organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-[Bis(4-fluorophenyl)methyl]-1-[(2E)-3phenylprop-2-en-1-yl]piperazin-1-ium 3carboxypropanoate

Channappa N. Kavitha,^a Hemmige S. Yathirajan,^a Badiadka Narayana,^b Thomas Gerber,^c Benjamin van Brecht^c and Richard Betz^c*

^aUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, ^bMangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India, and ^cNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth, 6031, South Africa Correspondence e-mail: richard.betz@webmail.co.za

Received 9 November 2012; accepted 8 January 2013

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.002 Å; R factor = 0.029; wR factor = 0.081; data-to-parameter ratio = 10.4.

In the title salt, $C_{26}H_{27}F_2N_2^+ \cdot C_4H_5O_4^-$, the piperazine N atom bearing the vinylic substituent is protonated. The piperazine ring adopts a chair conformation. In ther crystal, the succinate monoanions are connected via short $O-H \cdots O$ hydrogen bonds between the carboxylic acid and carboxylate groups into undulating chains extending along [001] and the flunarizinium monocations are attached to these chains via N^+ -H···O⁻ hydrogen bonds. C-H···O interactions connect these chains into a three-dimensional network. The shortest centroid-centroid distance of 3.7256 (10) Å was found between one of the fluorinated benzene rings and the nonfluorinated phenyl ring in the neighbouring molecule related by a glide plane.

Related literature

For pharmaceutical properties of flunarizine, see: Holmes et al. (1984); Amery (1983) and of piperazine derivatives, see: Brockunier et al. (2004); Bogatcheva et al. (2006); Elliott (2011). For related structures, see: Betz et al. (2011a,b); Dayananda et al. (2012a,b); Fillers & Hawkinson (1982); Vanier & Brisse (1983). For puckering analysis of sixmembered rings, see: Cremer & Pople (1975); Boeyens (1978). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

V = 1286.97 (4) Å³

Mo $K\alpha$ radiation

 $0.56 \times 0.29 \times 0.16 \text{ mm}$

16870 measured reflections

3619 independent reflections

3524 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 200 K

 $R_{\rm int} = 0.014$

Z = 2

Experimental

Crystal data

$C_{26}H_{27}F_2N_2^+ \cdot C_4H_5O_4^-$	
$M_r = 522.58$	
Monoclinic, Pc	
a = 10.7824 (2) Å	
b = 10.6270 (2) Å	
c = 11.2364 (2) Å	
$\beta = 91.678 \ (1)^{\circ}$	

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\min} = 0.947, \ T_{\max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of
$wR(F^2) = 0.081$	independent and constrained
S = 1.03	refinement
3619 reflections	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$
348 parameters	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$
2 restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2−H72···O1	0.96 (2)	1.73 (2)	2.6795 (16)	174 (2)
O3−H3···O1 ⁱ	0.84	1.84	2.6564 (16)	162
$C4-H4A\cdots O4^{ii}$	0.99	2.58	3.287 (3)	128
$C4 - H4B \cdots O2^{iii}$	0.99	2.39	3.3167 (19)	155
$C25 - H25 \cdots O2^{iv}$	0.95	2.53	3.4168 (19)	155
$C12-H12\cdots Cg^{v}$	0.95	2.81	3.7511 (17)	170

Symmetry codes: (i) $x, -y + 2, z + \frac{1}{2}$; (ii) $x, -y + 2, z - \frac{1}{2}$; (iii) $x, -y + 1, z - \frac{1}{2}$; (iv) $x + 1, -y + 1, z - \frac{1}{2};$ (v) $x, -y + 1, z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics:

ORTEP-3 (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

CNK thanks the University of Mysore for research facilities and the Principal of Maharani's Science College for Women for permission to do research.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2534).

References

- Amery, W. K. (1983). Headache, 23, 70-74.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Betz, R., Gerber, T., Hosten, E., Dayananda, A. S. & Yathirajan, H. S. (2011*a*). *Acta Cryst.* E67, 02783–02784.
- Betz, R., Gerber, T., Hosten, E., Dayananda, A. S., Yathirajan, H. S. & Narayana, B. (2011b). *Acta Cryst.* E67, 02587–02588.
- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Bogatcheva, E., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Barbosa, F., Einck, L., Nacy, C. A. & Protopopova, M. (2006). J. Med. Chem. 49, 3045–3048.

- Brockunier, L. L., He, J., Colwell, L. F. Jr, Habulihaz, B., He, H., Leiting, B., Lyons, K. A., Marsilio, F., Patel, R. A., Teffera, Y., Wu, J. K., Thornberry, N. A., Weber, A. E. & Parmee, E. R. (2004). *Bioorg. Med. Chem. Lett.* 14, 4763–4766.
- Bruker (2008). SADABS . Bruker Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dayananda, A. S., Dutkiewicz, G., Yathirajan, H. S., Ramesha, A. R. & Kubicki, M. (2012a). Acta Cryst. E68, o2817.
- Dayananda, A. S., Yathirajan, H. S., Keeley, A. C. & Jasinski, J. P. (2012b). Acta Cryst. E68, o2237.
- Elliott, S. (2011). Drug. Test. Anal. 3, 430-438.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Fillers, J. P. & Hawkinson, S. W. (1982). Acta Cryst. B38, 3041-3045.
- Holmes, B., Brogden, R. N., Heel, R. C., Speight, T. M. & Avery, G. S. (1984). Drugs, 27, 6-44.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Vanier, M. & Brisse, F. (1983). Acta Cryst. C39, 912-914.

supporting information

Acta Cryst. (2013). E69, o260-o261 [doi:10.1107/S1600536813000706]

4-[Bis(4-fluorophenyl)methyl]-1-[(2*E*)-3-phenylprop-2-en-1-yl]piperazin-1-ium 3-carboxypropanoate

Channappa N. Kavitha, Hemmige S. Yathirajan, Badiadka Narayana, Thomas Gerber, Benjamin van Brecht and Richard Betz

S1. Comment

Flunarizine is a drug classified as a calcium channel blocker (Amery, 1983). A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use has been published (Holmes *et al.*, 1984). Piperazines are among the most important building blocks in today's drug discovery and are found in biologically active compounds in a number of different therapeutic areas (Brockunier *et al.*, 2004; Bogatcheva *et al.*, 2006), and a review about the current pharmacological and toxicological information for piperazine derivatives is available (Elliott, 2011). The crystal structures of several related compounds are apparent in the literature (Fillers & Hawkinson, 1982; Vanier & Brisse, 1983; Betz *et al.*, 2011*a,b*; Dayananda *et al.*, 2012*a,b*). In continuation of our research about the salts of pharmacologically active compounds the title compound was synthesized and its crystal structure was determined.

Protonation of the flunarizine scaffold occurred on the nitrogen atom bearing the vinylic substituent. According to a puckering analysis (Cremer & Pople, 1975; Boeyens, 1978), the central 1,4-diazacyclohexane ring adopts a ${}^{4}C_{1}$ conformation with both nitrogen atoms acting as the flap atoms (${}^{N2}C_{N1}$). The C=C bond in the vinylic substituent is (*E*)-configured. The least-squares planes defined by the individual carbon atoms of the fluorinated phenyl moieties enclose an angle of 78.09 (8) °. The plane defined by the carbon atoms of the non-halogenated phenyl ring intersects at angles of 11.08 (8) ° and 87.51 (8) ° with the two aforementioned planes. The succinate monoanion is essentially flat (r.m.s. of all fitted non-hydrogen atoms = 0.0955 Å) with one of the carbon atoms of a methylene group deviating most from the common plane by 0.160 (1) Å (Fig. 1). The succinate monoanion adopts a zigzag conformation.

In the crystal, C–H···O contacts whose range falls by up to more than 0.3 Å below the sum of van-der-Waals radii of the atoms participating are observed next to classical hydrogen bonds of the O–H···O and N–H···O type. The C–H···O contacts are supported by both hydrogen atoms of an intracyclic methylene group bonded to the protonated nitrogen atom as well as one hydrogen atom in *ortho*-position to a fluorine atom in one of the fluorophenyl moieties as donors. The protonated carboxyl group forms a hydrogen bond to the deprotonated carboxyl group, the latter one also serving as acceptor for the N–H···O type hydrogen bonds. In addition, a C–H··· π interaction involving one of the hydrogen atoms in *meta*-position to the fluorophenyl moiety that does not contribute to the C–H···O contacts as described above as the donor and the aromtic system of the non-halogenated phenyl ring as the acceptor is apparent. Metrical parameters as well as information about the symmetry of these contacts are summarized in Table 1. In total, the entities of the title compound are connected to a three-dimensional network. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for these contacts is $DC^{1}_{1}(7)$ for the classical hydrogen bonds on the unary level. The C–H···O contacts necessitate a *DDD* descriptor on the same level. The shortest intercentroid distance between twomoiety aromatic systems was found at 3.7256 (10) Å and is apparent between one of the fluorinated and the non-

halogenated phenyl moiety in neighbouring cations.

The packing of the title compound in the crystal structure is shown in Figure 2.

S2. Experimental

Flunarizine (4.05 g, 0.01 mol) and succinic acid (1.18 g, 0.01 mol) were dissolved in hot *N*,*N*-dimethylformamide and reacted for 30 minutes. The resulting solution was allowed to cool slowly at room temperature upon which crystals of the title compound appeared in the course of several days. The latter were of sufficient quality for the X-ray diffraction studies.

S3. Refinement

Carbon-bound H atoms were placed in calculated positions (C–H 0.95 Å for aromatic and vinylic carbon atoms, C–H 0.99 Å for methylene groups and C–H 1.00 Å for the methine group) and were included in the refinement in the riding model approximation, with U(H) set to $1.2U_{eq}(C)$. The H atom of the hydroxyl group was allowed to rotate with a fixed angle around the C–O bond to best fit the experimental electron density [HFIX 147 in the *SHELX* program suite (Sheldrick, 2008)] with U(H) set to $1.5U_{eq}(O)$. The nitrogen-bound H atom was located on a difference Fourier map and refined freely.

Figure 1

The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids drawn at 50% probability level.

Figure 2

Molecular packing of the title compound, viewed along [0 0 1] (anisotropic displacement ellipsoids drawn at the 50% probability level).

4-[Bis(4-fluorophenyl)methyl]-1-[(2E)-3-phenylprop-2-en-1-yl]piperazin-1-ium 3-carboxypropanoate

Crystal data	
$C_{26}H_{27}F_2N_2^+ \cdot C_4H_5O_4^-$	F(000) = 552
$M_r = 522.58$	$D_{\rm x} = 1.349 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, Pc	Melting point = $383-378$ K
Hall symbol: P -2yc	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 10.7824 (2) Å	Cell parameters from 9972 reflections
b = 10.6270 (2) Å	$\theta = 2.6 - 29.6^{\circ}$
c = 11.2364 (2) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 91.678 \ (1)^{\circ}$	T = 200 K
$V = 1286.97 (4) Å^3$	Rectangular, yellow
Z = 2	$0.56 \times 0.29 \times 0.16 \text{ mm}$

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.947, T_{\max} = 0.985$ <i>Refinement</i>	16870 measured reflections 3619 independent reflections 3524 reflections with $I > 2\sigma(I)$ $R_{int} = 0.014$ $\theta_{max} = 29.6^{\circ}, \ \theta_{min} = 2.6^{\circ}$ $h = -14 \rightarrow 14$ $k = -14 \rightarrow 14$ $l = -15 \rightarrow 15$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.081$ S = 1.03 3619 reflections 348 parameters 2 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.1548P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.15 \text{ e} \text{ Å}^{-3}$

Special details

Refinement. Due to the absence of a strong anomalous scatterer, the Flack parameter is meaningless. Thus, Friedel opposites (3016 pairs) have been merged and the item was removed from the CIF.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
F1	0.60945 (15)	-0.00547 (14)	0.96672 (13)	0.0575 (3)	
F2	0.76769 (12)	0.30206 (12)	0.22338 (10)	0.0453 (3)	
N1	0.39495 (10)	0.42901 (11)	0.63218 (10)	0.0199 (2)	
N2	0.16828 (10)	0.57409 (11)	0.64797 (10)	0.0205 (2)	
H72	0.192 (2)	0.640 (2)	0.7023 (19)	0.028 (5)*	
C1	0.52807 (12)	0.40104 (13)	0.65297 (11)	0.0204 (2)	
H1	0.5681	0.4768	0.6903	0.024*	
C2	0.32435 (13)	0.43027 (13)	0.74174 (12)	0.0223 (2)	
H2A	0.3558	0.4980	0.7950	0.027*	
H2B	0.3351	0.3490	0.7839	0.027*	
C3	0.18784 (13)	0.45191 (13)	0.71164 (12)	0.0222 (2)	
H3A	0.1560	0.3822	0.6609	0.027*	
H3B	0.1406	0.4521	0.7859	0.027*	
C4	0.24729 (12)	0.57850 (13)	0.54108 (11)	0.0214 (2)	
H4A	0.2400	0.6623	0.5031	0.026*	
H4B	0.2181	0.5146	0.4825	0.026*	
C5	0.38119 (13)	0.55330 (13)	0.57621 (12)	0.0220 (2)	
H5A	0.4325	0.5572	0.5047	0.026*	
H5B	0.4111	0.6190	0.6325	0.026*	
C6	0.03255 (13)	0.58877 (15)	0.61516 (13)	0.0268 (3)	
H6A	0.0047	0.5155	0.5669	0.032*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

H6B	-0.0159	0.5900	0.6886	0.032*
C7	0.00768 (14)	0.70704 (15)	0.54620 (14)	0.0282 (3)
H7	0.0228	0.7860	0.5836	0.034*
C8	-0.03506 (14)	0.70463 (14)	0.43376 (14)	0.0268 (3)
H8	-0.0467	0.6237	0.3993	0.032*
C11	0.54868 (12)	0.29049 (13)	0.73680 (12)	0.0216 (2)
C12	0.60202 (14)	0.31075 (15)	0.84953 (13)	0.0274 (3)
H12	0.6246	0.3936	0.8733	0.033*
C13	0.62266 (16)	0.21099 (19)	0.92779 (14)	0.0351 (3)
H13	0.6591	0.2248	1.0047	0.042*
C14	0.58933 (17)	0.09282 (18)	0.89143 (16)	0.0365 (4)
C15	0.53618 (18)	0.06793 (16)	0.78097 (16)	0.0364 (3)
H15	0.5139	-0.0154	0.7584	0.044*
C16	0.51610(15)	0.16833 (14)	0.70341 (14)	0.0291 (3)
H16	0.4797	0.1534	0.6267	0.035*
C21	0.58957 (12)	0.37651 (12)	0.53494 (12)	0.0212 (2)
C22	0.52566 (13)	0.32091 (13)	0.43931 (13)	0.0243 (2)
H22	0.4402	0.3010	0.4460	0.029*
C23	0.58533 (15)	0.29394 (14)	0.33373 (13)	0.0279 (3)
H23	0.5418	0.2559	0.2684	0.033*
C24	0.70925 (15)	0.32415 (15)	0.32721 (14)	0.0301 (3)
C25	0.77684 (14)	0.37818 (16)	0.41996 (15)	0.0317 (3)
H25	0.8626	0.3964	0.4132	0.038*
C26	0.71468 (13)	0.40504 (15)	0.52386 (13)	0.0269 (3)
H26	0.7586	0.4437	0.5886	0.032*
C31	-0.06628(13)	0.81225 (14)	0.35691 (13)	0.0257 (3)
C32	-0.05674 (15)	0.93704 (15)	0.39524 (15)	0.0310 (3)
H32	-0.0249	0.9550	0.4731	0.037*
C33	-0.09348 (17)	1.03489 (17)	0.32034 (17)	0.0369 (3)
H33	-0.0861	1.1194	0.3471	0.044*
C34	-0.14092 (17)	1.00983 (18)	0.20662 (17)	0.0379 (4)
H34	-0.1675	1.0769	0.1562	0.046*
C35	-0.14940 (18)	0.88675 (19)	0.16704 (15)	0.0378 (4)
H35	-0.1810	0.8693	0.0890	0.045*
C36	-0.11186 (16)	0.78902 (16)	0.24134 (14)	0.0326 (3)
H36	-0.1172	0.7048	0.2132	0.039*
01	0.21803 (11)	0.76463 (10)	0.79808 (9)	0.0295 (2)
02	0.09155 (11)	0.65696 (11)	0.91333 (10)	0.0310 (2)
03	0.20616 (15)	1.03647 (13)	1.15502 (12)	0.0423 (3)
H3	0.2229	1.0913	1.2069	0.063*
04	0.35531 (19)	1.13282 (17)	1.06159 (18)	0.0694 (6)
C41	0.16219 (13)	0.74667 (13)	0.89574 (12)	0.0226 (2)
C42	0.18904 (14)	0.83825 (13)	0.99780 (12)	0.0254 (3)
H42A	0.1093	0.8623	1.0328	0.030*
H42B	0.2387	0.7939	1.0602	0.030*
C43	0.25742 (15)	0.95766 (14)	0.96455 (13)	0.0279 (3)
H43A	0.3386	0.9337	0.9325	0.034*
H43B	0.2094	1.0003	0.8999	0.034*
-				

<u>C44</u>	0.27975 ((16)	1.05070 (14)	1.06472 (14)	0.0296 (3)
Atomic	Atomic displacement parameters ($Å^2$)					
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0687 (8)	0.0515 (7)	0.0524 (7)	0.0115 (6)	0.0015 (6)	0.0322 (6)
F2	0.0511 (6)	0.0496 (6)	0.0364 (5)	0.0085 (5)	0.0228 (5)	0.0009 (5)
N1	0.0200 (5)	0.0214 (5)	0.0185 (5)	0.0035 (4)	0.0028 (4)	0.0027 (4)
N2	0.0216 (5)	0.0220 (5)	0.0178 (5)	0.0036 (4)	0.0005 (4)	-0.0015 (4)
C1	0.0204 (5)	0.0204 (5)	0.0203 (5)	0.0017 (4)	0.0001 (4)	0.0002 (4)
C2	0.0239 (6)	0.0246 (6)	0.0184 (5)	0.0038 (5)	0.0023 (4)	0.0026 (4)
C3	0.0246 (6)	0.0226 (6)	0.0197 (5)	0.0025 (5)	0.0035 (4)	0.0017 (4)
C4	0.0234 (6)	0.0248 (6)	0.0160 (5)	0.0035 (5)	0.0021 (4)	0.0011 (4)
C5	0.0228 (6)	0.0212 (6)	0.0221 (6)	0.0020 (5)	0.0017 (4)	0.0033 (4)
C6	0.0204 (6)	0.0346 (7)	0.0253 (6)	0.0044 (5)	0.0001 (5)	0.0004 (5)
C7	0.0267 (6)	0.0290 (7)	0.0288 (7)	0.0081 (5)	-0.0017 (5)	-0.0033 (5)
C8	0.0254 (6)	0.0271 (6)	0.0277 (6)	0.0009 (5)	-0.0005 (5)	-0.0010 (5)
C11	0.0207 (5)	0.0235 (6)	0.0205 (6)	0.0036 (5)	0.0010 (4)	0.0019 (5)
C12	0.0264 (6)	0.0332 (7)	0.0226 (6)	0.0017 (5)	-0.0002 (5)	0.0007 (5)
C13	0.0315 (7)	0.0496 (9)	0.0242 (7)	0.0048 (7)	-0.0009(5)	0.0089 (6)
C14	0.0359 (8)	0.0392 (8)	0.0348 (8)	0.0085 (7)	0.0061 (6)	0.0178 (7)
C15	0.0461 (9)	0.0245 (7)	0.0388 (8)	0.0033 (6)	0.0047 (7)	0.0073 (6)
C16	0.0361 (7)	0.0233 (6)	0.0278 (7)	0.0015 (5)	-0.0005 (5)	0.0017 (5)
C21	0.0223 (6)	0.0198 (6)	0.0215 (5)	0.0031 (4)	0.0027 (4)	0.0029 (4)
C22	0.0238 (6)	0.0236 (6)	0.0257 (6)	0.0004 (5)	0.0018 (5)	0.0004 (5)
C23	0.0353 (7)	0.0244 (6)	0.0240 (6)	0.0043 (5)	0.0027 (5)	-0.0003 (5)
C24	0.0353 (8)	0.0272 (7)	0.0285 (7)	0.0082 (6)	0.0118 (6)	0.0054 (5)
C25	0.0251 (6)	0.0320 (8)	0.0383 (8)	0.0043 (5)	0.0082 (6)	0.0072 (6)
C26	0.0221 (6)	0.0281 (7)	0.0304 (7)	0.0012 (5)	0.0006 (5)	0.0041 (5)
C31	0.0217 (6)	0.0297 (7)	0.0258 (6)	-0.0004 (5)	0.0000 (5)	0.0006 (5)
C32	0.0303 (7)	0.0314 (7)	0.0311 (7)	-0.0006 (6)	-0.0012 (6)	-0.0020 (6)
C33	0.0388 (8)	0.0285 (7)	0.0434 (9)	0.0013 (6)	-0.0005 (7)	0.0014 (6)
C34	0.0354 (8)	0.0396 (9)	0.0387 (8)	0.0021 (7)	-0.0011 (6)	0.0096 (7)
C35	0.0412 (8)	0.0432 (9)	0.0286 (7)	-0.0014 (7)	-0.0055 (6)	0.0041 (6)
C36	0.0358 (8)	0.0339 (8)	0.0280 (7)	-0.0027 (6)	-0.0029 (6)	-0.0013 (6)
01	0.0443 (6)	0.0237 (5)	0.0207 (4)	-0.0016 (4)	0.0052 (4)	-0.0010 (4)
O2	0.0343 (5)	0.0262 (5)	0.0328 (5)	-0.0049 (4)	0.0033 (4)	-0.0012 (4)
O3	0.0591 (8)	0.0372 (6)	0.0314 (6)	-0.0147 (6)	0.0143 (5)	-0.0140 (5)
O4	0.0814 (12)	0.0525 (9)	0.0770 (11)	-0.0382 (9)	0.0448 (10)	-0.0354 (9)
C41	0.0273 (6)	0.0185 (5)	0.0219 (5)	0.0044 (5)	-0.0009 (4)	0.0002 (4)
C42	0.0345 (7)	0.0219 (6)	0.0200 (5)	-0.0021 (5)	0.0049 (5)	-0.0017 (4)
C43	0.0377 (7)	0.0217 (6)	0.0248 (6)	-0.0033 (5)	0.0075 (5)	-0.0025 (5)
C44	0.0356 (7)	0.0221 (6)	0.0312 (7)	-0.0006 (5)	0.0061 (6)	-0.0041 (5)

Geometric parameters (Å, °)

F1—C14	1.3576 (18)	C15—C16	1.391 (2)
F2—C24	1.3625 (17)	С15—Н15	0.9500

supporting information

N1—C2	1.4663 (16)	C16—H16	0.9500
N1—C5	1.4686 (17)	C21—C22	1.3911 (19)
N1—C1	1.4776 (16)	C21—C26	1.3918 (19)
N2—C4	1.4934 (16)	C22—C23	1.3957 (19)
N2—C3	1.4944 (17)	С22—Н22	0.9500
N2—C6	1.5069 (17)	C23—C24	1.378 (2)
N2—H72	0.96 (2)	С23—Н23	0.9500
C1—C11	1.5181 (18)	C24—C25	1.379 (2)
C1—C21	1.5225 (18)	C25—C26	1.393 (2)
C1—H1	1.0000	С25—Н25	0.9500
C2—C3	1.5182 (19)	С26—Н26	0.9500
C2—H2A	0.9900	C31—C36	1.397 (2)
C2—H2B	0.9900	C31—C32	1.397 (2)
С3—НЗА	0.9900	C32—C33	1.388 (2)
С3—Н3В	0.9900	C32—H32	0.9500
C4—C5	1.5094 (19)	C33—C34	1.388 (3)
C4—H4A	0.9900	C33—H33	0.9500
C4—H4B	0.9900	C34—C35	1 384 (3)
C5—H5A	0.9900	C34—H34	0.9500
C5—H5B	0.9900	C35—C36	1 385 (2)
C6-C7	1 497 (2)	C35—H35	0.9500
C6—H6A	0.9900	C36—H36	0.9500
C6—H6B	0.9900	01-C41	1.2813 (17)
C7—C8	1 332 (2)	02-C41	1 2398 (19)
C7—H7	0.9500	03—C44	1 3150 (19)
C8-C31	1 466 (2)	03—H3	0.8400
C8—H8	0.9500	04—C44	1 195 (2)
C11—C12	1.3924 (19)	C41—C42	1.5254 (19)
C11-C16	1 394 (2)	C42-C43	1.520 (2)
C12—C13	1.391 (2)	C42—H42A	0.9900
C12—H12	0.9500	C42—H42B	0.9900
C13—C14	1 366 (3)	C43—C44	1 512 (2)
C13—H13	0.9500	C43—H43A	0.9900
C14-C15	1 377 (3)	C43—H43B	0.9900
			0.7700
C2—N1—C5	107.63 (10)	C13—C14—C15	123.04 (14)
C2-N1-C1	113.26 (10)	C14—C15—C16	118.06 (16)
C5—N1—C1	109.52 (10)	C14—C15—H15	121.0
C4-N2-C3	109.66 (10)	C16—C15—H15	121.0
C4—N2—C6	111.89 (10)	C15—C16—C11	120.84 (15)
C3—N2—C6	109.24 (11)	C15—C16—H16	119.6
C4—N2—H72	110.2 (13)	C11—C16—H16	119.6
C3—N2—H72	107.3 (13)	C22—C21—C26	118.88 (12)
C6—N2—H72	108.5 (13)	C22-C21-C1	121.80(12)
N1-C1-C11	112.18 (11)	C26—C21—C1	119.25(12)
N1—C1—C21	110.04 (10)	C21—C22—C23	120.90 (13)
C11—C1—C21	110.39 (11)	C21—C22—H22	119.6
N1—C1—H1	108.0	C23—C22—H22	119.6

C11—C1—H1	108.0	C24—C23—C22	117.97 (14)
C21—C1—H1	108.0	С24—С23—Н23	121.0
N1—C2—C3	109.77 (10)	С22—С23—Н23	121.0
N1—C2—H2A	109.7	F2-C24-C23	118.61 (15)
C3—C2—H2A	109.7	F2-C24-C25	118.12 (14)
N1—C2—H2B	109.7	C_{23} C_{24} C_{25}	123.26 (13)
C3—C2—H2B	109.7	C_{24} C_{25} C_{26}	117.53 (14)
H_2A — C_2 — H_2B	108.2	C_{24} C_{25} H_{25}	121.2
N2-C3-C2	111.13 (11)	$C_{26} = C_{25} = H_{25}$	121.2
N2-C3-H3A	109.4	$C_{21} - C_{26} - C_{25}$	121.46 (14)
C2-C3-H3A	109.4	$C_{21} = C_{26} = H_{26}$	119.3
N2-C3-H3B	109.4	C_{25} C_{26} H_{26}	119.3
$C_2 - C_3 - H_3B$	109.4	$C_{36} = C_{31} = C_{32}$	118 35 (14)
H_{3A} C_{3} H_{3B}	108.0	$C_{36} = C_{31} = C_{8}$	118.57 (14)
$N_2 - C_4 - C_5$	110.36 (10)	$C_{32} - C_{31} - C_{8}$	123.04(13)
N2-C4-H4A	109.6	C_{33} C_{32} C_{31}	120.07(15)
$C_5 - C_4 - H_4 A$	109.6	C_{33} C_{32} H_{32}	119.8
N2-C4-H4B	109.6	$C_{31} = C_{32} = H_{32}$	119.8
$C_5 - C_4 - H_4B$	109.6	$C_{32} = C_{33} = C_{34}$	120.35 (17)
H4A - C4 - H4B	108.1	C32—C33—H33	119.8
N1	110.82 (11)	C34—C33—H33	119.8
N1—C5—H5A	109 5	C_{35} C_{34} C_{33}	119.75 (16)
C4—C5—H5A	109.5	C35—C34—H34	120.1
N1-C5-H5B	109.5	C33—C34—H34	120.1
C4—C5—H5B	109.5	C_{34} C_{35} C_{36}	119.97 (16)
H5A—C5—H5B	108.1	C34—C35—H35	120.0
C7—C6—N2	111.81 (12)	С36—С35—Н35	120.0
C7—C6—H6A	109.3	C35—C36—C31	121.09 (16)
N2—C6—H6A	109.3	С35—С36—Н36	119.5
С7—С6—Н6В	109.3	C31—C36—H36	119.5
N2—C6—H6B	109.3	С44—О3—Н3	109.5
H6A—C6—H6B	107.9	O2—C41—O1	123.88 (13)
C8—C7—C6	121.77 (14)	O2—C41—C42	118.34 (12)
С8—С7—Н7	119.1	O1—C41—C42	117.73 (12)
С6—С7—Н7	119.1	C43—C42—C41	115.51 (11)
C7—C8—C31	127.63 (14)	C43—C42—H42A	108.4
С7—С8—Н8	116.2	C41—C42—H42A	108.4
С31—С8—Н8	116.2	C43—C42—H42B	108.4
C12—C11—C16	118.89 (13)	C41—C42—H42B	108.4
C12—C11—C1	119.60 (13)	H42A—C42—H42B	107.5
C16—C11—C1	121.51 (12)	C44—C43—C42	115.52 (12)
C13—C12—C11	120.76 (15)	C44—C43—H43A	108.4
C13—C12—H12	119.6	C42—C43—H43A	108.4
C11—C12—H12	119.6	C44—C43—H43B	108.4
C14—C13—C12	118.41 (15)	C42—C43—H43B	108.4
C14—C13—H13	120.8	H43A—C43—H43B	107.5
C12—C13—H13	120.8	O4—C44—O3	122.28 (15)
F1—C14—C13	119.03 (17)	O4—C44—C43	123.32 (15)

supporting information

F1—C14—C15	117.93 (18)	O3—C44—C43	114.37 (13)
C2—N1—C1—C11	45.82 (15)	C1—C11—C16—C15	179.64 (15)
C5—N1—C1—C11	165.97 (11)	N1-C1-C21-C22	-32.40 (17)
C2—N1—C1—C21	169.14 (11)	C11—C1—C21—C22	91.95 (15)
C5—N1—C1—C21	-70.72 (13)	N1-C1-C21-C26	150.61 (12)
C5—N1—C2—C3	62.13 (13)	C11—C1—C21—C26	-85.03 (15)
C1—N1—C2—C3	-176.65 (11)	C26—C21—C22—C23	0.0 (2)
C4—N2—C3—C2	54.54 (14)	C1—C21—C22—C23	-177.01 (12)
C6—N2—C3—C2	177.49 (11)	C21—C22—C23—C24	-0.1 (2)
N1—C2—C3—N2	-59.43 (14)	C22—C23—C24—F2	-177.93 (13)
C3—N2—C4—C5	-54.17 (14)	C22—C23—C24—C25	0.7 (2)
C6—N2—C4—C5	-175.54 (11)	F2-C24-C25-C26	177.40 (13)
C2—N1—C5—C4	-62.90 (13)	C23—C24—C25—C26	-1.3 (2)
C1—N1—C5—C4	173.58 (10)	C22—C21—C26—C25	-0.5 (2)
N2-C4-C5-N1	59.60 (14)	C1—C21—C26—C25	176.52 (13)
C4—N2—C6—C7	-55.86 (15)	C24—C25—C26—C21	1.2 (2)
C3—N2—C6—C7	-177.48 (11)	C7—C8—C31—C36	-179.03 (16)
N2—C6—C7—C8	115.58 (16)	C7—C8—C31—C32	-1.4 (2)
C6—C7—C8—C31	178.37 (14)	C36—C31—C32—C33	0.9 (2)
N1-C1-C11-C12	-111.85 (14)	C8—C31—C32—C33	-176.78 (15)
C21—C1—C11—C12	125.03 (13)	C31—C32—C33—C34	0.4 (3)
N1-C1-C11-C16	68.57 (17)	C32—C33—C34—C35	-1.2 (3)
C21—C1—C11—C16	-54.55 (17)	C33—C34—C35—C36	0.7 (3)
C16—C11—C12—C13	0.0 (2)	C34—C35—C36—C31	0.6 (3)
C1—C11—C12—C13	-179.58 (13)	C32—C31—C36—C35	-1.4 (2)
C11—C12—C13—C14	0.0 (2)	C8—C31—C36—C35	176.36 (15)
C12-C13-C14-F1	179.71 (16)	O2—C41—C42—C43	-169.74 (14)
C12—C13—C14—C15	-0.1 (3)	O1—C41—C42—C43	12.88 (19)
F1-C14-C15-C16	-179.64 (16)	C41—C42—C43—C44	177.78 (13)
C13—C14—C15—C16	0.1 (3)	C42—C43—C44—O4	161.8 (2)
C14—C15—C16—C11	-0.1 (3)	C42—C43—C44—O3	-20.2 (2)
C12-C11-C16-C15	0.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	Н…А	$D \cdots A$	D—H···A
N2—H72…O1	0.96 (2)	1.73 (2)	2.6795 (16)	174 (2)
O3—H3…O1 ⁱ	0.84	1.84	2.6564 (16)	162
C4—H4A····O4 ⁱⁱ	0.99	2.58	3.287 (3)	128
C4—H4 <i>B</i> ···O2 ⁱⁱⁱ	0.99	2.39	3.3167 (19)	155
C25—H25···O2 ^{iv}	0.95	2.53	3.4168 (19)	155
C12—H12···· <i>Cg</i> ^v	0.95	2.81	3.7511 (17)	170

Symmetry codes: (i) *x*, -*y*+2, *z*+1/2; (ii) *x*, -*y*+2, *z*-1/2; (iii) *x*, -*y*+1, *z*-1/2; (iv) *x*+1, -*y*+1, *z*-1/2; (v) *x*, -*y*+1, *z*+1/2.