Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N-(5-Amino-1H-1,2,4-triazol-3-yl)-pyridine-2-carboxamide

Javier Hernández-Gil, ${ }^{\text {a }}$ Sacramento Ferrer, ${ }^{\text {a }}$ Rafael Ballesteros ${ }^{\text {b }}$ and Alfonso Castiñeiras ${ }^{\text {c* }}$
àDepartament de Química Inorgànica, Universitat de València, Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain, ${ }^{\text {b }}$ Departament de Química Orgànica, Universitat de València, Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain, and ${ }^{\mathbf{c}}$ Deptament de Química Inorgánica, Universitat de Santiago de Compostela, Campus vida, Santiago de Compostela, Galicia, 15782, Spain
Correspondence e-mail: alfonso.castineiras@usc.es

Received 18 December 2012; accepted 2 January 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.038 ; \omega R$ factor $=0.107$; data-to-parameter ratio $=10.3$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}$, was obtained by the reaction of 3,5-diamino-1,2,4-triazole with ethyl 2-picolinate in a glass oven. The dihedral angles formed between the plane of the amide group and the pyridine and triazole rings are 11.8 (3) and $5.8(3)^{\circ}$, respectively. In the crystal, an extensive system of classical $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate an infinite three-dimensional network.

Related literature

For background to triazole derivatives, see: Aromí et al. (2011); Olguín et al. (2012). For related triazole structures, see: Allouch et al. (2008); Ouakkaf et al. (2011). For structures of metal complexes with related triazoles, see: Ferrer et al. (2004, 2012). For the synthesis of triazoles, see: Chernyshev et al. (2005). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}$	$Z=8$
$M_{r}=204.20$	Mo $K \alpha$ radiation
Tetragonal, $P 4_{1} 2_{1} 2$	$\mu=0.10 \mathrm{~mm}^{-1}$
$a=9.5480(5) \AA$	$T=293 \mathrm{~K}$
$c=21.9570(9) \AA$	$0.15 \times 0.09 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
4484 measured reflections
1407 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.107$
$S=1.07$
1407 reflections

137 parameters
H-atom parameters constrained
915 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.048$
$\Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{~N} 23^{\mathrm{i}}$	0.86	2.02	$2.788(3)$	149
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{O} 17^{\mathrm{i}}$	0.86	2.41	$3.061(3)$	133
$\mathrm{~N} 18-\mathrm{H} 18 \cdots \mathrm{~N} 20^{\mathrm{ii}}$	0.86	2.45	$3.253(3)$	155
N22-H22A $\cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.08	$2.860(3)$	150
N22-H22B $\cdots \mathrm{N} 20^{\text {iii }}$	0.86	2.26	$3.068(3)$	157
Symmetry codes:	(i)	$-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{4} ;$	(ii) $-y,-x,-z+\frac{1}{2} ;$	(iii)
$-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{4}$.				

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO and SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg \& Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

This work was supported by the Ministerio de Educación y Ciencia (MEC, Spain) (project CTQ2007-63690/BQU) and by the Ministerio de Ciencia e Innovación and FEDER-EC (project MAT2010-15594). JHG acknowledges a PhD grant (project CTQ2007-63690/BQU, MEC, Spain). Technical support (X-ray measurements at S.C.S.I.E., University of Valencia) from M. Liu-González is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2547).

References

Allouch, F., Zouari, F., Chabchoub, F. \& Salem, M. (2008). Acta Cryst. E64, 0684.

Aromí, G., Barrios, L., Roubeuau, O. \& Gámez, P. (2011). Coord. Chem. Rev. 255, 485-546.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brandenburg, K. \& Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chernyshev, V. M., Rakitov, V. A., Taranushich, V. A. \& Blinov, V. V. (2005). Chem. Heterocycl. Compd, 41, 1139-1146.
Ferrer, S., Ballesteros, R., Sambartolomé, A., González, M., Alzuet, M. G., Borrás, J. \& Liu, M. (2004). J. Inorg. Biochem. 98, 1436-1446.
Ferrer, S., Lloret, F., Pardo, E., Clemente-Juan, J. M., Liu-González, M. \& García-Granda, S. (2012). Inorg. Chem. 51, 985-1001.
Nonius (1998). COLLECT. Nonius BV, Delft. The Netherlands.
Olguín, J., Kalisz, J. M., Clé, R. \& Brooker, S. (2012). Inorg. Chem. 51, 50585069.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzimology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Cortes Jr \& R. M. Sweet, pp 307-326. New York: Academic Press.

organic compounds

Ouakkaf, A., Berrah, F., Bouacida, S. \& Roisnel, T. (2011). Acta Cryst. E67, o1171-o1172.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o227-o228 [doi:10.1107/S1600536813000123]

N -(5-Amino-1 H-1,2,4-triazol-3-yl)pyridine-2-carboxamide

Javier Hernández-Gil, Sacramento Ferrer, Rafael Ballesteros and Alfonso Castiñeiras

S1. Comment

A significantly large variety of 1,2,4-triazole-based compounds have been prepared to serve as ligands with the aim of obtaining discrete polynuclear metal complexes or polymeric coordination networks, owing to the ability of the 1,2,4triazole ring to bridge metal ions through different coordination ways (Aromí et al., 2011; Olguín et al., 2012). Usually the 1,2,4-triazole-based family of ligands are classified in three categories (Aromí et al., 2011): (a) those containing an unique coordinative ring, (b) those possessing two or more coordinative rings linked by a spacer, and (c) the mixed ligands, which present two or more functional groups. Most of the 3,5-disubstituted derivatives can be included in the last category (Allouch et al., 2008; Ouakkaf et al., 2011).
Our group has been reporting on the synthesis and structure of some 3,5-disubstituted triazole-based ligands, i.e. 5-amino-3-pyridin-2-yl-1,2,4-triazole (Ferrer et al., 2004) and 3-acetylamino-5-amino-1,2,4-triazole (Ferrer et al., 2012). In those cases, single crystals of the ligands suitable for X-ray analysis were not obtained. Instead, crystal structures of some of their $\mathrm{Cu}^{\mathrm{II}}$ complexes could be determined, thus confirming the structure of the triazole, either in neutral or in anionic form. In this work we describe a novel compound of this series, namely: 5-amino-3-picolinamido-1H-1,2,4-triazole or 5-amino-3-(pyridin-2-yl-acetamido)-1 H-1,2,4-triazole (abbreviated as $\mathrm{H}_{2} \mathrm{~V}$ to account for the presence of two acidic H atoms), for which it has been possible to solve the crystal structure.
The obtained $\mathrm{H}_{2} \mathrm{~V}$ species is an attractive ligand since it presents 5 to 7 donor atoms (depending on the degree of deprotonation) but also the possibility of forming different chelating rings when coordinated to metals. Besides, in metal complexes the pyridyl ring often rotates around the single $\mathrm{C}-\mathrm{C}$ bond leading to different binding conformations (Ouakkaf et al., 2011). This enlarges its capability to produce novel metal-organic structures.

As shown in Figure 1, the NH hydrogen is trans to the $\mathrm{C}=\mathrm{O}$ group, as is observed for all N monosustituted amides. Molecular dimensions, such as the $\mathrm{C}=\mathrm{O}$ bond length of 1.227 (3) \AA and the central $\mathrm{C}-\mathrm{N}-\mathrm{C}$ amide angle of 127.40 (17) ${ }^{\circ}$, may be considered normal.
In the crystal packing, the triazole ligands are linked by pairs of weak $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds involving the H 18 and N 20 atoms, thus generating a characteristic $R^{2}{ }_{2}(8)$ ring motif (Bernstein et al., 1995) (Fig. 2). Moreover, the molecules are also linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming fused non-centrosymmetric rings $R^{2}{ }_{2}(7), R^{2}{ }_{1}(6)$ and $R^{1}{ }_{2}(6)$ and giving rise to one-dimensional tapes parallel to the [010] and [100] directions (Fig. 3). These tapes joined by the $\mathrm{R}_{2}{ }^{2}(8)$ motif of $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds form a three dimensional framework (Fig.4).

S2. Experimental

An evaporating flask containing 3,5-diamino-1,2,4-triazole ($41.4 \mathrm{mmol}, 4.10 \mathrm{~g}$) and ethyl 2-picolinate ($6.3 \mathrm{ml}, 7 \mathrm{~g}, 46.3$ mmol) was connected to a glass oven and the reaction temperature was slowly raised to $210^{\circ} \mathrm{C}$. The mixture was stirred (rotated) for 4 h . At this point, a vacuum pump was connected during 60 minutes to remove the excess of ethyl 2picolinate. Afterwards, the reaction was cooled down to room temperature and the mixture solidified. The crude product
was washed with ethanol and acetone and then recrystallized from methanol to give analytically pure crystals.

S3. Refinement

All H atoms were positioned geometrically and were treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of 0.93 \AA and $\mathrm{N}-\mathrm{H}$ distances of $0.86 \AA$ with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C} / \mathrm{N})$. In the absence of significant anomalous dispersion, Friedel pairs were merged.

Figure 1

Molecular structure of the title molecule with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.

Figure 2
Scheme with details of the crossing of two chains of molecules (along the $c b$ plane). Hydrogen bonds are shown as dashed lines. Symmetry code: (ii) $-y,-x,-z+1 / 2$

Figure 3
Tapes of title molecules via $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions seen along the [100] direction. Hydrogen bonds are shown as orange dashed lines.

Figure 4
A view of the unit-cell content of the title compound in projection down the b axis. Hydrogen bonds are shown as dashed lines.

N -(5-Amino-1 H-1,2,4-triazol-3-yl)pyridine-2-carboxamide

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{6} \mathrm{O}$
$M_{r}=204.20$
Tetragonal, $P 4_{1} 2_{1} 2$
Hall symbol: P 4abw 2nw
$a=9.5480$ (5) Å
$c=21.9570(9) \AA$
$V=2001.69(17) \AA^{3}$
$Z=8$
$F(000)=848$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 9 pixels mm^{-1}
$D_{\mathrm{x}}=1.355 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 494(1) K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2353 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colourless
$0.15 \times 0.09 \times 0.05 \mathrm{~mm}$
ω and phi scans
4484 measured reflections
1407 independent reflections
915 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$

$$
\begin{aligned}
& \theta_{\max }=27.5^{\circ}, \theta_{\min }=2.3^{\circ} \\
& h=-12 \rightarrow 12
\end{aligned}
$$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.107$
$S=1.07$
1407 reflections
137 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$k=-8 \rightarrow 8$
$l=-28 \rightarrow 27$

Secondary atom site location: difference Fourier map
Hydrogen site location: difference Fourier map
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0557 P)^{2}+0.0085 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.12$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.13$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.013 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}} * / U_{\mathrm{eq}}$
O17	$0.1793(2)$	$0.33529(18)$	$0.25244(8)$	$0.0726(6)$
N11	$0.0462(3)$	$0.1210(3)$	$0.36912(9)$	$0.0708(7)$
N18	$0.1596(2)$	$0.09855(19)$	$0.25946(8)$	$0.0513(5)$
H18	0.1399	0.0318	0.2843	0.062^{*}
N20	$0.2076(2)$	$-0.0746(2)$	$0.18712(8)$	$0.0495(5)$
N21	$0.2450(2)$	$-0.0695(2)$	$0.12653(8)$	$0.0503(5)$
H21	0.2593	-0.1412	0.1036	0.060^{*}
N22	$0.2887(3)$	$0.1049(2)$	$0.05253(9)$	$0.0797(9)$
H22A	0.3046	0.0438	0.0246	0.096^{*}
H22B	0.2939	0.1928	0.0442	0.096^{*}
N23	$0.2279(2)$	$0.14920(19)$	$0.15549(8)$	$0.0543(6)$
C12	$-0.0006(4)$	$0.1273(4)$	$0.42633(13)$	$0.0885(11)$
H12	-0.0387	0.0467	0.4434	0.106^{*}
C13	$0.0043(4)$	$0.2465(4)$	$0.46156(14)$	$0.0871(10)$
H13	-0.0288	0.2460	0.5014	0.104^{*}
C14	$0.0583(5)$	$0.3637(4)$	$0.43690(15)$	$0.1011(12)$
H14	0.0627	0.4458	0.4596	0.121^{*}
C15	$0.1072(4)$	$0.3613(3)$	$0.37768(13)$	$0.0877(11)$
H15	0.1451	0.4412	0.3599	0.105^{*}
C16	$0.0983(3)$	$0.2377(3)$	$0.34567(11)$	$0.0585(7)$
C17	$0.1488(3)$	$0.2302(3)$	$0.28160(11)$	$0.0541(6)$

C19	$0.1992(2)$	$0.0590(2)$	$0.20093(10)$	$0.0463(6)$
C22	$0.2557(3)$	$0.0633(2)$	$0.10904(10)$	$0.0503(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O17	$0.1132(17)$	$0.0408(10)$	$0.0639(11)$	$-0.0008(10)$	$0.0054(11)$	$0.0032(9)$
N11	$0.0937(19)$	$0.0633(16)$	$0.0552(13)$	$-0.0053(13)$	$0.0148(12)$	$-0.0079(11)$
N18	$0.0701(14)$	$0.0370(11)$	$0.0468(11)$	$-0.0015(10)$	$0.0061(10)$	$-0.0016(9)$
N20	$0.0677(14)$	$0.0356(11)$	$0.0453(10)$	$0.0003(9)$	$0.0062(9)$	$-0.0003(9)$
N21	$0.0723(14)$	$0.0345(11)$	$0.0442(10)$	$0.0013(10)$	$0.0061(9)$	$-0.0020(8)$
N22	$0.147(3)$	$0.0395(13)$	$0.0522(13)$	$0.0045(14)$	$0.0264(15)$	$0.0046(10)$
N23	$0.0790(15)$	$0.0351(10)$	$0.0487(11)$	$-0.0009(10)$	$0.0068(11)$	$0.0014(9)$
C12	$0.115(3)$	$0.085(2)$	$0.0647(18)$	$-0.010(2)$	$0.0275(18)$	$-0.0075(17)$
C13	$0.104(3)$	$0.093(3)$	$0.0643(18)$	$0.014(2)$	$0.0149(17)$	$-0.0163(19)$
C14	$0.148(4)$	$0.080(3)$	$0.076(2)$	$0.018(3)$	$0.009(2)$	$-0.033(2)$
C15	$0.136(3)$	$0.0541(19)$	$0.073(2)$	$0.0064(19)$	$0.0134(19)$	$-0.0150(16)$
C16	$0.0715(18)$	$0.0512(17)$	$0.0528(14)$	$0.0080(13)$	$0.0001(12)$	$-0.0059(13)$
C17	$0.0664(16)$	$0.0402(14)$	$0.0558(14)$	$0.0025(12)$	$-0.0052(12)$	$-0.0005(12)$
C19	$0.0576(15)$	$0.0364(13)$	$0.0448(13)$	$-0.0009(11)$	$0.0011(11)$	$0.0022(10)$
C22	$0.0686(17)$	$0.0355(13)$	$0.0468(13)$	$-0.0007(12)$	$0.0043(12)$	$-0.0005(11)$

Geometric parameters $\left({ }_{A},{ }^{\circ}\right)$

O17-C17	1.225 (3)	N22-H22B	0.8600
N11-C16	1.324 (3)	N23-C22	1.335 (3)
N11-C12	1.335 (3)	N23-C19	1.347 (3)
N18-C17	1.352 (3)	C12-C13	1.377 (4)
N18-C19	1.392 (3)	C12-H12	0.9300
N18-H18	0.8600	C13-C14	1.346 (5)
N20-C19	1.314 (3)	C13-H13	0.9300
N20-N21	1.378 (2)	C14-C15	1.382 (4)
N21-C22	1.329 (3)	C14-H14	0.9300
N21-H21	0.8600	C15-C16	1.376 (4)
N22-C22	1.340 (3)	C15-H15	0.9300
N22-H22A	0.8600	C16-C17	1.489 (3)
C16-N11-C12	117.0 (2)	C13-C14-C15	119.6 (3)
C17-N18-C19	127.3 (2)	C13-C14-H14	120.2
C17-N18-H18	116.4	C15-C14-H14	120.2
C19-N18-H18	116.3	C16-C15-C14	118.3 (3)
C19-N20-N21	101.78 (18)	C16-C15-H15	120.9
$\mathrm{C} 22-\mathrm{N} 21-\mathrm{N} 20$	109.41 (18)	C14-C15-H15	120.9
$\mathrm{C} 22-\mathrm{N} 21-\mathrm{H} 21$	125.3	N11-C16-C15	123.1 (2)
N20-N21-H21	125.3	N11-C16-C17	116.7 (2)
$\mathrm{C} 22-\mathrm{N} 22-\mathrm{H} 22 \mathrm{~A}$	120.0	C15-C16-C17	120.2 (3)
$\mathrm{C} 22-\mathrm{N} 22-\mathrm{H} 22 \mathrm{~B}$	120.0	O17-C17-N18	123.7 (2)
$\mathrm{H} 22 \mathrm{~A}-\mathrm{N} 22-\mathrm{H} 22 \mathrm{~B}$	120.0	$\mathrm{O} 17-\mathrm{C} 17-\mathrm{C} 16$	122.1 (2)

$\mathrm{C} 22-\mathrm{N} 23-\mathrm{C} 19$	$102.32(19)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$	$123.7(3)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{H} 12$	118.1
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{H} 12$	118.1
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$118.3(3)$
$\mathrm{C} 14-\mathrm{C} 13-\mathrm{H} 13$	120.8
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{H} 13$	120.8
$\mathrm{C} 19-\mathrm{N} 20-\mathrm{N} 21-\mathrm{C} 22$	$-0.1(3)$
$\mathrm{C} 16-\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13$	$-0.8(6)$
$\mathrm{N} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$0.6(6)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-0.2(6)$
$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16$	$0.2(5)$
$\mathrm{C} 12-\mathrm{N} 11-\mathrm{C} 16-\mathrm{C} 15$	$0.8(5)$
$\mathrm{C} 12-\mathrm{N} 11-\mathrm{C} 16-\mathrm{C} 17$	$-179.3(3)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{N} 11$	$-0.5(5)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17$	$179.6(3)$
$\mathrm{C} 19-\mathrm{N} 18-\mathrm{C} 17-\mathrm{O} 17$	$-3.3(4)$
$\mathrm{C} 19-\mathrm{N} 18-\mathrm{C} 17-\mathrm{C} 16$	$177.7(2)$
$\mathrm{N} 11-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 17$	$168.9(3)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{O} 17$	$-11.3(4)$

$\mathrm{N} 18-\mathrm{C} 17-\mathrm{C} 16$	$114.1(2)$
$\mathrm{N} 20-\mathrm{C} 19-\mathrm{N} 23$	$116.0(2)$
$\mathrm{N} 20-\mathrm{C} 19-\mathrm{N} 18$	$119.6(2)$
$\mathrm{N} 23-\mathrm{C} 19-\mathrm{N} 18$	$124.4(2)$
$\mathrm{N} 21-\mathrm{C} 22-\mathrm{N} 23$	$110.5(2)$
$\mathrm{N} 21-\mathrm{C} 22-\mathrm{N} 22$	$124.6(2)$
$\mathrm{N} 23-\mathrm{C} 22-\mathrm{N} 22$	$124.9(2)$
$\mathrm{N} 11-\mathrm{C} 16-\mathrm{C} 17-\mathrm{N} 18$	$-12.1(4)$
$\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 17-\mathrm{N} 18$	$167.8(3)$
$\mathrm{N} 21-\mathrm{N} 20-\mathrm{C} 19-\mathrm{N} 23$	$-0.2(3)$
$\mathrm{N} 21-\mathrm{N} 20-\mathrm{C} 19-\mathrm{N} 18$	$178.5(2)$
$\mathrm{C} 22-\mathrm{N} 23-\mathrm{C} 19-\mathrm{N} 20$	$0.5(3)$
$\mathrm{C} 22-\mathrm{N} 23-\mathrm{C} 19-\mathrm{N} 18$	$-178.2(2)$
$\mathrm{C} 17-\mathrm{N} 18-\mathrm{C} 19-\mathrm{N} 20$	$178.4(2)$
$\mathrm{C} 17-\mathrm{N} 18-\mathrm{C} 19-\mathrm{N} 23$	$-3.0(4)$
$\mathrm{N} 20-\mathrm{N} 21-\mathrm{C} 22-\mathrm{N} 23$	$0.4(3)$
$\mathrm{N} 20-\mathrm{N} 21-\mathrm{C} 22-\mathrm{N} 22$	$-179.1(3)$
$\mathrm{C} 19-\mathrm{N} 23-\mathrm{C} 22-\mathrm{N} 21$	$-0.5(3)$
$\mathrm{C} 19-\mathrm{N} 23-\mathrm{C} 22-\mathrm{N} 22$	$179.0(3)$

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{~N} 23^{\mathrm{i}}$	0.86	2.02	$2.788(3)$	149
$\mathrm{~N} 21 — \mathrm{H} 21 \cdots \mathrm{O} 17^{\mathrm{i}}$	0.86	2.41	$3.061(3)$	133
$\mathrm{~N} 18-\mathrm{H} 18 \cdots \mathrm{~N} 20^{\mathrm{ii}}$	0.86	2.45	$3.253(3)$	155
$\mathrm{~N} 22 — \mathrm{H} 22 A \cdots \mathrm{O} 17^{\mathrm{i}}$	0.86	2.08	$2.860(3)$	150
$\mathrm{~N} 22 — \mathrm{H} 22 B \cdots \mathrm{~N} 20^{i i i}$	0.86	2.26	$3.068(3)$	157

Symmetry codes: (i) $-x+1 / 2, y-1 / 2,-z+1 / 4$; (ii) $-y,-x,-z+1 / 2$; (iii) $-x+1 / 2, y+1 / 2,-z+1 / 4$.

