

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Tosyl-4-[2-(trifluoromethyl)benzyl]piperazine

S. Sreenivasa,^a* H. C. Anitha,^a K. E. ManojKumar,^a J. Tonannavar,^b Yenagi Jayashree,^b P. A. Suchetan^c and B. S. Palakshamurthy^d

^aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, ^bDepartment of Physics, Karnatak University, Dharwad, Karnataka 580 003, India, ^cDepartment of Studies and Research in Chemistry, UCS, Tumkur University, Tumkur, Karnataka 572 103, India, and ^dDepartment of Studies and Research in Physics, UCS, Tumkur University, Tumkur, Karnataka 572 103, India

Correspondence e-mail: drsreenivasa@yahoo.co.in

Received 24 December 2012; accepted 4 January 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.042; wR factor = 0.119; data-to-parameter ratio = 13.7.

In the crystal structure of the title compound, $C_{19}H_{21}F_3N_2O_2S$, the piperazine ring adopts a chair conformation. The dihedral angles between the mean plane of the piperazine ring and the tosyl and trifluoromethylphenyl rings are 74.52 (3) and 68.30 (2)°, respectively. The sulfonamide N atom deviates from the plane defined by the three attached atoms by 0.327 (1) Å. The crystal structure is stabilized by weak C– $H \cdots \pi$ interactions.

Related literature

For the synthesis, characterization and biological activity of piperazine and its derivatives, see: Gan *et al.* (2009a,b)

Experimental

Crystal data C₁₉H₂₁F₃N₂O₂S

 $M_r = 398.44$

Triclinic, P1	
a = 9.5044 (3) Å	
b = 9.8389 (3) Å	
c = 12.1473 (4) Å	
$\alpha = 72.036 (1)^{\circ}$	
$\beta = 77.024 (1)^{\circ}$	
$\gamma = 62.384 \ (1)^{\circ}$	

Data collection

Bruker APEXII diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\min} = 0.942, \ T_{\max} = 0.950$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.042 & 245 \text{ parameters} \\ wR(F^2) = 0.119 & H\text{-atom parameters constrained} \\ S = 1.08 & \Delta\rho_{\max} = 0.18 \text{ e } \text{\AA}^{-3} \\ 3359 \text{ reflections} & \Delta\rho_{\min} = -0.53 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg is the centroid of the benzene ring of the trifluoromethylphenyl group (C1–C6).

$D - H \cdots A$	D-H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C11 - H11A \cdots Cg^{i}$	0.97	2.84 (1)	3.670 (2)	144
Symmetry code: (i) _r _	$-v \pm 1 - z \pm 1$			

Symmetry code: (i) -x, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *APEX2* and *SAINT-Plus* (Bruker, 2009); data reduction: *SAINT-Plus* and *XPREP* (Bruker, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr S. C. Sharma, Vice Chancellor, Tumkur University, Tumkur, for his constant encouragement. JT thanks DST, New Delhi, for the SCXRD facility under a PURSE Grant (SR/S9/Z-23/2008/11, 2009) at USIC, Karnatak University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2548).

References

Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Gan, L.-L., Cai, J.-L. & Zhou, C.-H. (2009a). Chin. Pharm. J. 44, 1361–1368.
 Gan, L.-L., Lu, Y.-H. & Zhou, C.-H. (2009b). Chin. J. Biochem. Pharm. 30, 127–131.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

organic compounds

 $V = 952.96(5) \text{ Å}^3$

Mo $K\alpha$ radiation

 $0.28 \times 0.26 \times 0.24$ mm

18514 measured reflections 3359 independent reflections 2981 reflections with $I > 2\sigma(I)$

 $\begin{array}{l} \mu = 0.22 \ \mathrm{mm}^- \\ T = 296 \ \mathrm{K} \end{array}$

 $R_{\rm int} = 0.023$

7 - 2

supporting information

Acta Cryst. (2013). E69, o239 [doi:10.1107/S1600536813000317]

1-Tosyl-4-[2-(trifluoromethyl)benzyl]piperazine

S. Sreenivasa, H. C. Anitha, K. E. ManojKumar, J. Tonannavar, Yenagi Jayashree, P. A. Suchetan and B. S. Palakshamurthy

S1. Comment

Numerous piperazine derivatives like aryl amide, sulfonamides, Mannich bases, Schiff bases, thiazolidinones, azetidinones, imidazolinones have shown a wide spectrum of biological activities *viz*. anti-inflammatory, antibacterial, antimalarial, anticonvulsant, antipyretic, antitumor, anthelmintics, analgesic, antidepressant, antifungal, antitubercular, anticancer, antidiabetic (Gan *et al.*, 2009*a*,*b*). Keeping this in mind, we synthesized the title compound and here we report its crystal structure.

S2. Experimental

A mixture of 1-tosylpiperazine (0.01 mmol), potassium carbonate (0.03 mmol) and 2-trifluoromethylbenzyl bromide (0.01 mmol) was added into dry acetonitrile (5 ml). The mixture was stirred at 85°C for 8 h. The reaction was monitored by TLC. Solvent was removed by vacuum distillation and the crude product obtained was purified by column chromatography using 230–400 silica gel and petroleum ether/ethyl acetate as eluent. Single crystals of the title compound were obtained from a mixture of petroleum ether/ethyl acetate (7:3) by slow evaporation technique.

S3. Refinement

All H atoms were included in calculated positions with C—H bond distances 0.93–0.97 Å and refined in a riding model approximation with $U_{iso}(H) = 1.5U_{eq}(C_{methyl})$ and $U_{iso}(H) = 1.2U_{eq}(C)$ for the remaining H atoms.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Molecular packing of the title compound. C—H $\cdots \pi$ interactions are shown as dashed lines.

1-(4-Methylphenylsulfonyl)-4-[2-(trifluoromethyl)benzyl]piperazine

Crystal data	
$C_{19}H_{21}F_{3}N_{2}O_{2}S$	F(000) = 416
$M_r = 398.44$	prism
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.389 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Melting point: 455 K
a = 9.5044 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 9.8389 (3) Å	Cell parameters from 3359 reflections
c = 12.1473 (4) Å	$\theta = 1.8 - 25.0^{\circ}$
$\alpha = 72.036 (1)^{\circ}$	$\mu=0.22~\mathrm{mm^{-1}}$
$\beta = 77.024 \ (1)^{\circ}$	T = 296 K
$\gamma = 62.384 (1)^{\circ}$	Prism, colourless
V = 952.96(5) Å ³	$0.28 \times 0.26 \times 0.24$ mm
Z = 2	

Data collection

Bruker APEXII	3359 independent reflections
diffractometer	2981 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.023$
Graphite monochromator	$\theta_{\rm max} = 25.0^\circ, \theta_{\rm min} = 1.8^\circ$
φ and ω scans	$h = -11 \rightarrow 11$
Absorption correction: multi-scan	$k = -11 \rightarrow 11$
(SADABS; Bruker, 2009)	$l = -14 \rightarrow 14$
$T_{\min} = 0.942, \ T_{\max} = 0.950$	2981 standard reflections every 3359 reflections
18514 measured reflections	intensity decay: 0.6%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
<i>S</i> = 1.08	H-atom parameters constrained
3359 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0669P)^2 + 0.2061P]$
245 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
0 constraints	$\Delta ho_{ m max} = 0.18 \ { m e} \ { m \AA}^{-3}$
Primary atom site location: structure-invariant	$\Delta \rho_{\min} = -0.53 \text{ e} \text{ Å}^{-3}$

Special details

direct methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.1973 (2)	0.79085 (19)	1.04506 (16)	0.0524 (4)	
H1	-0.1413	0.8051	0.9723	0.063*	
C2	-0.3565 (2)	0.8200 (2)	1.0527 (2)	0.0650 (5)	
H2	-0.4054	0.8512	0.9852	0.078*	
C3	-0.4417 (2)	0.8030 (2)	1.1589 (2)	0.0692 (6)	
Н3	-0.5494	0.8269	1.1637	0.083*	
C4	-0.3681 (2)	0.7507 (2)	1.25786 (19)	0.0601 (5)	
H4	-0.4258	0.7382	1.3301	0.072*	
C5	-0.2083 (2)	0.71618 (19)	1.25148 (15)	0.0484 (4)	
C6	-0.12093 (19)	0.74094 (18)	1.14417 (14)	0.0446 (4)	
C7	-0.1307 (2)	0.6477 (3)	1.36242 (17)	0.0662 (5)	
C8	0.0483 (2)	0.7240 (3)	1.13458 (15)	0.0570 (4)	
H8A	0.0465	0.8048	1.1654	0.068*	
H8B	0.1120	0.6221	1.1819	0.068*	
C9	0.1988 (2)	0.5868 (2)	0.98362 (15)	0.0533 (4)	

H9A	0.1208	0.5447	0.9957	0.064*
H9B	0.2835	0.5124	1.0328	0.064*
C10	0.2667 (2)	0.6058 (2)	0.85784 (15)	0.0512 (4)
H10A	0.3190	0.5041	0.8378	0.061*
H10B	0.1818	0.6756	0.8079	0.061*
C11	0.3078 (2)	0.8246 (2)	0.87272 (15)	0.0549 (4)
H11A	0.2231	0.8998	0.8237	0.066*
H11B	0.3862	0.8658	0.8617	0.066*
C12	0.2407 (2)	0.8003 (2)	0.99864 (16)	0.0572 (4)
H12A	0.3265	0.7275	1.0473	0.069*
H12B	0.1908	0.9000	1.0213	0.069*
C13	0.39911 (19)	0.7588 (2)	0.60451 (14)	0.0494 (4)
C14	0.3464 (2)	0.6848 (2)	0.55409 (16)	0.0586 (5)
H14	0.3724	0.5776	0.5826	0.070*
C15	0.2560 (2)	0.7693 (3)	0.46208 (17)	0.0650 (5)
H15	0.2211	0.7187	0.4284	0.078*
C16	0.2156 (2)	0.9293 (3)	0.41834 (15)	0.0607 (5)
C17	0.2694 (2)	1.0018 (2)	0.46948 (16)	0.0623 (5)
H17	0.2440	1.1088	0.4407	0.075*
C18	0.3601 (2)	0.9183 (2)	0.56233 (16)	0.0564 (4)
H18	0.3947	0.9687	0.5964	0.068*
C19	0.1146 (3)	1.0231 (4)	0.3176 (2)	0.0932 (8)
H19A	0.0038	1.0616	0.3464	0.140*
H19B	0.1364	0.9567	0.2665	0.140*
H19C	0.1394	1.1108	0.2758	0.140*
N1	0.12372 (17)	0.73734 (17)	1.01560 (12)	0.0492 (3)
N2	0.38211 (16)	0.67220 (16)	0.84130 (12)	0.0482 (3)
01	0.58136 (16)	0.48817 (17)	0.72513 (13)	0.0758 (4)
02	0.60748 (16)	0.7253 (2)	0.72858 (12)	0.0771 (4)
F1	-0.05597 (17)	0.7266 (2)	1.37482 (11)	0.0944 (5)
F2	-0.23300 (18)	0.6445 (2)	1.45635 (11)	0.1050 (5)
F3	-0.02138 (19)	0.49998 (18)	1.36833 (12)	0.1020 (5)
S 1	0.51074 (5)	0.65163 (6)	0.72555 (4)	0.05661 (18)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0562 (10)	0.0455 (9)	0.0529 (10)	-0.0191 (8)	-0.0149 (8)	-0.0053 (7)
C2	0.0602 (11)	0.0482 (10)	0.0846 (14)	-0.0144 (9)	-0.0344 (11)	-0.0076 (9)
C3	0.0427 (10)	0.0585 (11)	0.1037 (17)	-0.0164 (9)	-0.0127 (11)	-0.0198 (11)
C4	0.0473 (10)	0.0564 (10)	0.0756 (13)	-0.0231 (8)	0.0041 (9)	-0.0199 (9)
C5	0.0462 (9)	0.0456 (9)	0.0517 (9)	-0.0183 (7)	-0.0002 (7)	-0.0144 (7)
C6	0.0433 (8)	0.0414 (8)	0.0475 (9)	-0.0150 (7)	-0.0060 (7)	-0.0121 (7)
C7	0.0612 (12)	0.0861 (15)	0.0477 (10)	-0.0313 (11)	0.0032 (9)	-0.0172 (10)
C8	0.0502 (10)	0.0831 (13)	0.0427 (9)	-0.0317 (9)	-0.0003 (7)	-0.0193 (9)
C9	0.0600 (10)	0.0541 (10)	0.0493 (9)	-0.0324 (9)	0.0011 (8)	-0.0084 (7)
C10	0.0595 (10)	0.0490 (9)	0.0479 (9)	-0.0269 (8)	0.0021 (8)	-0.0139 (7)
C11	0.0650 (11)	0.0588 (10)	0.0516 (10)	-0.0377 (9)	-0.0018 (8)	-0.0115 (8)

C12	0.0670 (11)	0.0690 (11)	0.0508 (10)	-0.0406 (10)	0.0005 (8)	-0.0199 (8)
C13	0.0414 (8)	0.0590 (10)	0.0397 (8)	-0.0213 (8)	0.0039 (7)	-0.0068 (7)
C14	0.0609 (11)	0.0564 (10)	0.0553 (10)	-0.0245 (9)	0.0012 (8)	-0.0146 (8)
C15	0.0638 (12)	0.0822 (14)	0.0566 (11)	-0.0333 (11)	-0.0024 (9)	-0.0254 (10)
C16	0.0500 (10)	0.0817 (14)	0.0409 (9)	-0.0236 (9)	-0.0002 (7)	-0.0119 (9)
C17	0.0643 (12)	0.0602 (11)	0.0505 (10)	-0.0255 (9)	-0.0038 (9)	-0.0002 (8)
C18	0.0604 (11)	0.0619 (11)	0.0494 (10)	-0.0326 (9)	-0.0038 (8)	-0.0068 (8)
C19	0.0775 (15)	0.124 (2)	0.0571 (13)	-0.0275 (15)	-0.0203 (11)	-0.0076 (13)
N1	0.0514 (8)	0.0605 (8)	0.0421 (7)	-0.0291 (7)	0.0010 (6)	-0.0160 (6)
N2	0.0475 (8)	0.0526 (8)	0.0414 (7)	-0.0232 (6)	-0.0020 (6)	-0.0054 (6)
01	0.0583 (8)	0.0634 (8)	0.0647 (9)	-0.0005 (7)	0.0021 (6)	-0.0076 (6)
O2	0.0539 (8)	0.1138 (12)	0.0621 (8)	-0.0461 (8)	-0.0073 (6)	-0.0008 (8)
F1	0.0980 (10)	0.1560 (14)	0.0594 (8)	-0.0745 (10)	-0.0026 (7)	-0.0361 (8)
F2	0.0923 (10)	0.1675 (15)	0.0502 (7)	-0.0651 (10)	0.0168 (7)	-0.0202 (8)
F3	0.1030 (11)	0.0919 (10)	0.0645 (8)	-0.0078 (8)	-0.0260 (7)	0.0014 (7)
S 1	0.0409 (3)	0.0670 (3)	0.0460 (3)	-0.0177 (2)	-0.00155 (18)	-0.0027 (2)

Geometric parameters (Å, °)

C1—C6	1.384 (2)	C11—N2	1.464 (2)	
C1—C2	1.390 (3)	C11—C12	1.510 (2)	
C1—H1	0.9300	C11—H11A	0.9700	
C2—C3	1.368 (3)	C11—H11B	0.9700	
С2—Н2	0.9300	C12—N1	1.456 (2)	
C3—C4	1.364 (3)	C12—H12A	0.9700	
С3—Н3	0.9300	C12—H12B	0.9700	
C4—C5	1.384 (2)	C13—C14	1.381 (3)	
C4—H4	0.9300	C13—C18	1.382 (3)	
C5—C6	1.398 (2)	C13—S1	1.7625 (17)	
С5—С7	1.496 (3)	C14—C15	1.369 (3)	
C6—C8	1.519 (2)	C14—H14	0.9300	
C7—F2	1.325 (2)	C15—C16	1.386 (3)	
C7—F1	1.328 (3)	C15—H15	0.9300	
C7—F3	1.329 (3)	C16—C17	1.383 (3)	
C8—N1	1.458 (2)	C16—C19	1.510 (3)	
C8—H8A	0.9700	C17—C18	1.378 (3)	
C8—H8B	0.9700	C17—H17	0.9300	
C9—N1	1.451 (2)	C18—H18	0.9300	
C9—C10	1.510(2)	C19—H19A	0.9600	
С9—Н9А	0.9700	C19—H19B	0.9600	
С9—Н9В	0.9700	C19—H19C	0.9600	
C10—N2	1.468 (2)	N2—S1	1.6391 (14)	
C10—H10A	0.9700	O2—S1	1.4223 (15)	
C10—H10B	0.9700	S1—01	1.4282 (15)	
C6—C1—C2	120.91 (18)	N2—C11—H11B	110.0	
C6C1H1	119.5	C12—C11—H11B	110.0	
С2—С1—Н1	119.5	H11A—C11—H11B	108.4	

C3—C2—C1	120.35 (18)	N1-C12-C11	110.19 (14)
C3—C2—H2	119.8	N1—C12—H12A	109.6
C1—C2—H2	119.8	C11—C12—H12A	109.6
C4—C3—C2	119.77 (18)	N1—C12—H12B	109.6
С4—С3—Н3	120.1	C11—C12—H12B	109.6
С2—С3—Н3	120.1	H12A—C12—H12B	108.1
C3—C4—C5	120.43 (18)	C14—C13—C18	120.00 (17)
C3—C4—H4	119.8	C14—C13—S1	120.06 (14)
C5—C4—H4	119.8	C18—C13—S1	119.91 (14)
C4—C5—C6	120.86 (17)	C15—C14—C13	119.93 (18)
C4—C5—C7	118.11 (16)	C15—C14—H14	120.0
C6—C5—C7	121.01 (15)	C13—C14—H14	120.0
C1—C6—C5	117.53 (15)	C14—C15—C16	121.02 (18)
C1—C6—C8	120.23 (15)	C14—C15—H15	119.5
C5—C6—C8	122.15 (15)	C16—C15—H15	119.5
F2	105.93 (17)	C17—C16—C15	118.43 (18)
F2—C7—F3	106.64 (18)	C17—C16—C19	120.4 (2)
F1—C7—F3	106.07 (18)	C15—C16—C19	121.1 (2)
F2—C7—C5	113.14 (17)	C18—C17—C16	121.17 (18)
F1—C7—C5	113.06 (17)	C18—C17—H17	119.4
F3—C7—C5	111.48 (16)	C16—C17—H17	119.4
N1—C8—C6	113.17 (14)	C17—C18—C13	119.45 (17)
N1—C8—H8A	108.9	C17—C18—H18	120.3
С6—С8—Н8А	108.9	C13—C18—H18	120.3
N1—C8—H8B	108.9	C16—C19—H19A	109.5
С6—С8—Н8В	108.9	C16—C19—H19B	109.5
H8A—C8—H8B	107.8	H19A—C19—H19B	109.5
N1-C9-C10	110.58 (13)	C16—C19—H19C	109.5
N1—C9—H9A	109.5	H19A—C19—H19C	109.5
С10—С9—Н9А	109.5	H19B—C19—H19C	109.5
N1—C9—H9B	109.5	C9—N1—C12	109.73 (14)
С10—С9—Н9В	109.5	C9—N1—C8	111.63 (14)
H9A—C9—H9B	108.1	C12—N1—C8	111.32 (13)
N2—C10—C9	108.49 (13)	C11—N2—C10	111.46 (13)
N2—C10—H10A	110.0	C11—N2—S1	118.22 (11)
С9—С10—Н10А	110.0	C10—N2—S1	116.83 (11)
N2—C10—H10B	110.0	O2—S1—O1	120.28 (9)
C9—C10—H10B	110.0	O2—S1—N2	106.27 (8)
H10A—C10—H10B	108.4	O1—S1—N2	106.46 (8)
N2—C11—C12	108.27 (14)	O2—S1—C13	108.64 (8)
N2—C11—H11A	110.0	O1—S1—C13	107.92 (9)
C12—C11—H11A	110.0	N2—S1—C13	106.48 (7)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the benzene ring of the trifluoromethylphenyl group (C1–C6).

D—H···A	D—H	H…A	$D \cdots A$	D—H…A

supporting information

C11—H11 A ··· Cg^{i}	0.97	2.84 (1)	3.670 (2)	144	

Symmetry code: (i) -x, -y+1, -z+1.