organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(2H-Indazol-2-yl)-1-phenylethanone

Özden Özel Güven,^a Gökhan Türk,^a Philip D. F. Adler,^b Simon J. Coles^b and Tuncer Hökelek^c*

^aDepartment of Chemistry, Bülent Ecevit University, 67100 Zonguldak, Turkey, ^bDepartment of Chemistry, Southampton University, SO17 1BJ Southampton, England, and ^cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey

Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 3 December 2012; accepted 24 December 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.057; wR factor = 0.129; data-to-parameter ratio = 16.5.

The asymmetric unit of the title compound, $C_{15}H_{12}N_2O$, contains two independent molecules with different conformations, the phenyl ring and indazole mean plane in the two molecules forming dihedral angles of 50.82 (5) and 89.29 (6)°. In the crystal, weak $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds and $C-H\cdots \pi$ interactions consolidate the packing.

Related literature

For general background to the biological activity of indazole derivatives, see: Lebouvier *et al.* (2007); Maggio *et al.* (2011); Park *et al.* (2007); Plescia *et al.* (2010); Raffa *et al.* (2009). For related structures, see: Gerpe *et al.* (2007); Özel Güven *et al.* (2008*a*,*b*); Raffa *et al.* (2009).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{12}N_2O\\ M_r = 236.27\\ \text{Monoclinic, }P2_1/n\\ a = 9.4408 \ (3) \ \text{\AA}\\ b = 17.9636 \ (5) \ \text{\AA}\\ c = 13.9415 \ (4) \ \text{\AA}\\ \beta = 99.247 \ (4)^\circ \end{array}$

Data collection

Rigaku Saturn724+ diffractometer 23377 measured reflections 5349 independent reflections 3346 reflections with $I > 2\sigma(I)$ $R_{int} = 0.084$ 3 standard reflections every 2 min

 $0.20 \times 0.20 \times 0.20 \ \mathrm{mm}$

 $V = 2333.62 (12) \text{ Å}^3$

Mo $K\alpha$ radiation

 $\mu = 0.09 \text{ mm}^{-1}$

T = 100 K

Z = 8

intensity decay: 1%

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 325 parameters

 $wR(F^2) = 0.129$ H-atom parameters

 S = 1.02 $\Delta \rho_{max} = 0.30 \text{ e}$

 5349 reflections
 $\Delta \rho_{min} = -0.24$

325 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.30$ e Å⁻³ $\Delta \rho_{min} = -0.24$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N1A/N2A/C9A/	C10A/C15A and C10B-
C15B rings, respectively.	

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$\overline{C6A - H6A \cdots O1B^{i}}$	0.93	2.53	3.418 (2)	159
$C8A - H81 \cdots N2A^{ii}$	0.97	2.57	3.519 (3)	164
$C8A - H82 \cdots O1B^{iii}$	0.97	2.41	3.176 (2)	135
$C9B - H9B \cdots Cg1^{iv}$	0.93	2.86	3.460 (2)	123
$C3B - H3B \cdot \cdot \cdot Cg2^{v}$	0.93	2.60	3.433 (2)	149

Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) $x - \frac{1}{2}, -y - \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *CrystalClear-SM Expert* (Rigaku, 2011); cell refinement: *CrystalClear-SM Expert*; data reduction: *CrystalClear-SM Expert*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *WinGX* publication routines (Farrugia, 2012) and *PLATON* (Spek, 2009).

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No. 2012-10-03-12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5372).

References

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

- Gerpe, A., Piro, O. E., Cerecetto, H. & Gonzales, M. (2007). J. Mol. Struct. 871, 98–107.
- Lebouvier, N., Pagniez, F., Duflos, M., Le Pape, P., Na, Y. M., Le Baut, G. & Le Borgne, M. (2007). *Bioorg. Med. Chem. Lett.* 17, 3686–3689.
- Maggio, B., Raimondi, M. V., Raffa, D., Plescia, F., Cascioferro, S., Plescia, S., Tolomeo, M., Di Cristina, A., Pipitone, R. M., Grimaudo, S. & Daidone, G. (2011). *Eur. J. Med. Chem.* 46, 168–174.
- Özel Güven, Ö., Erdoğan, T., Coles, S. J. & Hökelek, T. (2008a). Acta Cryst. E64, o1358.
- Özel Güven, Ö., Tahtacı, H., Coles, S. J. & Hökelek, T. (2008b). Acta Cryst. E64, 01604.
- Park, J. S., Yu, K. A., Kang, T. H., Kim, S. & Suh, Y. G. (2007). Bioorg. Med. Chem. Lett. 17, 3486–3490.
- Plescia, S., Raffa, D., Plescia, F., Casula, G., Maggio, B., Daidone, G., Raimondi, M. V., Cusimano, M. G., Bombieri, G. & Meneghetti, F. (2010). *Arkivoc*, pp. 163–177.
- Raffa, D., Maggio, B., Cascioferro, S., Raimondi, M. V., Schillaci, D., Gallo, G., Daidone, G., Plescia, S., Meneghetti, F., Bombieri, G., Di Cristina, A., Pipitone, R. M., Grimaudo, S. & Tolomeo, M. (2009). *Eur. J. Med. Chem.* 44, 165–178.

Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o184 [doi:10.1107/S1600536812051811]

2-(2H-Indazol-2-yl)-1-phenylethanone

Özden Özel Güven, Gökhan Türk, Philip D. F. Adler, Simon J. Coles and Tuncer Hökelek

S1. Comment

Azole compounds have important biological activities. Some indazole derivatives have been known as antifungal (Lebouvier *et al.*, 2007; Park *et al.*, 2007) and antiproliferative agents (Raffa *et al.*, 2009; Plescia *et al.*, 2010; Maggio *et al.*, 2011) and crystal structures have been reported (Gerpe *et al.*, 2007; Raffa *et al.*, 2009). Crystal structures of ketones similar to the titled compound having benzimidazole ring (Özel Güven *et al.*, 2008*a*) and 1,2,4-triazole ring (Özel Güven *et al.*, 2008*b*) have been reported. Now we report the crystal structure of the title indazole derivative, (I).

The asymmetric unit of (I) contains two crystallographically independent molecules (Fig. 1), in which the bond lengths and angles are generally within normal ranges. The indazole [B (N1A/N2A/C9A-C15A) and B' (N1B/N2B/C9B-C15B)] ring systems are approximately planar with maximum deviations of -0.013 (2)Å (for atom C13A) and -0.025 (2)Å (for atom C12B), respectively. Their mean planes are oriented with respect to the phenyl [A (C2A-C7A) and A' (C2B-C7B)] rings at dihedral angles of A/B = 50.82 (5) and A'/B' = 89.29 (6) °. The dihedral angles between the rings A, A' and B, B' are A/A' = 78.52 (7) and B/B' = 62.38 (5) °. Atoms C8A and C8B are -0.048 (2) and -0.088 (2) Å away from the corresponding indazole ring planes, while atoms C1A, O1A and C1B, O1B are -0.022 (2), 0.516 (2) Å and -0.024 (2), 0.039 (1) Å away from the corresponding phenyl ring planes.

In the crystal structure, weak intermolecular C—H···O and C—H···N hydrogen bonds, and C—H··· π interactions (Table 1) consolidate the packing.

S2. Experimental

The title compound, (I), was synthesized by the reaction of 2-bromo-1-phenylethanone with 1*H*-imidazole. A mixture of 2-bromo-1-phenylethanone (0.842 g, 4.232 mmol) and 1*H*-imidazole (1 g, 8.465 mmol) was refluxed in toluene (40 ml) for 9 h. After evaporation of the solvent, the formed precipitate was purified by column chromatography using hexaneethylacetate (5:1) mixture, and then crystallized from chloroform to obtain colorless crystals suitable for X-ray analysis (yield; 0.22 g, 22%).

S3. Refinement

H atoms were positioned geometrically with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

Two independent molecules in (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

F(000) = 992

 $\theta = 3.1 - 27.5^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K

Prism, colorless

 $0.20 \times 0.20 \times 0.20 \text{ mm}$

 $D_{\rm x} = 1.345 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 15539 reflections

2-(2H-Indazol-2-yl)-1-phenylethanone

Crystal data

C₁₅H₁₂N₂O $M_r = 236.27$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.4408 (3) Å b = 17.9636 (5) Å c = 13.9415 (4) Å $\beta = 99.247$ (4)° V = 2333.62 (12) Å³ Z = 8

Data collection

Rigaku Saturn724+	$R_{\rm int} = 0.084$
diffractometer	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Radiation source: fine-focus sealed tube	$h = -12 \rightarrow 12$
Graphite monochromator	$k = -21 \rightarrow 23$
profile data from ω -scans	$l = -18 \rightarrow 18$
23377 measured reflections	3 standard reflections every 2 min
5349 independent reflections	intensity decay: 1%
3346 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from
$wR(F^2) = 0.129$	neighbouring sites
S = 1.02	H-atom parameters constrained
5349 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0558P)^2]$
325 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.30 \ m e \ m \AA^{-3}$
direct methods	$\Delta \rho_{\min} = -0.24 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1A	0.14439 (19)	0.58400 (8)	0.50109 (10)	0.0407 (5)	
N1A	0.26416 (18)	0.46418 (9)	0.42124 (11)	0.0201 (4)	
N2A	0.36687 (18)	0.49886 (9)	0.37948 (11)	0.0215 (4)	
C1A	0.2002 (2)	0.53784 (11)	0.55820 (14)	0.0229 (5)	
C2A	0.2122 (2)	0.54710 (10)	0.66507 (13)	0.0184 (4)	
C3A	0.2094 (2)	0.48688 (11)	0.72716 (14)	0.0229 (5)	
H3A	0.1993	0.4389	0.7020	0.028*	
C4A	0.2214 (2)	0.49816 (11)	0.82645 (14)	0.0255 (5)	
H4A	0.2173	0.4579	0.8678	0.031*	
C5A	0.2394 (2)	0.56951 (11)	0.86395 (14)	0.0240 (5)	
H5A	0.2482	0.5770	0.9306	0.029*	
C6A	0.2443 (2)	0.62952 (11)	0.80282 (14)	0.0239 (5)	
H6A	0.2583	0.6773	0.8283	0.029*	
C7A	0.2285 (2)	0.61847 (11)	0.70379 (14)	0.0225 (5)	
H7A	0.2286	0.6591	0.6625	0.027*	
C8A	0.2702 (2)	0.46866 (11)	0.52526 (13)	0.0236 (5)	
H81	0.3699	0.4676	0.5561	0.028*	
H82	0.2234	0.4252	0.5470	0.028*	
C9A	0.1661 (2)	0.42712 (11)	0.35829 (13)	0.0221 (5)	
H9A	0.0880	0.4003	0.3729	0.026*	
C10A	0.2049 (2)	0.43697 (10)	0.26711 (13)	0.0196 (4)	
C11A	0.1489 (2)	0.41293 (11)	0.17170 (14)	0.0236 (5)	
H11A	0.0663	0.3840	0.1595	0.028*	
C12A	0.2199 (2)	0.43368 (11)	0.09856 (14)	0.0255 (5)	
H12A	0.1849	0.4187	0.0354	0.031*	

C13A	0.3461(2)	0.47761(11)	0 11623 (14)	0.0263(5)
	0.3401 (2)	0.47701 (11)	0.11023 (14)	0.0203(3)
C14A	0.3922 0.4020 (2)	0.4900 0.50222 (11)	0.0043 0.20685 (14)	0.032
	0.4020(2)	0.50222 (11)	0.20083 (14)	0.0240 (3)
П14А С15А	0.4044	0.3314	0.2173	0.030°
CIDA	0.3296 (2)	0.48162(10)	0.28413 (13)	0.0191 (4)
OIB	0.19943 (15)	0.80396 (7)	-0.10890 (9)	0.0229 (3)
NIB	-0.01229 (18)	0.77510 (9)	-0.00267 (11)	0.0195 (4)
N2B	0.00706 (18)	0.70086 (9)	0.01224 (11)	0.0202 (4)
C1B	0.0784 (2)	0.80142 (10)	-0.15520 (13)	0.0187 (4)
C2B	0.0524 (2)	0.80064 (10)	-0.26292 (13)	0.0177 (4)
C3B	-0.0848 (2)	0.79327 (12)	-0.31651 (14)	0.0251 (5)
H3B	-0.1635	0.7880	-0.2846	0.030*
C4B	-0.1043 (2)	0.79378 (13)	-0.41696 (14)	0.0312 (5)
H4B	-0.1960	0.7887	-0.4525	0.037*
C5B	0.0122 (2)	0.80181 (12)	-0.46459 (14)	0.0267 (5)
H5B	-0.0016	0.8031	-0.5321	0.032*
C6B	0.1488 (2)	0.80796 (11)	-0.41253 (13)	0.0220 (5)
H6B	0.2271	0.8123	-0.4450	0.026*
C7B	0.1694 (2)	0.80764 (10)	-0.31214 (13)	0.0193 (4)
H7B	0.2616	0.8121	-0.2772	0.023*
C8B	-0.0503 (2)	0.80013 (12)	-0.10227 (13)	0.0220 (5)
H83	-0.0910	0.8497	-0.1028	0.026*
H84	-0.1230	0.7673	-0.1364	0.026*
C9B	0.0048 (2)	0.81611 (11)	0.07851 (13)	0.0200 (5)
H9B	-0.0025	0.8676	0.0826	0.024*
C10B	0.0357 (2)	0.76636 (11)	0.15582 (13)	0.0173 (4)
C11B	0.0610 (2)	0.77194 (11)	0.25834 (13)	0.0209 (5)
H11B	0.0627	0.8179	0.2891	0.025*
C12B	0.0828 (2)	0.70741 (11)	0.31061 (13)	0.0215 (5)
H12B	0.0969	0.7098	0.3781	0.026*
C13B	0.0847 (2)	0.63700 (11)	0.26516 (14)	0.0218 (5)
H13B	0.1013	0.5946	0.3035	0.026*
C14B	0.0627 (2)	0.62993 (11)	0.16617 (14)	0.0214 (5)
H14B	0.0651	0.5836	0.1367	0.026*
C15B	0.0363 (2)	0.69534 (11)	0.11057 (13)	0.0179 (4)
		. ,	. /	× /

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0671 (13)	0.0324 (9)	0.0216 (8)	0.0229 (9)	0.0043 (8)	0.0037 (7)
N1A	0.0220 (10)	0.0202 (9)	0.0183 (8)	0.0025 (8)	0.0036 (7)	-0.0013 (7)
N2A	0.0221 (10)	0.0222 (9)	0.0195 (9)	-0.0008 (8)	0.0015 (7)	-0.0010 (7)
C1A	0.0273 (12)	0.0217 (11)	0.0200 (10)	0.0018 (9)	0.0043 (9)	0.0035 (9)
C2A	0.0168 (11)	0.0197 (11)	0.0188 (10)	0.0016 (8)	0.0034 (8)	0.0002 (8)
C3A	0.0257 (12)	0.0185 (11)	0.0250 (11)	-0.0011 (9)	0.0052 (9)	-0.0012 (9)
C4A	0.0324 (13)	0.0230 (11)	0.0221 (10)	0.0034 (10)	0.0071 (9)	0.0051 (9)
C5A	0.0244 (12)	0.0292 (12)	0.0189 (10)	0.0055 (10)	0.0050 (9)	0.0000 (9)
C6A	0.0233 (12)	0.0211 (11)	0.0276 (11)	0.0016 (9)	0.0051 (9)	-0.0043 (9)

C7A	0.0260 (12)	0.0182 (11)	0.0241 (11)	0.0026 (9)	0.0069 (9)	0.0032 (8)
C8A	0.0270 (12)	0.0250 (11)	0.0177 (10)	0.0042 (10)	0.0001 (9)	0.0014 (9)
C9A	0.0202 (11)	0.0205 (11)	0.0257 (11)	-0.0006 (9)	0.0046 (9)	-0.0025 (9)
C10A	0.0192 (11)	0.0169 (10)	0.0223 (10)	0.0031 (9)	0.0021 (8)	-0.0028 (8)
C11A	0.0218 (12)	0.0208 (11)	0.0265 (11)	0.0000 (9)	-0.0009 (9)	-0.0041 (9)
C12A	0.0306 (13)	0.0267 (12)	0.0176 (10)	0.0044 (10)	-0.0012 (9)	-0.0048 (9)
C13A	0.0301 (13)	0.0281 (12)	0.0218 (11)	0.0043 (10)	0.0072 (9)	0.0019 (9)
C14A	0.0230 (12)	0.0230 (11)	0.0268 (11)	-0.0020 (9)	0.0009 (9)	0.0017 (9)
C15A	0.0213 (11)	0.0176 (10)	0.0174 (10)	0.0037 (8)	0.0002 (8)	-0.0010 (8)
O1B	0.0217 (8)	0.0265 (8)	0.0193 (7)	-0.0010 (6)	0.0002 (6)	-0.0010 (6)
N1B	0.0206 (10)	0.0218 (9)	0.0162 (8)	0.0006 (7)	0.0030 (7)	-0.0001 (7)
N2B	0.0209 (10)	0.0200 (9)	0.0189 (8)	0.0002 (7)	0.0003 (7)	-0.0013 (7)
C1B	0.0231 (12)	0.0121 (10)	0.0198 (10)	0.0015 (9)	-0.0002 (9)	-0.0011 (8)
C2B	0.0197 (11)	0.0151 (10)	0.0187 (9)	0.0038 (8)	0.0041 (8)	0.0001 (8)
C3B	0.0205 (12)	0.0347 (13)	0.0211 (10)	0.0012 (10)	0.0063 (9)	-0.0017 (9)
C4B	0.0217 (13)	0.0483 (15)	0.0224 (11)	0.0012 (11)	-0.0005 (9)	-0.0044 (10)
C5B	0.0301 (13)	0.0343 (13)	0.0156 (10)	0.0081 (10)	0.0032 (9)	0.0019 (9)
C6B	0.0269 (13)	0.0205 (11)	0.0210 (10)	0.0015 (9)	0.0108 (9)	0.0035 (8)
C7B	0.0174 (11)	0.0150 (10)	0.0243 (10)	0.0007 (8)	-0.0006 (9)	0.0002 (8)
C8B	0.0181 (11)	0.0291 (12)	0.0173 (10)	0.0027 (9)	-0.0010 (8)	0.0005 (9)
C9B	0.0219 (12)	0.0194 (11)	0.0191 (10)	-0.0005 (9)	0.0048 (9)	-0.0021 (8)
C10B	0.0130 (10)	0.0217 (11)	0.0170 (10)	-0.0015 (8)	0.0023 (8)	0.0005 (8)
C11B	0.0187 (11)	0.0249 (11)	0.0197 (10)	-0.0001 (9)	0.0046 (9)	-0.0030 (9)
C12B	0.0166 (11)	0.0319 (12)	0.0158 (9)	-0.0009 (9)	0.0022 (8)	-0.0009 (9)
C13B	0.0215 (11)	0.0219 (11)	0.0216 (10)	0.0013 (9)	0.0016 (9)	0.0032 (8)
C14B	0.0215 (12)	0.0187 (11)	0.0243 (11)	-0.0001 (9)	0.0047 (9)	-0.0022 (9)
C15B	0.0133 (10)	0.0243 (11)	0.0160 (9)	-0.0019 (9)	0.0023 (8)	0.0000 (8)

Geometric parameters (Å, °)

O1A—C1A	1.210 (2)	O1B—C1B	1.219 (2)
N1A—C8A	1.444 (2)	N1B—C8B	1.449 (2)
N1A—C9A	1.345 (2)	N1B—C9B	1.338 (2)
N2A—N1A	1.360 (2)	N2B—N1B	1.357 (2)
N2A—C15A	1.355 (2)	N2B—C15B	1.358 (2)
C1A—C2A	1.485 (3)	C1B—C8B	1.520 (3)
C1A—C8A	1.513 (3)	C2B—C1B	1.482 (3)
C2A—C3A	1.388 (3)	C2B—C3B	1.394 (3)
C2A—C7A	1.390 (3)	C2B—C7B	1.396 (3)
C3A—C4A	1.385 (3)	C3B—C4B	1.383 (3)
СЗА—НЗА	0.9300	C3B—H3B	0.9300
C4A—H4A	0.9300	C4B—H4B	0.9300
C5A—C4A	1.384 (3)	C5B—C4B	1.380 (3)
C5A—C6A	1.380 (3)	C5B—H5B	0.9300
C5A—H5A	0.9300	C6B—C5B	1.379 (3)
С6А—Н6А	0.9300	C6B—C7B	1.382 (2)
C7A—C6A	1.379 (3)	C6B—H6B	0.9300
C7A—H7A	0.9300	C7B—H7B	0.9300

C8A—H81	0.9700	C8B—H83	0.9700
C8A—H82	0.9700	C8B—H84	0.9700
C9A—C10A	1.389 (3)	C9B—C10B	1.395 (3)
С9А—Н9А	0.9300	C9B—H9B	0.9300
C10A—C11A	1.417 (3)	C10B—C11B	1.414 (2)
C11A—H11A	0.9300	C11B—C12B	1.367 (3)
C12A—C11A	1,360 (3)	C11B—H11B	0.9300
C12A— $H12A$	0.9300	C12B—H12B	0.9300
$C_{12}A$ $C_{12}A$	1,417(3)	C12B C12B	1.416(3)
$C_{12}A = C_{12}A$	1.717(3) 1.262(2)	C13D $C12DC13P$ $C14P$	1.410(3)
CI2A HI2A	1.302 (3)		1.508 (5)
CI3A—HI3A	0.9300	CI3B—HI3B	0.9300
CI4A—HI4A	0.9300	C14B—H14B	0.9300
C15A—C10A	1.413 (3)	C15B—C10B	1.424 (3)
C15A—C14A	1.415 (3)	C15B—C14B	1.408 (3)
N2A—N1A—C8A	119.24 (16)	N2B—N1B—C8B	117.27 (15)
C9A—N1A—N2A	114.25 (15)	C9B—N1B—N2B	114.60 (15)
C9A - N1A - C8A	12650(17)	C9B-N1B-C8B	128 12 (17)
C15A = N2A = N1A	102.99(15)	N1B N2B C15B	103.12(17)
O1A $C1A$ $C2A$	102.59(15) 122.58(18)	$\begin{array}{c} \mathbf{A1B} & \mathbf{A2B} & \mathbf{C1B} \\ \mathbf{O1B} & \mathbf{C1B} & \mathbf{C2B} \end{array}$	121 69 (18)
OIA = CIA = C2A	122.30(18) 121.80(17)	O1B - C1B - C2B	121.09 (16)
$C_{A} = C_{A} = C_{B}$	121.09(17) 115.42(10)	C_{1D} C_{1D} C_{2D}	119.03(10)
C_{2A} C_{1A} C_{1A}	115.43 (16)	C2B - C1B - C8B	118.45 (17)
C3A—C2A—C1A	122.15 (17)	C3B—C2B—C1B	122.16 (18)
C3A—C2A—C7A	119.24 (17)	C3B—C2B—C7B	119.05 (17)
C7A—C2A—C1A	118.61 (17)	C7B—C2B—C1B	118.79 (18)
С2А—С3А—Н3А	119.9	C2B—C3B—H3B	119.9
C4A—C3A—C2A	120.15 (19)	C4B—C3B—C2B	120.2 (2)
С4А—С3А—Н3А	119.9	C4B—C3B—H3B	119.9
C3A—C4A—H4A	120.1	C3B—C4B—H4B	119.9
C5A—C4A—C3A	119.87 (19)	C5B—C4B—C3B	120.1 (2)
С5А—С4А—Н4А	120.1	C5B—C4B—H4B	119.9
C4A - C5A - H5A	119.9	C4B-C5B-H5B	119.8
C6A - C5A - C4A	120.30 (18)	C6B-C5B-C4B	120.34 (18)
	110.0	C6P C5P H5P	110.9
C5A - C5A - H5A	119.9	$C_{0}B - C_{3}B - H_{3}B$	119.0
C_{A}	120.1		119.99 (19)
C/A - C6A - C5A	119.80 (19)	C5B—C6B—H6B	120.0
С/А—С6А—Н6А	120.1	С/В—С6В—Н6В	120.0
С2А—С7А—Н7А	119.7	C2B—C7B—H7B	119.8
C6A—C7A—C2A	120.60 (18)	C6B—C7B—C2B	120.31 (19)
C6A—C7A—H7A	119.7	C6B—C7B—H7B	119.8
N1A—C8A—C1A	113.68 (16)	N1B—C8B—C1B	112.07 (16)
N1A-C8A-H81	108.8	N1B-C8B-H83	109.2
N1A—C8A—H82	108.8	N1B	109.2
C1A—C8A—H81	108.8	C1B—C8B—H83	109.2
C1A—C8A—H82	108.8	C1B—C8B—H84	109.2
H81—C8A—H82	107.7	H83—C8B—H84	107.9
N1A - C9A - C10A	106 21 (18)	N1B-C9B-C10B	106 42 (17)
N1A—C9A—H9A	126.9	N1B-C9B-H9B	126.8
	140.7		140.0

С10А—С9А—Н9А	126.9	C10B—C9B—H9B	126.8
C9A—C10A—C11A	134.95 (19)	C9B-C10B-C11B	135.73 (18)
C9A—C10A—C15A	104.68 (17)	C9B-C10B-C15B	104.30 (16)
C15A—C10A—C11A	120.37 (18)	C11B—C10B—C15B	119.96 (17)
C12A—C11A—C10A	117.76 (19)	C10B—C11B—H11B	121.1
C12A—C11A—H11A	121.1	C12B—C11B—C10B	117.71 (18)
C10A—C11A—H11A	121.1	C12B—C11B—H11B	121.1
C11A—C12A—C13A	121.64 (18)	C11B—C12B—C13B	122.04 (17)
C11A—C12A—H12A	119.2	C11B—C12B—H12B	119.0
C13A—C12A—H12A	119.2	C13B—C12B—H12B	119.0
C12A—C13A—H13A	118.9	C12B—C13B—H13B	119.2
C14A—C13A—C12A	122.1 (2)	C14B—C13B—C12B	121.56 (18)
C14A—C13A—H13A	118.9	C14B—C13B—H13B	119.2
C13A—C14A—C15A	117.3 (2)	C13B—C14B—C15B	117.57 (18)
C13A—C14A—H14A	121.3	C13B—C14B—H14B	121.2
C15A—C14A—H14A	121.3	C15B—C14B—H14B	121.2
N2A—C15A—C10A	111.87 (17)	N2B-C15B-C10B	111.55 (17)
N2A— $C15A$ — $C14A$	127 32 (19)	N2B-C15B-C14B	127.32(18)
C10A - C15A - C14A	120.80(17)	C14B— $C15B$ — $C10B$	121.12(16)
			()
N2A—N1A—C8A—C1A	85.3 (2)	N2B—N1B—C8B—C1B	-77.3(2)
C9A—N1A—C8A—C1A	-96.0(2)	C9B—N1B—C8B—C1B	103.7 (2)
N2A—N1A—C9A—C10A	0.2 (2)	N2B—N1B—C9B—C10B	-1.2(2)
C8A—N1A—C9A—C10A	-178.57 (17)	C8B—N1B—C9B—C10B	177.81 (18)
C15A—N2A—N1A—C8A	178.61 (16)	C15B—N2B—N1B—C8B	-178.14 (16)
C15A—N2A—N1A—C9A	-0.3(2)	C15B—N2B—N1B—C9B	1.0 (2)
N1A—N2A—C15A—C10A	0.2 (2)	N1B-N2B-C15B-C10B	-0.4(2)
N1A—N2A—C15A—C14A	-178.65 (19)	N1B—N2B—C15B—C14B	178.66 (19)
O1A—C1A—C2A—C3A	148.4 (2)	O1B-C1B-C8B-N1B	-21.2(3)
01A—C1A—C2A—C7A	-32.3 (3)	C2B—C1B—C8B—N1B	159.71 (16)
C8A—C1A—C2A—C3A	-35.1 (3)	C3B—C2B—C1B—O1B	176.09 (18)
C8A—C1A—C2A—C7A	144.24 (19)	C3B—C2B—C1B—C8B	-4.8 (3)
01A—C1A—C8A—N1A	0.4 (3)	C7B—C2B—C1B—O1B	-4.0(3)
C2A—C1A—C8A—N1A	-176.21 (17)	C7B—C2B—C1B—C8B	175.09 (17)
C1A—C2A—C3A—C4A	179.82 (19)	C1B—C2B—C3B—C4B	179.16 (19)
C7A—C2A—C3A—C4A	0.5 (3)	C7B—C2B—C3B—C4B	-0.7 (3)
C1A—C2A—C7A—C6A	-178.09 (19)	C1B—C2B—C7B—C6B	-179.28 (17)
C3A—C2A—C7A—C6A	1.2 (3)	C3B—C2B—C7B—C6B	0.6 (3)
C2A—C3A—C4A—C5A	-1.4 (3)	C2B—C3B—C4B—C5B	-0.2 (3)
C6A—C5A—C4A—C3A	0.5 (3)	C6B—C5B—C4B—C3B	1.2 (3)
C4A—C5A—C6A—C7A	1.2 (3)	C7B—C6B—C5B—C4B	-1.3 (3)
C2A—C7A—C6A—C5A	-2.1 (3)	C5B—C6B—C7B—C2B	0.4 (3)
N1A—C9A—C10A—C11A	179.7 (2)	N1B-C9B-C10B-C11B	-177.8 (2)
N1A—C9A—C10A—C15A	-0.1 (2)	N1B-C9B-C10B-C15B	0.8 (2)
C9A—C10A—C11A—C12A	-179.0 (2)	C9B—C10B—C11B—C12B	177.4 (2)
C15A—C10A—C11A—C12A	0.6 (3)	C15B—C10B—C11B—C12B	-1.1 (3)
C13A—C12A—C11A—C10A	0.2 (3)	C10B—C11B—C12B—C13B	1.8 (3)
C14A—C13A—C12A—C11A	-0.9 (3)	C14B—C13B—C12B—C11B	-0.9 (3)

C12A—C13A—C14A—C15A N2A—C15A—C10A—C9A N2A—C15A—C10A—C11A C14A—C15A—C10A—C9A C14A—C15A—C10A—C11A	0.6 (3) -0.1 (2) -179.87 (17) 178.84 (18) -0.9 (3)	C12B—C13B—C14B—C15B N2B—C15B—C10B—C9B N2B—C15B—C10B—C11B C14B—C15B—C10B—C9B C14B—C15B—C10B—C11B N2B—C15B—C10B—C11B	-0.7 (3) -0.3 (2) 178.66 (17) -179.40 (18) -0.5 (3) 177.60 (10)
N2A—C15A—C14A—C13A	179.07 (19)	N2B—C15B—C14B—C13B	-177.60 (19)
C10A—C15A—C14A—C13A	0.3 (3)	C10B—C15B—C14B—C13B	1.4 (3)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1A/N2A/C9A/C10A/C15A and C10B-C15B rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H…A
$\overline{C6A}$ —H6 A ···O1 B^{i}	0.93	2.53	3.418 (2)	159
C8A—H81···N2A ⁱⁱ	0.97	2.57	3.519 (3)	164
C8A—H82…O1B ⁱⁱⁱ	0.97	2.41	3.176 (2)	135
$C9B$ — $H9B$ ··· $Cg1^{iv}$	0.93	2.86	3.460 (2)	123
$C3B$ — $H3B$ ···· $Cg2^{\vee}$	0.93	2.60	3.433 (2)	149

Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+1/2, y-1/2, -z+1/2; (iv) -x+1/2, y+1/2, -z+1/2; (v) x-1/2, -y-1/2, z-1/2.