Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Chloromethyl-6,7-dimethyl-1,2-benzoxazole

M. Kayalvizhi, ${ }^{\text {a }}$ G. Vasuki, ${ }^{\text {a }}{ }^{*}$ A. Veerareddy ${ }^{\text {b }}$ and G. Laxminarasimha ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Kunthavai Naachiar Government Arts College (W) (Autonomous), Thanjavur 613 007, India, and ${ }^{\mathbf{b}}$ Research and Development Laboratories, Suven Life Sciences Limited, Hyderabad 55, Andhra Pradesh, India Correspondence e-mail: vasuki.arasi@yahoo.com

Received 29 August 2012; accepted 18 September 2012
Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.041 ; w R$ factor $=0.120 ;$ data-to-parameter ratio $=14.6$.

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}$, the benzoisoxazole ring is almost planar (r.m.s. deviation $=0.0121 \AA$) and the chloro substituent in the side chain is anticlinal relative to the $\mathrm{N}-\mathrm{C}$ bond of the isoxazole ring. In the crystal, adjacent molecules are linked via a pair of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, forming dimers through a cyclic $R_{2}^{2}(8)$ association.

Related literature

For the biological and chemical applications of benzoxazoles, see: Ha et al. (2010); Kayalvizhi et al. (2011); Krishnaiah et al. (2009); Qu et al. (2008); Raju et al. (2002); Veerareddy et al. (2011). For graph-set analysis, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}$
$M_{r}=195.64$
Monoclinic, $C 2 / c$
$a=20.4938(15) \AA$
$b=4.1237(3) \AA$
$c=24.6361(18) \AA$
$\beta=114.151(3)^{\circ}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1999)
$T_{\text {min }}=0.932, T_{\text {max }}=0.948$
8155 measured reflections 1748 independent reflections 1396 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.035$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 120$ parameters
$w R\left(F^{2}\right)=0.120 \quad$ H-atom parameters constrained
$S=1.06 \quad \Delta \rho_{\max }=0.25 \mathrm{e} \mathrm{A}^{-3}$
1748 reflections
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.97	2.55	$3.479(3)$	160
Symmetry code: (i) $-x+\frac{1}{2},-y+\frac{1}{2},-z$.				

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

The authors thank the Sophisticated Analytical Instrument Facility, IIT-Madras, Chennai, for the single-crystal X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2231).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. pp. 1555-1573.
Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ha, K., Lim, H. S. \& Kim, H. J. (2010). Acta Cryst. E66, o2483.
Kayalvizhi, M., Vasuki, G., Ramamurthi, K., Veerareddy, A. \& Laxminarasimha, G. (2011). Acta Cryst. E67, o2999.
Krishnaiah, M., Ravi Kumar, R., Oo, T. \& Kaung, P. (2009). Acta Cryst. E65, o2324.
Qu, Y., Zhang, S., Teng, L., Xia, X. \& Zhang, Y. (2008). Acta Cryst. E64, o1210.
Raju, K. V. N., Krishnaiah, M., Kumar, N. J. \& Rao, S. N. (2002). Acta Cryst. A58, C128.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Veerareddy, A., Laxminarasimha, G., Uday, B. R. S. \& Pramod, K. D. (2011). Indian J. Chem. Sect. B, 50, 119-125.

supporting information

Acta Cryst. (2012). E68, o3008 [https://doi.org/10.1107/S1600536812039700]

3-Chloromethyl-6,7-dimethyl-1,2-benzoxazole

M. Kayalvizhi, G. Vasuki, A. Veerareddy and G. Laxminarasimha

S1. Comment

The benzoxazole ring system is one of the most common heterocycles in medicinal chemistry (Qu et al., 2008). Isoxazole derivatives bearing various substituents are known to have diverse biological activities in pharmaceutical and agricultural areas (Ha et al., 2010). In agriculture applications herbicidal activity has been identified (Raju et al., 2002) as well as fungicidal activities against some plant pathogens (Ha et al., 2010). Some derivatives are also used as semiconductors and as corrosion inhibitors in fuels and lubricants (Raju et al., 2002). They are also important intermediates in the synthesis of many complex natural products (Krishnaiah et al., 2009). Among these compounds, 3-substituted-1,2benzisoxazole and its derivatives are emerging as potential antipsychotic compounds (Kayalvizhi et al., 2011). Substituted benzoxazoles have been reported to possess diverse chemotherapeutic properties including antibiotic, antimicrobial, antiviral, antitumor and other pharmacological activities (Qu et al., 2008; Krishnaiah et al., 2009). With its extensive uses as a drug for epilepsy, its cost-effective synthesis remained a great challenge for synthetic organic chemists (Veerareddy et al., 2011). In a search for new benzisoxazole compounds with better biological activity, the title compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}$, was synthesized and its crystal structure determined, in order to examine the structure-activity effects of the chloromethyl and 6,7-dimethyl substituents on the benzoisoxazole ring.
In the structure of the title compound (Fig. 1) the benzoisoxazole ring is planar with a root mean square deviation of $0.0121 \AA$. The torsion angle $\left[\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{Cl}=121.31(19)^{\circ}\right]$ indicates that the side chain is anticlinal looking down the $\mathrm{C} 3-\mathrm{C} 10$ bond. The exocyclic angles $\mathrm{C} 10-\mathrm{C} 3-\mathrm{C} 3 a\left[129.35(19)^{\circ}\right]$ and $\mathrm{C} 3-\mathrm{C} 3 a-\mathrm{C} 4\left[137.13(19)^{\circ}\right]$ deviate significantly from the normal values and this may be due to the intramolecular non-bonded interaction between the chlorine atom and an aromatic H atom $[\mathrm{Cl} \cdots \mathrm{H} 4=3.2582(8) \AA$]. In the crystal, adjacent molecules are linked via a pair of weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 1) forming dimers through a cyclic $R^{2}{ }_{2}(8)$ association (Bernstein et al., 1995) (Fig. 2).

S2. Experimental

To a solution of 3,6,7-trimethylbenzo[d]isoxazole-2-oxide (1.0 mol) in methylene dichloride (10 ml) was added POCl_{3} $(2.0 \mathrm{~mol})$ dropwise at $20^{\circ} \mathrm{C}$ over a period of 5 min and stirred for 5 min also at $20^{\circ} \mathrm{C}$. Triethylamine (2.0 mol) was then added dropwise at $20^{\circ} \mathrm{C}$ over a period of 10 min at such a rate that the reaction temperature did not exceed $30^{\circ} \mathrm{C}$. The mixture was then stirred at reflux temperature for 48 h and cooled to $10^{\circ} \mathrm{C}$. The reaction mixture was washed with chilled water, followed by addition of a $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution to obtain a neutral pH . The aqueous layer was re-extracted with methylene chloride ($2 \times 100 \mathrm{ml}$). The combined organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under vacuum to give the crude product, which was purified by column chromatography and by crystallization (Veerareddy et al., 2011).

S3. Refinement

All the H atoms were positioned geometrically and treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ (aromatic), $0.96 \AA$ (methyl) and $0.97 \AA$ (methylene), and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ or $1.5 U_{\text {eq }}$ (parent atom).

Figure 1
The molecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 50% probability level.

Figure 2
The crystal packing of the title compound in the unit cell, viewed down the b axis, showing the molecular dimers.

3-Chloromethyl-6,7-dimethyl-1,2-benzoxazole

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{ClNO}$
$M_{r}=195.64$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=20.4938$ (15) \AA
$b=4.1237$ (3) \AA
$c=24.6361(18) \AA$
$\beta=114.151(3)^{\circ}$
$V=1899.8$ (2) \AA^{3}
$Z=8$

$$
\begin{aligned}
& F(000)=816 \\
& D_{\mathrm{x}}=1.368 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 3599 \text { reflections } \\
& \theta=2.2-25.7^{\circ} \\
& \mu=0.36 \mathrm{~mm}^{-1} \\
& T=295 \mathrm{~K} \\
& \text { Block, colourless } \\
& 0.20 \times 0.15 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker Kappa APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.932, T_{\text {max }}=0.948$

> 8155 measured reflections
> 1748 independent reflections
> 1396 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.035$
> $\theta_{\max }=25.5^{\circ}, \theta_{\min }=2.2^{\circ}$
> $h=-24 \rightarrow 24$
> $k=-4 \rightarrow 4$
> $l=-29 \rightarrow 29$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.120$
$S=1.06$
1748 reflections
120 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cl	$0.36216(3)$	$0.4407(2)$	$0.14499(3)$	$0.0810(3)$
O1	$0.11696(8)$	$0.2766(4)$	$0.03641(6)$	$0.0579(4)$
C3A	$0.19031(10)$	$0.5502(5)$	$0.11668(8)$	$0.0449(4)$
C4	$0.20916(11)$	$0.6941(5)$	$0.17240(9)$	$0.0535(5)$

H4	0.2530	0.7972	0.1919	0.064^{*}
C7	$0.07354(10)$	$0.3861(5)$	$0.11299(8)$	$0.0490(5)$
C7A	$0.12460(10)$	$0.4049(5)$	$0.08966(8)$	$0.0464(5)$
C6	$0.09376(11)$	$0.5243(5)$	$0.16895(9)$	$0.0529(5)$
C3	$0.22228(11)$	$0.5014(5)$	$0.07591(9)$	$0.0492(5)$
C5	$0.16064(12)$	$0.6770(5)$	$0.19698(9)$	$0.0560(5)$
H5	0.1723	0.7708	0.2341	0.067^{*}
N2	$0.18083(10)$	$0.3418(5)$	$0.02923(8)$	$0.0610(5)$
C8	$0.00258(12)$	$0.2276(6)$	$0.07915(10)$	$0.0667(6)$
H8A	-0.0058	0.0668	0.1038	0.100^{*}
H8B	0.0026	0.1261	0.0441	0.100^{*}
H8C	-0.0345	0.3882	0.0679	0.100^{*}
C10	$0.29367(12)$	$0.6064(6)$	$0.08013(10)$	$0.0620(6)$
H10A	0.2966	0.8413	0.0816	0.074^{*}
H10B	0.3001	0.5344	0.0452	0.074^{*}
C9	$0.04460(14)$	$0.5113(7)$	$0.20055(11)$	$0.0761(7)$
H9A	-0.0006	0.6070	0.1759	0.114^{*}
H9B	0.0656	0.6289	0.2373	0.114^{*}
H9C	0.0374	0.2895	0.2086	0.114^{*}

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Cl	$0.0488(4)$	$0.1014(6)$	$0.0848(5)$	$0.0015(3)$	$0.0190(3)$	$0.0112(4)$
O1	$0.0509(8)$	$0.0716(10)$	$0.0462(7)$	$-0.0017(7)$	$0.0147(6)$	$-0.0086(7)$
C3A	$0.0457(10)$	$0.0404(10)$	$0.0441(10)$	$0.0069(8)$	$0.0137(8)$	$0.0031(8)$
C4	$0.0503(11)$	$0.0513(12)$	$0.0505(11)$	$0.0030(9)$	$0.0123(9)$	$-0.0051(9)$
C7	$0.0434(10)$	$0.0489(12)$	$0.0491(11)$	$0.0097(9)$	$0.0134(9)$	$0.0077(9)$
C7A	$0.0471(10)$	$0.0449(11)$	$0.0403(9)$	$0.0087(8)$	$0.0107(8)$	$0.0016(8)$
C6	$0.0528(12)$	$0.0534(12)$	$0.0510(11)$	$0.0142(9)$	$0.0196(9)$	$0.0066(9)$
C3	$0.0498(11)$	$0.0469(11)$	$0.0497(11)$	$0.0075(9)$	$0.0191(9)$	$0.0045(9)$
C5	$0.0624(13)$	$0.0571(13)$	$0.0445(10)$	$0.0093(10)$	$0.0178(10)$	$-0.0053(9)$
N2	$0.0569(11)$	$0.0739(13)$	$0.0522(10)$	$0.0036(9)$	$0.0225(9)$	$-0.0040(9)$
C8	$0.0487(12)$	$0.0770(16)$	$0.0676(14)$	$-0.0030(11)$	$0.0170(10)$	$0.0022(12)$
C10	$0.0605(13)$	$0.0608(14)$	$0.0678(14)$	$0.0006(11)$	$0.0295(11)$	$0.0058(11)$
C9	$0.0754(16)$	$0.0931(19)$	$0.0708(15)$	$0.0116(14)$	$0.0411(13)$	$0.0039(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cl}-\mathrm{C} 10$	$1.776(2)$	$\mathrm{C} 6-\mathrm{C} 9$	$1.505(3)$
$\mathrm{O} 1-\mathrm{C} 7 \mathrm{~A}$	$1.363(2)$	$\mathrm{C} 3-\mathrm{N} 2$	$1.295(3)$
$\mathrm{O} 1-\mathrm{N} 2$	$1.417(2)$	$\mathrm{C} 3-\mathrm{C} 10$	$1.488(3)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	$1.372(3)$	$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4$	$1.397(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9600
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3$	$1.420(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9600
$\mathrm{C} 4-\mathrm{C} 5$	$1.361(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$	0.9600
$\mathrm{C} 4-\mathrm{H} 4$	0.9300	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.9700
$\mathrm{C} 7-\mathrm{C} 7 \mathrm{~A}$	$1.387(3)$	$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B}$	0.9700

C7-C6	1.389 (3)
C7-C8	1.498 (3)
C6-C5	1.406 (3)
C7A-O1-N2	107.37 (15)
C7A-C3A-C4	118.97 (18)
C7A-C3A-C3	103.89 (17)
C4-C3A-C3	137.13 (19)
C5-C4-C3A	117.15 (19)
C5-C4-H4	121.4
C3A-C4-H4	121.4
C7A-C7-C6	114.78 (18)
C7A-C7-C8	121.25 (18)
C6-C7-C8	123.97 (19)
O1-C7A-C3A	109.88 (17)
O1-C7A-C7	124.63 (18)
C3A-C7A-C7	125.48 (18)
C7-C6-C5	120.40 (19)
C7-C6-C9	120.5 (2)
C5-C6-C9	119.09 (19)
N2-C3-C3A	112.04 (18)
N2-C3-C10	118.61 (19)
C3A-C3-C10	129.35 (19)
C4-C5-C6	123.19 (19)
C4-C5-H5	118.4
C7A-C3A-C4-C5	0.8 (3)
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 5$	-178.2 (2)
$\mathrm{N} 2-\mathrm{O} 1-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	0.2 (2)
$\mathrm{N} 2-\mathrm{O} 1-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 7$	-178.95 (17)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1$	-179.26 (17)
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1$	0.1 (2)
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 7$	-0.1 (3)
$\mathrm{C} 3-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 7$	179.25 (18)
C6-C7-C7A-O1	177.83 (18)
C8-C7-C7A-O1	-2.3 (3)
C6-C7-C7A-C3A	-1.2 (3)
C8-C7-C7A-C3A	178.7 (2)
C7A-C7-C6-C5	1.8 (3)
C8-C7-C6-C5	-178.1 (2)

C9—H9A	0.9600
C9—H9B	0.9600
C9—H9C	0.9600
C6-C5-H5	118.4
C3-N2-O1	$106.82(16)$
C7-C8-H8A	109.5
C7-C8-H8B	109.5
H8A-C8-H8B	109.5
C7-C8-H8C	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
C3-C10-Cl	$110.08(15)$
C3-C10-H10A	109.6
Cl-C10-H10A	109.6
C3-C10-H10B	109.6
Cl-C10-H10B	109.6
H10A-C10-H10B	108.2
C6-C9-H9A	109.5
C6-C9-H9B	109.5
H9A-C9-H9B	109.5
C6-C9-H9C	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5

$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 9$	$-177.88(19)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 9$	$2.2(3)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{N} 2$	$-0.4(2)$
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{N} 2$	$178.7(2)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 10$	$179.5(2)$
$\mathrm{C} 4-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 10$	$-1.4(4)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$-1.2(3)$
$\mathrm{C} 9-\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$178.5(2)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 1$	$0.5(2)$
$\mathrm{C} 10-\mathrm{C} 3-\mathrm{N} 2-\mathrm{O} 1$	$-179.36(17)$
$\mathrm{C} 7 \mathrm{~A}-\mathrm{O} 1-\mathrm{N} 2-\mathrm{C} 3$	$-0.5(2)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 10-\mathrm{Cl}$	$-121.31(19)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 3-\mathrm{C} 10-\mathrm{Cl}$	$58.8(3)$

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.97	2.55	$3.479(3)$	160

Symmetry code: (i) $-x+1 / 2,-y+1 / 2,-z$.

