

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(4Z)-1-Methyl-4-[(2E)-2-(4-methylbenzylidene)hydrazin-1-ylidene]-3,4-dihydro- $1H-2\lambda^6$, 1-benzothiazine-2, 2-dione

Muhammad Shafig,^a* William T. A. Harrison,^b Islam Ullah Khan^c and Ejaz^c

^aDepartment of Chemistry, Government College University, Faisalabad 38000, Pakistan, ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and ^cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan Correspondence e-mail: hafizshafique@hotmail.com

Received 11 August 2012; accepted 17 September 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.013 Å; R factor = 0.120; wR factor = 0.347; data-to-parameter ratio = 13.4.

In the title compound, $C_{17}H_{17}N_3O_2S$, the dihedral angle between the aromatic rings is $6.3 (5)^{\circ}$ and the C—N–N—C group is statistically planar [torsion angle = $179.8 (8)^{\circ}$]. The conformation of the thiazine ring is an envelope, with the S atom displaced by 0.823 (9) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.012 Å). In the crystal, $C-H\cdots O$ interactions link the molecules into C(5) chains propagating along [101]. The chains are consolidated by weak aromatic π - π stacking between the benzene and toluene rings [centroid-to-centroid separation = 3.826 (5) Å and interplanar angle = $6.3 (4)^{\circ}$].

Related literature

For the synthesis and biological activity of the title compound and related materials, see: Shafiq, Zia-ur-Rehman et al. (2011). For related structures, see: Shafiq, Khan et al. (2011); Shafiq et al. (2012). For C-H···O interactions, see: Steiner (2006). For graph-set nomenclature, see: Bernstein et al. (1995).

organic compounds

Experimental

Crystal data

erjour adua	
$C_{17}H_{17}N_3O_2S$ $M_{-327,40}$	$V = 1587.8 (3) \text{ Å}^3$
$M_r = 327.40$	L = 4 Mo Ver rediction
$\frac{7800}{1} \stackrel{(1)}{\overset{1}{}}$	No Ka radiation $\alpha = 0.22 \text{ mm}^{-1}$
u = 7.899(1) A	$\mu = 0.22 \text{ mm}$
D = 25.061 (3) A	I = 296 K
c = 8.1743 (11) A	$0.45 \times 0.21 \times 0.09 \text{ mm}$
$\beta = 101.114 \ (9)^{\circ}$	
Data collection	
Bruker APEXII CCD	2877 independent reflections
diffractometer	1897 reflections with $I > 2\sigma(I)$
13483 measured reflections	$R_{\rm int} = 0.049$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.120$	H atoms treated by a mixture of
$wR(F^2) = 0.347$	independent and constrained
S = 1.15	refinement
2877 reflections	$\Delta \rho_{\rm max} = 1.44 \text{ e} \text{ Å}^{-3}$
215 parameters	$\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$
1	, mm

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$C16-H16A\cdots O2^{i}$	0.96	2.59	3.468 (13)	153
Symmetry code: (i) $x - \frac{1}{2}$	$-v + \frac{3}{2}, z - \frac{1}{2}$			

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

MS acknowledges the Higher Education Commission of Pakistan for providing a PhD scholarship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2094).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Shafiq, M., Harrison, W. T. A., Khan, I. U., Bukhari, I. H. & Bokhari, T. H. (2012). Acta Cryst. E68, o2643.
- Shafiq, M., Khan, I. U., Zia-ur-Rehman, M., Arshad, M. N. & Asiri, A. M. (2011). Acta Cryst. E67, o2092.
- Shafiq, M., Zia-ur-Rehman, M., Khan, I. U., Arshad, M. N. & Khan, S. A. (2011). J. Chil. Chem. Soc. 56, 527-531.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Steiner, Th. (2006). Crystallogr. Rev. 6, 1-57.

supporting information

Acta Cryst. (2012). E68, o2971 [https://doi.org/10.1107/S1600536812039529]

(4Z)-1-Methyl-4-[(2*E*)-2-(4-methylbenzylidene)hydrazin-1-ylidene]-3,4-dihydro-1*H*-2 λ^6 ,1-benzothiazine-2,2-dione

Muhammad Shafiq, William T. A. Harrison, Islam Ullah Khan and Ejaz

S1. Comment

As part of our ongoing studies of benzothiazine derivatives with potential biological activity (Shafiq, Zia-ur-Rehman *et al.*, 2011), we now describe the crystal structure of the title compound, (I), (Fig. 1).

The dihedral angle between the aromatic rings (C1–C6 and C10–C15) in (I) is 6.3 (5)° and the C7=N2—N3=C9 torsion angle is 179.8 (8)°. Similar values have been seen in related structures (Shafiq, Khan *et al.*, 2011; Shafiq *et al.*, 2012). The conformation of the thiazine ring in (I) is an envelope, with the S atom displaced by 0.823 (9) Å from the mean plane of the other five atoms (r.m.s. deviation = 0.012 Å). Again, this is similar to the situation in related structures (Shafiq, Khan *et al.*, 2011; Shafiq *et al.*, 2012).

In the crystal of (I) (Fig. 2), weak C—H···O interactions (Steiner, 2006) (Table 1) link the molecules to generate C(5) chains propagating in [101]. The chains are consolidated by weak aromatic π - π stacking between the benzene and toluene rings [centroid-centroid separation = 3.826 (5) Å, inter-planar angle = 6.3 (4)°].

S2. Experimental

For the synthesis, see: Shafiq, Zia-ur-Rehman *et al.* (2011). Yellow blades were recrystallized from ethyl acetate. The crystal quality was poor, which may correlate with the rather high residuals.

S3. Refinement

The H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and refined as riding. The methyl group was allowed to rotate, but not to tip, to best fit the electron density. The constraint $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$ was applied. The highest difference peak is 1.27 Å from atom O2.

The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.

Figure 2

Detail of the packing of (I) showing part of a [101] chain of molecules linked by C—H…O hydrogen bonds (double dashed lines) and consolidated by aromatic π - π stacking between the centroids of the benzene and toluene rings (open pink lines). Symmetry codes: (i) -1/2 + x, 3/2 - y, -1/2 + z; (ii) -1 + x, y, -1 + z.

(4Z)-1-Methyl-4-[(2E)-2-(4-methylbenzylidene)hydrazin-1- ylidene]-3,4-dihydro-1H-2 λ^6 ,1-benzothiazine-2,2-dione

Crystal data	
C ₁₇ H ₁₇ N ₃ O ₂ S $M_r = 327.40$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 7.899 (1) Å b = 25.061 (3) Å c = 8.1743 (11) Å $\beta = 101.114$ (9)° V = 1587.8 (3) Å ³ Z = 4	F(000) = 688 $D_x = 1.370 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3678 reflections $\theta = 2.8-24.9^{\circ}$ $\mu = 0.22 \text{ mm}^{-1}$ T = 296 K Blade, yellow $0.45 \times 0.21 \times 0.09 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans 13483 measured reflections 2877 independent reflections	1897 reflections with $I > 2\sigma(I)$ $R_{int} = 0.049$ $\theta_{max} = 25.3^\circ, \ \theta_{min} = 2.7^\circ$ $h = -9 \rightarrow 9$ $k = -30 \rightarrow 30$ $l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.120$	H atoms treated by a mixture of independent
$wR(F^2) = 0.347$	and constrained refinement
S = 1.15	$w = 1/[\sigma^2(F_o^2) + (0.0894P)^2 + 15.6763P]$
2877 reflections	where $P = (F_o^2 + 2F_c^2)/3$
215 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 1.44 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
direct methods	Extinction correction: SHELXL97 (Sheldrick,
Secondary atom site location: difference Fourier	2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
map	Extinction coefficient: 0.011 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s.planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.2464 (11)	0.6374 (3)	0.1249 (10)	0.0393 (19)	
C2	0.0924 (11)	0.6173 (4)	0.0246 (12)	0.048 (2)	
H2	-0.0062	0.6384	0.0023	0.058*	
C3	0.0902 (12)	0.5668 (4)	-0.0386 (13)	0.052 (2)	
H3	-0.0107	0.5539	-0.1047	0.063*	
C4	0.2323 (12)	0.5349 (4)	-0.0072 (12)	0.050 (2)	
H4	0.2283	0.5005	-0.0500	0.060*	
C5	0.3802 (11)	0.5541 (3)	0.0875 (11)	0.042 (2)	
H5	0.4779	0.5326	0.1070	0.050*	
C6	0.3899 (10)	0.6050(3)	0.1561 (10)	0.0329 (17)	
C7	0.5555 (10)	0.6233 (3)	0.2611 (10)	0.0378 (19)	
C8	0.5629 (11)	0.6777 (3)	0.3398 (11)	0.046 (2)	
H8A	0.6805	0.6908	0.3583	0.055*	
H8B	0.5283	0.6751	0.4471	0.055*	
C9	0.9564 (11)	0.5776 (4)	0.4027 (12)	0.045 (2)	
H9	0.928 (13)	0.538 (4)	0.348 (12)	0.07 (3)*	
C10	1.1248 (10)	0.5891 (3)	0.5059 (10)	0.0362 (19)	
C11	1.1580 (11)	0.6354 (4)	0.5998 (11)	0.045 (2)	
H11	1.0710	0.6606	0.5980	0.054*	
C12	1.3211 (11)	0.6445 (3)	0.6965 (11)	0.044 (2)	
H12	1.3421	0.6755	0.7598	0.053*	
C13	1.4514 (11)	0.6077 (4)	0.6988 (11)	0.043 (2)	
C14	1.4177 (11)	0.5616 (4)	0.6071 (12)	0.051 (2)	

supporting information

H14	1.5050	0.5365	0.6101	0.062*
C15	1.2550 (10)	0.5515 (4)	0.5095 (10)	0.041 (2)
H15	1.2343	0.5202	0.4480	0.049*
C16	0.0902 (13)	0.7157 (4)	0.2205 (13)	0.059 (3)
H16A	0.0280	0.7308	0.1185	0.089*
H16B	0.1207	0.7435	0.3017	0.089*
H16C	0.0189	0.6899	0.2617	0.089*
C17	1.6295 (12)	0.6184 (5)	0.8015 (14)	0.064 (3)
H17A	1.7116	0.6205	0.7292	0.096*
H17B	1.6610	0.5900	0.8802	0.096*
H17C	1.6284	0.6516	0.8602	0.096*
S1	0.4268 (3)	0.72269 (9)	0.2121 (3)	0.0472 (7)
N1	0.2450 (9)	0.6901 (3)	0.1900 (11)	0.052 (2)
N2	0.6832 (9)	0.5911 (3)	0.2813 (9)	0.0448 (18)
N3	0.8324 (9)	0.6113 (3)	0.3859 (10)	0.0477 (19)
01	0.4836 (11)	0.7265 (3)	0.0588 (9)	0.069 (2)
O2	0.4100 (10)	0.7710 (2)	0.3007 (9)	0.064 (2)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
C1	0.038 (5)	0.036 (4)	0.042 (5)	-0.003 (4)	0.004 (4)	0.001 (4)
C2	0.033 (5)	0.049 (5)	0.061 (6)	0.006 (4)	0.004 (4)	0.006 (4)
C3	0.038 (5)	0.050 (6)	0.062 (6)	-0.016 (4)	-0.009 (4)	0.003 (5)
C4	0.057 (6)	0.033 (5)	0.061 (6)	-0.008 (4)	0.016 (5)	-0.011 (4)
C5	0.032 (4)	0.039 (5)	0.054 (5)	0.004 (4)	0.006 (4)	-0.004 (4)
C6	0.031 (4)	0.032 (4)	0.037 (4)	0.000 (3)	0.009 (3)	0.000 (3)
C7	0.036 (4)	0.042 (5)	0.036 (5)	-0.001 (4)	0.007 (4)	-0.001 (4)
C8	0.042 (5)	0.051 (5)	0.043 (5)	-0.001 (4)	0.006 (4)	-0.006 (4)
С9	0.039 (5)	0.047 (5)	0.048 (5)	0.001 (4)	0.010 (4)	-0.004(4)
C10	0.034 (4)	0.040 (4)	0.035 (4)	0.004 (3)	0.008 (4)	0.006 (3)
C11	0.042 (5)	0.045 (5)	0.051 (5)	0.007 (4)	0.015 (4)	0.000 (4)
C12	0.043 (5)	0.041 (5)	0.046 (5)	-0.003 (4)	0.004 (4)	-0.004(4)
C13	0.038 (5)	0.050 (5)	0.040 (5)	-0.003 (4)	0.005 (4)	0.011 (4)
C14	0.036 (5)	0.055 (6)	0.062 (6)	0.013 (4)	0.006 (4)	0.000 (5)
C15	0.038 (5)	0.045 (5)	0.040 (5)	0.006 (4)	0.006 (4)	-0.004(4)
C16	0.067 (7)	0.051 (6)	0.066 (7)	0.013 (5)	0.028 (5)	0.005 (5)
C17	0.034 (5)	0.086 (8)	0.065 (7)	-0.001 (5)	-0.004 (5)	0.013 (6)
S1	0.0551 (15)	0.0354 (12)	0.0503 (14)	-0.0034 (10)	0.0081 (11)	-0.0015 (10)
N1	0.038 (4)	0.040 (4)	0.078 (6)	0.005 (3)	0.010 (4)	-0.012 (4)
N2	0.030 (4)	0.048 (4)	0.053 (5)	-0.001 (3)	0.001 (3)	-0.004 (3)
N3	0.035 (4)	0.054 (5)	0.052 (5)	-0.006 (3)	0.002 (3)	-0.007 (4)
01	0.099 (6)	0.059 (4)	0.057 (4)	-0.025 (4)	0.033 (4)	0.004 (3)
O2	0.081 (5)	0.037 (3)	0.073 (5)	0.004(3)	0.010 (4)	-0.013(3)

Geometric parameters (Å, °)

C1—C6	1.378 (11)	C10—C15	1.391 (11)	
C1—C2	1.421 (12)	C11—C12	1.394 (12)	
C1—N1	1.424 (11)	C11—H11	0.9300	
C2—C3	1.366 (13)	C12—C13	1.378 (12)	
C2—H2	0.9300	C12—H12	0.9300	
C3—C4	1.362 (13)	C13—C14	1.377 (13)	
С3—Н3	0.9300	C13—C17	1.517 (12)	
C4—C5	1.359 (12)	C14—C15	1.398 (12)	
C4—H4	0.9300	C14—H14	0.9300	
C5—C6	1.388 (11)	C15—H15	0.9300	
С5—Н5	0.9300	C16—N1	1.445 (11)	
C6—C7	1.493 (11)	C16—H16A	0.9600	
C7—N2	1.278 (10)	C16—H16B	0.9600	
С7—С8	1.502 (12)	C16—H16C	0.9600	
C8—S1	1.757 (9)	C17—H17A	0.9600	
C8—H8A	0.9700	C17—H17B	0.9600	
C8—H8B	0.9700	C17—H17C	0.9600	
C9—N3	1.280 (11)	S1—O1	1.414 (7)	
C9—C10	1.459 (12)	S1—O2	1.430 (6)	
С9—Н9	1.10 (10)	S1—N1	1.632 (8)	
C10—C11	1.390 (12)	N2—N3	1.410 (9)	
C6—C1—C2	118.7 (7)	C13—C12—C11	120.3 (8)	
C6—C1—N1	122.8 (7)	C13—C12—H12	119.8	
C2-C1-N1	118.4 (7)	C11—C12—H12	119.8	
C3—C2—C1	119.5 (8)	C14—C13—C12	119.3 (8)	
С3—С2—Н2	120.2	C14—C13—C17	120.8 (9)	
C1—C2—H2	120.2	C12—C13—C17	120.0 (9)	
C4—C3—C2	121.5 (8)	C13—C14—C15	121.5 (8)	
С4—С3—Н3	119.2	C13—C14—H14	119.3	
С2—С3—Н3	119.2	C15—C14—H14	119.3	
C5—C4—C3	119.1 (8)	C10-C15-C14	119.0 (8)	
C5—C4—H4	120.4	C10-C15-H15	120.5	
C3—C4—H4	120.4	C14—C15—H15	120.5	
C4—C5—C6	122.0 (8)	N1—C16—H16A	109.5	
С4—С5—Н5	119.0	N1-C16-H16B	109.5	
С6—С5—Н5	119.0	H16A—C16—H16B	109.5	
C1—C6—C5	119.2 (7)	N1-C16-H16C	109.5	
C1—C6—C7	121.6 (7)	H16A—C16—H16C	109.5	
C5—C6—C7	119.3 (7)	H16B—C16—H16C	109.5	
N2—C7—C6	117.5 (7)	С13—С17—Н17А	109.5	
N2—C7—C8	123.6 (8)	C13—C17—H17B	109.5	
С6—С7—С8	118.9 (7)	H17A—C17—H17B	109.5	
C7—C8—S1	111.0 (6)	C13—C17—H17C	109.5	
С7—С8—Н8А	109.4	H17A—C17—H17C	109.5	
S1—C8—H8A	109.4	H17B—C17—H17C	109.5	

supporting information

C7—C8—H8B S1—C8—H8B H8A—C8—H8B N3—C9—C10 N3—C9—H9 C10—C9—H9 C11—C10—C15 C11—C10—C9 C15—C10—C9 C10—C11—C12	109.4 109.4 108.0 121.7 (8) 118 (5) 120 (5) 119.6 (8) 122.5 (8) 117.9 (8) 120.3 (8)	O1—S1—O2 O1—S1—N1 O2—S1—N1 O1—S1—C8 O2—S1—C8 N1—S1—C8 C1—N1—C16 C1—N1—S1 C16—N1—S1 C7—N2—N3	117.9 (4) 111.0 (5) 108.3 (4) 107.9 (5) 110.4 (4) 99.7 (4) 123.0 (8) 115.8 (6) 120.9 (6) 113.4 (7)
C10—C11—H11	119.8	C9—N3—N2	111.1 (7)
С12—С11—Н11	119.0		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.3 (13) \\ -179.7 (9) \\ 0.4 (15) \\ -0.9 (15) \\ 1.3 (14) \\ 0.7 (12) \\ -179.9 (8) \\ -179.6 (8) \\ -0.3 (12) \\ -1.2 (13) \\ 179.1 (8) \\ -178.7 (8) \\ 0.9 (11) \\ 2.5 (11) \\ -177.9 (8) \\ 148.3 (7) \\ -33.0 (9) \\ 4.0 (13) \\ -176.4 (8) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178.7 (8) $1.1 (14)$ $-178.9 (9)$ $-0.5 (12)$ $179.8 (8)$ $-0.2 (14)$ $-60.6 (7)$ $169.2 (6)$ $55.4 (7)$ $-153.1 (9)$ $26.3 (13)$ $32.7 (11)$ $-147.9 (7)$ $57.5 (8)$ $-171.6 (6)$ $-56.1 (7)$ $-116.9 (8)$ $14.1 (9)$ $129.5 (8)$
C15—C10—C11—C12 C9—C10—C11—C12 C10—C11—C12—C13 C11—C12—C13—C14	0.3 (13) 179.9 (8) 0.6 (13) -1.3 (13)	C6—C7—N2—N3 C8—C7—N2—N3 C10—C9—N3—N2 C7—N2—N3—C9	-178.3 (7) 0.4 (12) -179.7 (7) 179.8 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C16—H16 <i>A</i> ···O2 ⁱ	0.96	2.59	3.468 (13)	153

Symmetry code: (i) *x*-1/2, -*y*+3/2, *z*-1/2.