

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Hydroxy-3-methoxymethyl-5-methylbenzaldehyde

B. Gunasekaran,^a A. Jayamani,^b N. Sengottuvelan^b and G. Chakkaravarthi^c*

^aDepartment of Physics & Nano Technology, SRM University, SRM Nagar, Kattankulathur, Kancheepuram Dist, Chennai 603 203 Tamil Nadu, India, ^bDepartment of Chemistry, DDE, Alagappa University, Karaikudi 630 003, India, and ^cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India Correspondence e-mail: chakkaravarthi_2005@yahoo.com

Received 27 January 2013; accepted 28 January 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.003 Å; R factor = 0.054; wR factor = 0.181; data-to-parameter ratio = 19.2.

In the title molecule, $C_{10}H_{12}O_3$, all non-H atoms lie in a common plane (r.m.s deviation = 0.010 Å). The molecular conformation is stabilized by an intramolecular $O-H\cdots O$ hydrogen bond.

Related literature

For the biological activity of methylbenzene derivatives, see: Anbarasan *et al.* (2011); Chan & Daniels (2007). For related structures see: Wang *et al.* (2011); Kılıç *et al.* (2009); For graphset notation of hydrogen bonds, see: Bernstein *et al.* (1995).

Experimental

Crystal data C₁₀H₁₂O₃

 $M_r = 180.20$

Monoclinic, $P2_1/c$ a = 13.899 (3) Å b = 8.9184 (19) Å c = 7.5043 (16) Å B = 94.098 (6)° V = 927.8 (3) Å ³	Z = 4 Mo K α radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 295 K $0.30 \times 0.24 \times 0.20 \text{ mm}$
Data collection	

Bruker Kappa APEXII	10089 measured reflections
diffractometer	2329 independent reflections
Absorption correction: multi-scan	1213 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.050$
$T_{\min} = 0.972, \ T_{\max} = 0.981$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	121 parameters
$wR(F^2) = 0.181$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
2329 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O2−H2···O1	0.82	1.91	2.628 (3)	146

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT* (Bruker, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97* (Sheldrick, 2008).

The authors wish to acknowledge the SAIF, IIT, Madras for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6886).

References

- Anbarasan, P. M., Subramanian, M. K., Senthilkumar, P., Mohanasundaram, C., Ilangovan, V. & Sundaraganesan, N. (2011). J. Chem. Pharm. Res. 3, 597– 612.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl., 34, 1555–1573.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chan, L. & Daniels, L. (2007). Acta Cryst. E63, o2435.
- Kılıç, I., Işık, Ş., Ağar, E. & Erşahin, F. (2009). Acta Cryst. E65, o1347.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, J., Duan, E., Zhou, E., Yao, Q. & Zhang, W. (2011). Acta Cryst. E67, 01414.

supporting information

Acta Cryst. (2013). E69, o317 [doi:10.1107/S1600536813002845]

2-Hydroxy-3-methoxymethyl-5-methylbenzaldehyde

B. Gunasekaran, A. Jayamani, N. Sengottuvelan and G. Chakkaravarthi

S1. Comment

In recent days methylbenzene (toluene) and substituted methylbenzene have become very important on account of their wide range of applications in medicine and industry (Anbarasan *et al.*, 2011). For example 3-chloro-2-methylbenzene-1-sulfonylchloride shows the biological activity of hydroxysteriod dehydrogenase inhibitors (Chan & Daniels, 2007).

The geometric parameters of the compound (I), (Fig. 1) agree well with those of a reported similar structure (Wang *et al.*, 2011; Kılıç *et al.*, 2009) The molecular structure is stabilized by an intramolecular O-H..O interaction generating a six-membered ring S(6) graph-set motif (Bernstein *et al.*, 1995).

S2. Experimental

To a methanolic solution of 2-hydroxy-5-methyl-1,3-benzenedicarboxaldehyde (1g, 6mmol) decarborane (0.37, 3 mmol) was added slowly with constant stirring at room temperature in nitrogen atmosphere for 24 hours. A pale yellow solution formed after 24h and was concentrated to get the crude product. The crude product was washed well with methanol and dried in vacuum. The product was recrystallized in chloroform to get pale yellow coloured crystals suitable for single crystal XRD. yield 0.96g, 80%.

S3. Refinement

H atoms were positioned geometrically and refined using riding model with C-H = 0.93Å and $U_{iso}(H) = 1.2Ueq(C)$ for aromatic C-H, C-H = 0.97Å and $U_{iso}(H) = 1.2Ueq(C)$ for CH₂, C-H = 0.96Å and $U_{iso}(H) = 1.5Ueq(C)$ for CH₃ and O-H = 0.82Å and $U_{iso}(H) = 1.2Ueq(C)$ for OH.

Figure 1

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

2-Hydroxy-3-methoxymethyl-5-methylbenzaldehyde

Crystal data

$C_{10}H_{12}O_3$
$M_r = 180.20$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 13.899 (3) Å
<i>b</i> = 8.9184 (19) Å
c = 7.5043 (16) Å
$\beta = 94.098 \ (6)^{\circ}$
V = 927.8 (3) Å ³
Z=4

Data collection

Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.972, T_{\max} = 0.981$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.181$ F(000) = 384 $D_x = 1.290 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3221 reflections $\theta = 2.7-24.8^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 295 KBlock, yellow $0.30 \times 0.24 \times 0.20 \text{ mm}$

10089 measured reflections 2329 independent reflections 1213 reflections with $I > 2\sigma(I)$ $R_{int} = 0.050$ $\theta_{max} = 28.7^{\circ}, \theta_{min} = 2.7^{\circ}$ $h = -18 \rightarrow 18$ $k = -11 \rightarrow 12$ $l = -9 \rightarrow 9$

S = 1.032329 reflections 121 parameters 0 restraints

Primary atom site location: structure-invariant direct methods	H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.0625P)^2 + 0.4641P]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} < 0.001$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C8	0.92734 (18)	1.0908 (3)	0.1482 (4)	0.0617 (7)
H8	0.9842	1.1345	0.1959	0.074*
C1	0.85176 (16)	1.1898 (2)	0.0792 (3)	0.0459 (6)
C6	0.86550 (16)	1.3446 (3)	0.0868 (3)	0.0497 (6)
H6	0.9241	1.3825	0.1349	0.060*
C5	0.79476 (17)	1.4420 (2)	0.0250 (3)	0.0479 (6)
C4	0.70806 (16)	1.3801 (2)	-0.0467 (3)	0.0457 (6)
H4	0.6595	1.4449	-0.0906	0.055*
C3	0.69089 (16)	1.2288 (2)	-0.0558 (3)	0.0426 (5)
C2	0.76424 (16)	1.1324 (2)	0.0081 (3)	0.0438 (5)
C9	0.59741 (17)	1.1631 (3)	-0.1290 (3)	0.0536 (6)
H9A	0.6088	1.0965	-0.2275	0.064*
H9B	0.5690	1.1049	-0.0370	0.064*
C10	0.4451 (2)	1.2195 (3)	-0.2637 (4)	0.0741 (9)
H10A	0.4569	1.1579	-0.3648	0.111*
H10B	0.4030	1.3006	-0.3012	0.111*
H10C	0.4155	1.1602	-0.1759	0.111*
C7	0.8079 (2)	1.6091 (3)	0.0330 (4)	0.0687 (8)
H7A	0.7929	1.6451	0.1483	0.103*
H7B	0.7657	1.6556	-0.0576	0.103*
H7C	0.8736	1.6336	0.0132	0.103*
01	0.92264 (14)	0.9535 (2)	0.1490 (3)	0.0772 (6)
O2	0.74664 (13)	0.98329 (17)	0.0006 (3)	0.0618 (5)
H2	0.7946	0.9376	0.0410	0.093*
O3	0.53348 (12)	1.27783 (19)	-0.1888 (3)	0.0638 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C8	0.0507 (15)	0.0628 (17)	0.0718 (19)	0.0088 (12)	0.0061 (12)	0.0047 (13)
C1	0.0469 (13)	0.0412 (12)	0.0500 (14)	0.0053 (10)	0.0060 (10)	0.0027 (9)
C6	0.0463 (13)	0.0475 (14)	0.0549 (15)	-0.0047 (10)	0.0020 (10)	-0.0034 (11)
C5	0.0530 (14)	0.0374 (11)	0.0532 (14)	-0.0033 (10)	0.0039 (10)	-0.0027 (10)
C4	0.0475 (13)	0.0361 (11)	0.0535 (14)	0.0042 (9)	0.0028 (10)	0.0029 (10)
C3	0.0475 (12)	0.0357 (11)	0.0449 (13)	-0.0051 (9)	0.0059 (9)	0.0007 (9)
C2	0.0515 (13)	0.0319 (11)	0.0487 (13)	-0.0005 (9)	0.0086 (10)	0.0017 (9)
C9	0.0560 (14)	0.0406 (12)	0.0638 (16)	-0.0052 (11)	0.0027 (12)	0.0040 (11)
C10	0.0586 (17)	0.0758 (19)	0.085 (2)	-0.0147 (14)	-0.0139 (14)	0.0095 (16)
C7	0.0728 (18)	0.0374 (13)	0.095 (2)	-0.0071 (12)	-0.0003 (15)	-0.0078 (13)

supporting information

01 02 03	0.0704 (13) 0.0665 (12) 0.0500 (10)	0.0538 (12) 0.0333 (9) 0.0528 (10)	0.1080 (18) 0.0858 (14) 0.0858 (13)	0.0216 (9) 0.0009 (7) -0.0075 (8)	0.0109 (11) 0.0063 (10) -0.0136 (9)	0.0142 (11) 0.0045 (8) 0.0087 (9)
Geome	tric parameters (À	Î, ?)				
	1	1.227	(3)	C2—O2		1.352 (2)
C8—C	1	1.440	(3)	С9—ОЗ		1.407 (3)
С8—Н	8	0.9300)	С9—Н9А		0.9700
C1—C	2	1.391	(3)	С9—Н9В		0.9700
C1—C	6	1.394	(3)	C10—O3		1.413 (3)
С6—С	5	1.368	(3)	C10—H10A		0.9600
С6—Н	6	0.9300)	C10—H10B		0.9600
С5—С	4	1.398	(3)	C10—H10C		0.9600
С5—С	7	1.503	(3)	С7—Н7А		0.9600
C4—C	3	1.372	(3)	С7—Н7В		0.9600
С4—Н	4	0.9300)	С7—Н7С		0.9600
С3—С	2	1.392	(3)	O2—H2		0.8200
С3—С	9	1.494	(3)			
01—C	8—C1	125.2	(3)	O3—C9—C3		110.18 (18)
O1—C	8—H8	117.4		О3—С9—Н9А		109.6
C1—C	8—H8	117.4		С3—С9—Н9А		109.6
С2—С	1—C6	119.6	(2)	O3—C9—H9B		109.6
С2—С	1—C8	120.5	(2)	С3—С9—Н9В		109.6
С6—С	1—C8	119.9	(2)	Н9А—С9—Н9В		108.1
С5—С	5—C6—C1 121.5 (2)		O3—C10—H10A		109.5	
С5—С	6—H6	119.3		O3—C10—H10B 109.5		109.5
C1—C	6—H6	119.3		H10A—C10—H10E	3	109.5
С6—С	5—C4	117.3	(2)	O3—C10—H10C		109.5
C6—C	5—C7	122.3	(2)	H10A—C10—H10C		109.5
C4—C	5—C7	120.4	(2)	H10B—C10—H10C	4	109.5
С3—С	4—C5	123.3	(2)	С5—С7—Н7А		109.5
С3—С	4—H4	118.3		С5—С7—Н7В		109.5
С5—С	4—H4	118.3		Н7А—С7—Н7В		109.5
C4—C	3—C2	118.0	(2)	С5—С7—Н7С		109.5
C4—C	3—С9	123.2	(2)	Н7А—С7—Н7С		109.5
С2—С	3—С9	118.74	(19)	H7B—C7—H7C		109.5
O2—C	2—C1	121.9	(2)	С2—О2—Н2		109.5
O2—C	2—С3	117.8	(2)	C9—O3—C10		111.7 (2)
C1—C	2—С3	120.25	5 (19)			
01—C	8—C1—C2	0.9 (4))	C8—C1—C2—O2		-0.1 (3)
01—C	8—C1—C6	179.6	(2)	C6—C1—C2—C3		0.2 (3)
С2—С	1—C6—C5	-0.3 (3	3)	C8—C1—C2—C3		179.0 (2)
С8—С	1—C6—C5	-179.0) (2)	C4—C3—C2—O2		179.3 (2)
C1—C	6—C5—C4	-0.2 (3	3)	C9—C3—C2—O2		-0.1 (3)
C1—C	6—C5—C7	179.6	(2)	C4—C3—C2—C1		0.2 (3)

C6—C5—C4—C3	0.7 (3)	C9—C3—C2—C1	-179.2 (2)
C7—C5—C4—C3	-179.1 (2)	C4—C3—C9—O3	1.4 (3)
C5—C4—C3—C2	-0.8 (3)	C2—C3—C9—O3	-179.2 (2)
C5—C4—C3—C9	178.7 (2)	C3—C9—O3—C10	178.3 (2)
C6—C1—C2—O2	-178.8 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
O2—H2…O1	0.82	1.91	2.628 (3)	146
C4—H4…O3	0.93	2.38	2.736 (3)	103