organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-(Naphthalene-2-sulfonamido)-3phenylpropanoic acid

Hafiz Mubashar-ur-Rehman,^a* Muhammad Nadeem Arshad,^b* Abdullah M. Asiri,^{c,b} Islam Ullah Khan^a and Muhammad Bilal^d

^aDepartment of Chemistry, Materials Chemistry Laboratory, GC University, Lahore 54000, Pakistan, ^bCenter of Excellence for Advanced Materials Research (CEAMR), Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah 21589, Saudi Arabia, and ^dDepartment of Chemistry, University of Engineering & Technology, Lahore 54000, Pakistan

Correspondence e-mail: malikg781@yahoo.com, mnachemist@hotmail.com

Received 23 December 2012; accepted 2 January 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.118; data-to-parameter ratio = 15.0.

In the title compound, $C_{19}H_{17}NO_4S$, the phenyl ring and the naphthalene ring system are oriented at a dihedral angle of 4.12 (2)° and the molecule adopts a U-shaped conformation. The $C_c-C-N-S$ (c = carboxy) torsion angle is 90.98 (15)°. In the crystal, molecules are linked by $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, resulting in (100) chains incorporating centrosymmetric $R_2^2(14)$ and $R_2^2(10)$ loops. Weak aromatic π - π stacking is also observed [centroid–centroid separations = 3.963 (2) and 3.932 (2) Å].

Related literature

For the synthesis and related structures, see: Arshad et al. (2012); Khan et al. (2012).

Experimental

Crystal data

 $C_{19}H_{17}NO_4S$ V = 1729.64 (7) Å³ $M_r = 355.40$ Z = 4Monoclinic, $P2_1/n$ Cu $K\alpha$ radiationa = 8.0694 (2) Å $\mu = 1.87 \text{ mm}^{-1}$ b = 15.2168 (4) ÅT = 296 Kc = 14.0996 (3) Å $0.29 \times 0.10 \times 0.09 \text{ mm}$ $\beta = 92.505$ (2)°

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) CCD diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012) $T_{min} = 0.784, T_{max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	
$wR(F^2) = 0.118$	
S = 1.03	
3486 reflections	
232 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1N \cdots O3^{i}$ O4 - H1O \cdots O2^{ii}	0.80 (2) 0.88 (3)	2.18 (2) 1.90 (3)	2.964 (2) 2.772 (2)	164 (2) 174 (2)
		1 1 (")		

13588 measured reflections

 $R_{\rm int} = 0.026$

refinement $\Delta \rho_{\rm max} = 0.28 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\min} = -0.37 \text{ e} \text{ Å}^{-3}$

3486 independent reflections

2813 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2012); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *X-SEED* (Barbour, 2001).

The authors thank the Deanship of Scientific Research at King Abdulaziz University for the support of this research *via* Research Group Track grant No. 3-102/428.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7020).

References

Agilent (2012). *CrysAlis PRO*. Agilent Technologies, Yarnton, England. Arshad, M. N., Danish, M., Tahir, M. N., Aabideen, Z. U. & Asiri, A. M. (2012). *Acta Cryst.* E68, 02665.

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Khan, I. U., Mubashar-ur-Rehman, H., Aziz, S. & Harrison, W. T. A. (2012). Acta Cryst. E68, o2019.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o194 [doi:10.1107/S1600536813000081]

2-(Naphthalene-2-sulfonamido)-3-phenylpropanoic acid

Hafiz Mubashar-ur-Rehman, Muhammad Nadeem Arshad, Abdullah M. Asiri, Islam Ullah Khan and Muhammad Bilal

S1. Comment

In countinuation of our studies of the synthesis of sulfonamide derivatives of amino acids (Khan *et al.*, 2012) & (Arshad *et al.*, 2012) we now report the crystal structure of title compound.

In the structure of molecule the naphthalene and benzene rings are almost parallel, since the dihedral angle is as small as 4.12 (2)°. The sulfur (S1) atom as usual adopted the distorted tetrahedral geometry with O1-S1-O2 angle of 118.96 (9)°. The O—H…O type intermolecular hudrogen bonding connects the molecules to form inversion dimers and resulting in fourteen $R^2_2(14)$ membered ring motifs. On the other hand, these dimers connected through another N—H…O type link to give ten $R^2_2(10)$ membered ring motif and generates a long chain along the *a* axis direction (Table. 1, Fig. 2). The presence of π - π stacking interactions between aromatic rings is also observed: Cg1-Cg2 (Cg1: C1-C6; Cg2: C5-C10) with distances of 3.963 (2) Å (1 - x, 1 - y, 2 - z) and Cg2-Cg2 with distances of 3.932 (2) Å (1 - x, 1 - y, 2 - z).

S2. Experimental

The title compound was synthesised following the literature method (Arshad *et al.*, 2012) and recrystallized from methanol solution as colourless prisms by slow evaporation at room temperature.

S3. Refinement

All the C—H H-atoms were positioned with idealized geometry with C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene & C—H = 0.98 Å for C₁₁. H-atoms were refined as riding with $U_{iso}(H) = 1.2 U_{ed}(C)$ for all H-atoms.

The N—H = 0.80 (2) & O—H = 0.88 (3) H-atoms were located with difference map $U_{iso}(H) = 1.2 U_{eq}(N)$ and $U_{iso}(H) = 1.5 U_{eq}(O)$.

Figure 1

The molecular structure of $C_{19}H_{17}NO_4S$ with 50% probability of thermal ellipsoids.

Figure 2

A perspective view showing O-H…O and N-H…O hydrogen bonds, drawn using dashed lines.

2-(Naphthalene-2-sulfonamido)-3-phenylpropanoic acid

Crystal data

C₁₉H₁₇NO₄S $M_r = 355.40$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.0694 (2) Å b = 15.2168 (4) Å c = 14.0996 (3) Å $\beta = 92.505$ (2)° V = 1729.64 (7) Å³ Z = 4

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) CCD diffractometer Radiation source: SuperNova (Cu) X-ray Source Mirror monochromator ω scans Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2012)

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.118$ S = 1.033486 reflections F(000) = 744 $D_x = 1.365 \text{ Mg m}^{-3}$ Cu Ka radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 5975 reflections $\theta = 3.1-74.6^{\circ}$ $\mu = 1.87 \text{ mm}^{-1}$ T = 296 KPrismatic, colorless $0.29 \times 0.10 \times 0.09 \text{ mm}$

 $T_{\min} = 0.784, T_{\max} = 1.000$ 13588 measured reflections 3486 independent reflections 2813 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.026$ $\theta_{\text{max}} = 74.7^{\circ}, \theta_{\text{min}} = 4.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -18 \rightarrow 18$ $l = -17 \rightarrow 17$

232 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0591P)^2 + 0.4657P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
and constrained refinement	$\Delta ho_{ m max} = 0.28 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.37 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.31495 (6)	0.52701 (3)	0.68873 (3)	0.05113 (16)
01	0.4041 (2)	0.60690 (9)	0.70303 (11)	0.0687 (4)
O2	0.14144 (17)	0.53082 (11)	0.66184 (11)	0.0707 (4)
O3	0.24930 (18)	0.47490 (10)	0.41829 (10)	0.0647 (4)
O4	0.05674 (17)	0.39149 (11)	0.48022 (11)	0.0671 (4)
N1	0.40035 (19)	0.47399 (10)	0.60505 (10)	0.0470 (4)
C1	0.3324 (2)	0.46054 (13)	0.79139 (13)	0.0521 (4)
C2	0.1937 (3)	0.41529 (18)	0.81402 (16)	0.0749 (6)
H2	0.0955	0.4223	0.7778	0.090*
C3	0.1997 (4)	0.3582 (2)	0.8920 (2)	0.1020 (10)
H3	0.1058	0.3263	0.9066	0.122*
C4	0.3406 (4)	0.3492 (2)	0.9463 (2)	0.0980 (9)
H4	0.3416	0.3119	0.9985	0.118*
C5	0.4860 (3)	0.39491 (16)	0.92563 (15)	0.0706 (6)
C6	0.4857 (2)	0.45189 (13)	0.84526 (13)	0.0524 (4)
C7	0.6347 (3)	0.49537 (16)	0.82581 (15)	0.0623 (5)
H7	0.6387	0.5319	0.7731	0.075*
C8	0.7732 (3)	0.4843 (2)	0.88355 (19)	0.0839 (8)
H8	0.8705	0.5135	0.8697	0.101*
C9	0.7708 (4)	0.4296 (2)	0.9636 (2)	0.0969 (9)
H9	0.8656	0.4234	1.0030	0.116*
C10	0.6320 (4)	0.3866 (2)	0.98330 (18)	0.0909 (9)
H10	0.6320	0.3502	1.0363	0.109*
C11	0.3160 (2)	0.39725 (12)	0.56401 (12)	0.0454 (4)
H11	0.2472	0.3704	0.6117	0.054*
C12	0.4398 (2)	0.32926 (13)	0.53018 (13)	0.0535 (4)
H12A	0.3793	0.2812	0.4996	0.064*
H12B	0.5084	0.3561	0.4834	0.064*
C13	0.5497 (2)	0.29330 (12)	0.61016 (13)	0.0516 (4)
C14	0.4856 (4)	0.23896 (18)	0.6765 (2)	0.0874 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H14	0.3741	0.2234	0.6713	0.105*	
C15	0.5838 (5)	0.2070 (2)	0.7509 (2)	0.1202 (12)	
H15	0.5374	0.1712	0.7961	0.144*	
C16	0.7457 (5)	0.2268 (2)	0.7590 (2)	0.1056 (11)	
H16	0.8113	0.2041	0.8091	0.127*	
C17	0.8139 (3)	0.28037 (19)	0.6937 (2)	0.0895 (9)	
H17	0.9262	0.2943	0.6992	0.107*	
C18	0.7150 (3)	0.31431 (15)	0.61838 (17)	0.0665 (5)	
H18	0.7613	0.3511	0.5739	0.080*	
C19	0.2050 (2)	0.42710 (13)	0.47926 (13)	0.0491 (4)	
H1N	0.499 (3)	0.4785 (14)	0.6034 (16)	0.059*	
H1O	-0.004 (3)	0.4135 (16)	0.4325 (18)	0.074*	

Atomic displacement parameters $(Å^2)$

S1 $0.0438(3)$ $0.0605(3)$ $0.0478(3)$ $0.00944(19)$ $-0.01179(18)$ O1 $0.0815(10)$ $0.0540(8)$ $0.0685(9)$ $0.0020(7)$ $-0.0201(8)$ O2 $0.0465(8)$ $0.0973(11)$ $0.0667(9)$ $0.0235(7)$ $-0.01148(6)$ O3 $0.0578(9)$ $0.0813(10)$ $0.0536(8)$ $-0.0026(7)$ $-0.0119(6)$ O4 $0.0452(8)$ $0.0972(11)$ $0.0578(8)$ $-0.0087(7)$ $-0.01011(6)$ N1 $0.0368(7)$ $0.0587(9)$ $0.0449(8)$ $-0.0018(7)$ $-0.0044(6)$ C1 $0.0458(10)$ $0.0687(12)$ $0.0417(9)$ $-0.0002(8)$ $-0.0003(7)$ C2 $0.0590(13)$ $0.1014(18)$ $0.0645(13)$ $-0.0162(12)$ $0.0052(10)$ C3 $0.097(2)$ $0.123(2)$ $0.0877(19)$ $-0.0394(19)$ $0.0219(17)$ C4 $0.120(3)$ $0.106(2)$ $0.0686(16)$ $-0.0131(19)$ $0.0126(16)$ C5 $0.0856(16)$ $0.0774(14)$ $0.0412(9)$ $0.0067(8)$ $-0.0035(7)$ C7 $0.0483(11)$ $0.0830(14)$ $0.0547(11)$ $0.0030(10)$ $-0.0083(9)$ C8 $0.0529(14)$ $0.117(2)$ $0.0803(16)$ $0.0082(13)$ $-0.0203(12)$ C9 $0.085(2)$ $0.127(2)$ $0.0751(17)$ $0.0339(19)$ $-0.0201(14)$	$\begin{array}{c} -0.00627 (19) \\ -0.0057 (7) \\ -0.0138 (8) \\ 0.0181 (7) \\ 0.0008 (8) \\ -0.0024 (6) \\ -0.0060 (8) \\ -0.0047 (12) \\ 0.0136 (18) \\ 0.0233 (15) \\ 0.0025 (10) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -0.0057 (7) \\ -0.0138 (8) \\ 0.0181 (7) \\ 0.0008 (8) \\ -0.0024 (6) \\ -0.0060 (8) \\ -0.0047 (12) \\ 0.0136 (18) \\ 0.0233 (15) \\ 0.0025 (10) \end{array}$
02 0.0465 (8) 0.0973 (11) 0.0667 (9) 0.0235 (7) -0.0148 (6) 03 0.0578 (9) 0.0813 (10) 0.0536 (8) -0.0026 (7) -0.0119 (6) 04 0.0452 (8) 0.0972 (11) 0.0578 (8) -0.0087 (7) -0.0101 (6) $N1$ 0.0368 (7) 0.0587 (9) 0.0449 (8) -0.0018 (7) -0.0044 (6) $C1$ 0.0458 (10) 0.0687 (12) 0.0417 (9) -0.0002 (8) -0.0003 (7) $C2$ 0.0590 (13) 0.1014 (18) 0.0645 (13) -0.0162 (12) 0.0052 (10) $C3$ 0.097 (2) 0.123 (2) 0.0877 (19) -0.0394 (19) 0.0219 (17) $C4$ 0.120 (3) 0.106 (2) 0.0686 (16) -0.0131 (19) 0.0126 (16) $C5$ 0.0856 (16) 0.0774 (14) 0.0445 (11) 0.0097 (8) -0.0035 (7) $C6$ 0.0518 (11) 0.0639 (11) 0.0412 (9) 0.0067 (8) -0.0035 (7) $C7$ 0.0483 (11) 0.0830 (14) 0.0547 (11) 0.0030 (10) -0.0083 (9) $C8$ 0.0529 (14) 0.117 (2) 0.0803 (16) 0.0082 (13) -0.0203 (12) $C9$ 0.085 (2) 0.127 (2) 0.0751 (17) 0.0339 (19) -0.0203 (12) $C10$ 0.112 (2) 0.102 (2) 0.0563 (13) 0.0313 (18) -0.0201 (14)	-0.0138 (8) 0.0181 (7) 0.0008 (8) -0.0024 (6) -0.0060 (8) -0.0047 (12) 0.0136 (18) 0.0233 (15) 0.0025 (10)
O3 0.0578 (9) 0.0813 (10) 0.0536 (8) -0.0026 (7) -0.0119 (6) $O4$ 0.0452 (8) 0.0972 (11) 0.0578 (8) -0.0087 (7) -0.0101 (6) $N1$ 0.0368 (7) 0.0587 (9) 0.0449 (8) -0.0018 (7) -0.0044 (6) $C1$ 0.0458 (10) 0.0687 (12) 0.0417 (9) -0.0002 (8) -0.0003 (7) $C2$ 0.0590 (13) 0.1014 (18) 0.0645 (13) -0.0162 (12) 0.0052 (10) $C3$ 0.097 (2) 0.123 (2) 0.0877 (19) -0.0394 (19) 0.0219 (17) $C4$ 0.120 (3) 0.106 (2) 0.0686 (16) -0.0131 (19) 0.0126 (16) $C5$ 0.0856 (16) 0.0774 (14) 0.0485 (11) 0.0091 (12) -0.0012 (10) $C6$ 0.0518 (11) 0.0639 (11) 0.0412 (9) 0.0067 (8) -0.0035 (7) $C7$ 0.0483 (11) 0.0830 (14) 0.0547 (11) 0.0030 (10) -0.0083 (9) $C8$ 0.0529 (14) 0.117 (2) 0.0803 (16) 0.0082 (13) -0.0203 (12) $C9$ 0.085 (2) 0.127 (2) 0.0751 (17) 0.0339 (19) -0.0203 (15) $C10$ 0.112 (2) 0.102 (2) 0.0563 (13) 0.0313 (18) -0.0201 (14)	0.0181 (7) 0.0008 (8) -0.0024 (6) -0.0060 (8) -0.0047 (12) 0.0136 (18) 0.0233 (15) 0.0025 (10)
04 $0.0452 (8)$ $0.0972 (11)$ $0.0578 (8)$ $-0.0087 (7)$ $-0.0101 (6)$ $N1$ $0.0368 (7)$ $0.0587 (9)$ $0.0449 (8)$ $-0.0018 (7)$ $-0.0044 (6)$ $C1$ $0.0458 (10)$ $0.0687 (12)$ $0.0417 (9)$ $-0.0002 (8)$ $-0.0003 (7)$ $C2$ $0.0590 (13)$ $0.1014 (18)$ $0.0645 (13)$ $-0.0162 (12)$ $0.0052 (10)$ $C3$ $0.097 (2)$ $0.123 (2)$ $0.0877 (19)$ $-0.0394 (19)$ $0.0219 (17)$ $C4$ $0.120 (3)$ $0.106 (2)$ $0.0686 (16)$ $-0.0131 (19)$ $0.0126 (16)$ $C5$ $0.0856 (16)$ $0.0774 (14)$ $0.0485 (11)$ $0.0091 (12)$ $-0.0012 (10)$ $C6$ $0.0518 (11)$ $0.0639 (11)$ $0.0412 (9)$ $0.0067 (8)$ $-0.0035 (7)$ $C7$ $0.0483 (11)$ $0.0830 (14)$ $0.0547 (11)$ $0.0030 (10)$ $-0.0083 (9)$ $C8$ $0.0529 (14)$ $0.117 (2)$ $0.0803 (16)$ $0.0082 (13)$ $-0.0203 (12)$ $C9$ $0.085 (2)$ $0.127 (2)$ $0.0751 (17)$ $0.0339 (19)$ $-0.0201 (14)$	0.0008 (8) -0.0024 (6) -0.0060 (8) -0.0047 (12) 0.0136 (18) 0.0233 (15)
N1 $0.0368(7)$ $0.0587(9)$ $0.0449(8)$ $-0.0018(7)$ $-0.0044(6)$ C1 $0.0458(10)$ $0.0687(12)$ $0.0417(9)$ $-0.0002(8)$ $-0.0003(7)$ C2 $0.0590(13)$ $0.1014(18)$ $0.0645(13)$ $-0.0162(12)$ $0.0052(10)$ C3 $0.097(2)$ $0.123(2)$ $0.0877(19)$ $-0.0394(19)$ $0.0219(17)$ C4 $0.120(3)$ $0.106(2)$ $0.0686(16)$ $-0.0131(19)$ $0.0126(16)$ C5 $0.0856(16)$ $0.0774(14)$ $0.0485(11)$ $0.0091(12)$ $-0.0012(10)$ C6 $0.0518(11)$ $0.0639(11)$ $0.0412(9)$ $0.0067(8)$ $-0.0035(7)$ C7 $0.0483(11)$ $0.0830(14)$ $0.0547(11)$ $0.0082(13)$ $-0.0203(12)$ C8 $0.0529(14)$ $0.117(2)$ $0.0803(16)$ $0.0082(13)$ $-0.0203(12)$ C9 $0.085(2)$ $0.127(2)$ $0.0751(17)$ $0.0339(19)$ $-0.0201(14)$	-0.0024 (6) -0.0060 (8) -0.0047 (12) 0.0136 (18) 0.0233 (15)
C1 $0.0458 (10)$ $0.0687 (12)$ $0.0417 (9)$ $-0.0002 (8)$ $-0.0003 (7)$ C2 $0.0590 (13)$ $0.1014 (18)$ $0.0645 (13)$ $-0.0162 (12)$ $0.0052 (10)$ C3 $0.097 (2)$ $0.123 (2)$ $0.0877 (19)$ $-0.0394 (19)$ $0.0219 (17)$ C4 $0.120 (3)$ $0.106 (2)$ $0.0686 (16)$ $-0.0131 (19)$ $0.0126 (16)$ C5 $0.0856 (16)$ $0.0774 (14)$ $0.0485 (11)$ $0.0091 (12)$ $-0.0012 (10)$ C6 $0.0518 (11)$ $0.0639 (11)$ $0.0412 (9)$ $0.0067 (8)$ $-0.0035 (7)$ C7 $0.0483 (11)$ $0.0830 (14)$ $0.0547 (11)$ $0.0030 (10)$ $-0.0083 (9)$ C8 $0.0529 (14)$ $0.117 (2)$ $0.0803 (16)$ $0.0082 (13)$ $-0.0203 (12)$ C9 $0.085 (2)$ $0.127 (2)$ $0.0751 (17)$ $0.0339 (19)$ $-0.0201 (14)$	-0.0060 (8) -0.0047 (12) 0.0136 (18) 0.0233 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.0047 (12) 0.0136 (18) 0.0233 (15) 0.0025 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0136 (18) 0.0233 (15) 0.0025 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0233 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0025(10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0035 (10)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.0039 (8)
C8 0.0529 (14) 0.117 (2) 0.0803 (16) 0.0082 (13) -0.0203 (12) C9 0.085 (2) 0.127 (2) 0.0751 (17) 0.0339 (19) -0.0363 (15) C10 0.112 (2) 0.102 (2) 0.0563 (13) 0.0313 (18) -0.0201 (14)	0.0009 (10)
C9 0.085 (2) 0.127 (2) 0.0751 (17) 0.0339 (19) -0.0363 (15) C10 0.112 (2) 0.102 (2) 0.0563 (13) 0.0313 (18) -0.0201 (14)	-0.0049 (15)
C10 0.112 (2) 0.102 (2) 0.0563 (13) 0.0313 (18) -0.0201 (14)	-0.0053 (16)
	0.0092 (13)
C11 0.0428 (9) 0.0535 (10) 0.0394 (8) -0.0005 (7) -0.0033 (7)	0.0017 (7)
C12 $0.0599(11)$ $0.0562(10)$ $0.0439(9)$ $0.0092(9)$ $-0.0029(8)$	0.0030 (8)
C13 0.0578 (11) 0.0459 (9) 0.0503 (10) 0.0072 (8) -0.0056 (8)	0.0027 (8)
C14 0.0871 (18) 0.0854 (17) 0.0880 (17) -0.0149 (14) -0.0151 (14)	0.0390 (14)
C15 0.137 (3) 0.119 (3) 0.102 (2) -0.004 (2) -0.026 (2)	0.065 (2)
C16 0.136 (3) 0.093 (2) 0.0835 (19) 0.028 (2) -0.0475 (19)	0.0104 (16)
C17 0.0658 (16) 0.0867 (18) 0.113 (2) 0.0183 (13) -0.0335 (15)	-0.0249 (17)
C18 0.0580 (12) 0.0615 (12) 0.0798 (14) 0.0071 (10) -0.0015 (10)	-0.0006 (11)
C19 0.0409 (9) 0.0603 (11) 0.0456 (9) 0.0028 (8) -0.0032 (7)	-0.0083 (8)

Geometric parameters (Å, °)

<u>\$1</u> —01	1.4226 (15)	C8—C9	1.404 (4)
S1—O2	1.4356 (14)	C8—H8	0.9300
S1—N1	1.6090 (16)	C9—C10	1.337 (4)
S1—C1	1.766 (2)	С9—Н9	0.9300

O3—C19	1.193 (2)	C10—H10	0.9300
O4—C19	1.314 (2)	C11—C12	1.529 (2)
O4—H1O	0.88 (3)	C11—C19	1.531 (2)
N1—C11	1.459 (2)	C11—H11	0.9800
N1—H1N	0.80 (2)	C12—C13	1.507 (2)
C1—C2	1.364 (3)	C12—H12A	0.9700
C1—C6	1.430 (3)	C12—H12B	0.9700
C2—C3	1.401 (4)	C13—C14	1.367 (3)
С2—Н2	0.9300	C13—C18	1.372 (3)
C3—C4	1.350 (4)	C14—C15	1.376 (4)
С3—Н3	0.9300	C14—H14	0.9300
C4—C5	1.405 (4)	C15—C16	1.340 (5)
C4—H4	0.9300	С15—Н15	0.9300
C5—C10	1.408 (4)	C16—C17	1.364 (5)
C5—C6	1.427 (3)	С16—Н16	0.9300
C6—C7	1.410 (3)	C17—C18	1.399 (3)
C7—C8	1.364 (3)	С17—Н17	0.9300
С7—Н7	0.9300	C18—H18	0.9300
O1—S1—O2	118.96 (9)	C9—C10—C5	121.6 (2)
O1—S1—N1	107.60 (9)	С9—С10—Н10	119.2
O2—S1—N1	105.70 (8)	C5—C10—H10	119.2
O1—S1—C1	110.58 (9)	N1—C11—C12	111.45 (15)
O2—S1—C1	106.34 (10)	N1—C11—C19	108.61 (14)
N1—S1—C1	107.01 (9)	C12—C11—C19	108.98 (14)
C19—O4—H1O	108.0 (16)	N1—C11—H11	109.3
C11—N1—S1	119.01 (12)	C12—C11—H11	109.3
C11—N1—H1N	120.3 (16)	C19—C11—H11	109.3
S1—N1—H1N	115.9 (16)	C13—C12—C11	112.56 (15)
C2—C1—C6	122.0 (2)	C13—C12—H12A	109.1
C2—C1—S1	116.37 (16)	C11—C12—H12A	109.1
C6—C1—S1	121.61 (15)	C13—C12—H12B	109.1
C1—C2—C3	119.8 (2)	C11—C12—H12B	109.1
C1—C2—H2	120.1	H12A—C12—H12B	107.8
С3—С2—Н2	120.1	C14—C13—C18	118.6 (2)
C4—C3—C2	120.5 (3)	C14—C13—C12	120.2 (2)
С4—С3—Н3	119.8	C18—C13—C12	121.15 (19)
С2—С3—Н3	119.8	C13—C14—C15	120.8 (3)
C3—C4—C5	121.5 (3)	C13—C14—H14	119.6
C3—C4—H4	119.2	C15—C14—H14	119.6
C5—C4—H4	119.2	C16—C15—C14	120.8 (3)
C4—C5—C10	121.4 (2)	C16—C15—H15	119.6
C4—C5—C6	119.5 (2)	C14—C15—H15	119.6
C10—C5—C6	119.1 (2)	C15—C16—C17	119.8 (3)
C7—C6—C5	117.90 (19)	C15—C16—H16	120.1
C7—C6—C1	125.40 (18)	C17—C16—H16	120.1
C5—C6—C1	116.69 (19)	C16—C17—C18	120.0 (3)
C8—C7—C6	120.6 (2)	С16—С17—Н17	120.0

C8—C7—H7	1197	C18—C17—H17	120.0
C6—C7—H7	119.7	C13 - C18 - C17	119.9 (2)
C7—C8—C9	120.9 (3)	C13—C18—H18	120.0
C7—C8—H8	119.5	C17—C18—H18	120.0
C9—C8—H8	119.5	03-C19-04	124.08 (17)
C10—C9—C8	119.9 (2)	03-C19-C11	124.07 (16)
C10—C9—H9	120.0	04-C19-C11	111.81 (17)
С8—С9—Н9	120.0		
	120.0		
O1—S1—N1—C11	-168.97 (13)	C1—C6—C7—C8	178.1 (2)
O2—S1—N1—C11	-40.88 (15)	C6—C7—C8—C9	-0.1 (4)
C1—S1—N1—C11	72.17 (15)	C7—C8—C9—C10	1.0 (5)
O1—S1—C1—C2	141.61 (17)	C8—C9—C10—C5	-0.4 (5)
O2—S1—C1—C2	11.1 (2)	C4—C5—C10—C9	179.7 (3)
N1—S1—C1—C2	-101.49 (18)	C6—C5—C10—C9	-1.1 (4)
O1—S1—C1—C6	-41.01 (18)	S1—N1—C11—C12	-148.96 (13)
O2—S1—C1—C6	-171.48 (15)	S1—N1—C11—C19	90.98 (15)
N1—S1—C1—C6	75.89 (17)	N1-C11-C12-C13	62.6 (2)
C6-C1-C2-C3	-0.1 (4)	C19—C11—C12—C13	-177.57 (16)
S1—C1—C2—C3	177.2 (2)	C11—C12—C13—C14	70.3 (3)
C1—C2—C3—C4	1.5 (5)	C11—C12—C13—C18	-109.5 (2)
C2—C3—C4—C5	-1.3 (5)	C18—C13—C14—C15	1.0 (4)
C3—C4—C5—C10	178.9 (3)	C12—C13—C14—C15	-178.8 (3)
C3—C4—C5—C6	-0.3 (4)	C13—C14—C15—C16	-1.5 (6)
C4—C5—C6—C7	-178.9 (2)	C14-C15-C16-C17	1.0 (6)
C10—C5—C6—C7	1.9 (3)	C15-C16-C17-C18	-0.1 (5)
C4—C5—C6—C1	1.6 (3)	C14—C13—C18—C17	-0.1 (3)
C10-C5-C6-C1	-177.6 (2)	C12-C13-C18-C17	179.6 (2)
C2-C1-C6-C7	179.1 (2)	C16—C17—C18—C13	-0.3 (4)
S1—C1—C6—C7	1.9 (3)	N1—C11—C19—O3	47.5 (2)
C2—C1—C6—C5	-1.4 (3)	C12—C11—C19—O3	-74.1 (2)
S1—C1—C6—C5	-178.65 (15)	N1-C11-C19-O4	-134.51 (16)
C5—C6—C7—C8	-1.4 (3)	C12—C11—C19—O4	103.90 (18)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1 <i>N</i> ···O3 ⁱ	0.80 (2)	2.18 (2)	2.964 (2)	164 (2)
O4—H1 <i>O</i> …O2 ⁱⁱ	0.88 (3)	1.90 (3)	2.772 (2)	174 (2)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1.