)\\ -0.36\ (17)\\ -33.32\ (15)\\ 71.54\ (14)\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -117.97\ (12)\\ 0.39\ (13)\\ 0.0\\ 118.36\ (12)\\ -164.01\ (12)\\ -67.32\ (13)\\ -61.43\ (13)\\ 35.25\ (13)\\ 71.17\ (16)\\ -33.41\ (16)\\ 0.03\ (18)\\ 33.45\ (15)\\ -71.41\ (15)\end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -118.17\ (11)\\ 0.0\\ 0.19\ (13)\\ 118.36\ (12)\\ 163.80\ (12)\\ 67.16\ (13)\\ 60.79\ (15)\\ -35.86\ (14)\\ 33.64\ (15)\\ -71.14\ (15)\\ -0.36\ (17)\\ -33.32\ (15)\\ 71.54\ (14)\\ -164.42\ (11) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13) 71.17 (16) -33.41 (16) 0.03 (18) 33.45 (15) -71.41 (15) 164.42 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -118.17\ (11)\\ 0.0\\ 0.19\ (13)\\ 118.36\ (12)\\ 163.80\ (12)\\ 67.16\ (13)\\ 60.79\ (15)\\ -35.86\ (14)\\ 33.64\ (15)\\ -71.14\ (15)\\ -0.36\ (17)\\ -33.32\ (15)\\ 71.54\ (14)\\ -164.42\ (11)\\ -67.74\ (12)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13) 71.17 (16) -33.41 (16) 0.03 (18) 33.45 (15) -71.41 (15) 164.42 (11) 67.68 (13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -118.17\ (11)\\ 0.0\\ 0.19\ (13)\\ 118.36\ (12)\\ 163.80\ (12)\\ 67.16\ (13)\\ 60.79\ (15)\\ -35.86\ (14)\\ 33.64\ (15)\\ -71.14\ (15)\\ -0.36\ (17)\\ -33.32\ (15)\\ 71.54\ (14)\\ -164.42\ (11)\\ -67.74\ (12)\\ -60.91\ (14)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13) 71.17 (16) -33.41 (16) 0.03 (18) 33.45 (15) -71.41 (15) 164.42 (11) 67.68 (13) 60.85 (14)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -118.17\ (11)\\ 0.0\\ 0.19\ (13)\\ 118.36\ (12)\\ 163.80\ (12)\\ 67.16\ (13)\\ 60.79\ (15)\\ -35.86\ (14)\\ 33.64\ (15)\\ -71.14\ (15)\\ -0.36\ (17)\\ -33.32\ (15)\\ 71.54\ (14)\\ -164.42\ (11)\\ -67.74\ (12)\\ -60.91\ (14)\\ 35.78\ (12)\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97(12) 0.39(13) 0.0 118.36(12) -164.01(12) -67.32(13) -61.43(13) 35.25(13) 71.17(16) -33.41(16) 0.03(18) 33.45(15) -71.41(15) 164.42(11) 67.68(13) 60.85(14) -35.90(13)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -118.17\ (11)\\ 0.0\\ 0.19\ (13)\\ 118.36\ (12)\\ 163.80\ (12)\\ 67.16\ (13)\\ 60.79\ (15)\\ -35.86\ (14)\\ 33.64\ (15)\\ -71.14\ (15)\\ -0.36\ (17)\\ -33.32\ (15)\\ 71.54\ (14)\\ -164.42\ (11)\\ -67.74\ (12)\\ -60.91\ (14)\\ 35.78\ (12)\\ -50.28\ (11)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13) 71.17 (16) -33.41 (16) 0.03 (18) 33.45 (15) -71.41 (15) 164.42 (11) 67.68 (13) 60.85 (14) -35.90 (13) -50.63 (11)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -118.17\ (11)\\ 0.0\\ 0.19\ (13)\\ 118.36\ (12)\\ 163.80\ (12)\\ 67.16\ (13)\\ 60.79\ (15)\\ -35.86\ (14)\\ 33.64\ (15)\\ -71.14\ (15)\\ -0.36\ (17)\\ -33.32\ (15)\\ 71.54\ (14)\\ -164.42\ (11)\\ -67.74\ (12)\\ -60.91\ (14)\\ 35.78\ (12)\\ -50.28\ (11)\\ 56.97\ (12)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-117.97 (12) 0.39 (13) 0.0 118.36 (12) -164.01 (12) -67.32 (13) -61.43 (13) 35.25 (13) 71.17 (16) -33.41 (16) 0.03 (18) 33.45 (15) -71.41 (15) 164.42 (11) 67.68 (13) 60.85 (14) -35.90 (13) -50.63 (11) 56.62 (12)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -118.17\ (11)\\ 0.0\\ 0.19\ (13)\\ 118.36\ (12)\\ 163.80\ (12)\\ 67.16\ (13)\\ 60.79\ (15)\\ -35.86\ (14)\\ 33.64\ (15)\\ -71.14\ (15)\\ -0.36\ (17)\\ -33.32\ (15)\\ 71.54\ (14)\\ -164.42\ (11)\\ -67.74\ (12)\\ -60.91\ (14)\\ 35.78\ (12)\\ -50.28\ (11)\\ 56.97\ (12)\\ 50.32\ (11)\\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -117.97\ (12)\\ 0.39\ (13)\\ 0.0\\ 118.36\ (12)\\ -164.01\ (12)\\ -67.32\ (13)\\ -61.43\ (13)\\ 35.25\ (13)\\ 71.17\ (16)\\ -33.41\ (16)\\ 0.03\ (18)\\ 33.45\ (15)\\ -71.41\ (15)\\ 164.42\ (11)\\ 67.68\ (13)\\ 60.85\ (14)\\ -35.90\ (13)\\ -50.63\ (11)\\ 56.62\ (12)\\ 50.10\ (12)\\ \end{array}$

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*; (ii) -*x*+2, -*y*+2, -*z*.