

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Methyl 2,4-dihydroxy-5-(2-methylpropanamido)benzoate

Syeda Sohaila Naz,^a Nazar Ul Islam,^a M. Nawaz Tahir^b* and Muhammad Raza Shah^c

^aUniversity of Peshawar, Institute of Chemical Sciences, Peshawar, Pakistan, ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan, and ^cH.E.I. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 5 January 2013; accepted 5 January 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.006 Å; R factor = 0.065; wR factor = 0.168; data-to-parameter ratio = 13.1.

In the title compound, $C_{12}H_{15}NO_5$, the dihedral angle between the benzene ring and the C atoms of the terminal isopropyl group is 83.48 (16)°. Intramolecular N-H···O and O-H···O hydrogen bonds generate S(5) and S(6) rings, respectively. In the crystal, molecules are linked by O-H···O hydrogen bonds, generating C(7) chains propagating in [001]. Weak aromatic π - π stacking [centroid-centroid separation = 3.604(3) Å] is also observed.

Related literature

For related structures, see: Chen et al. (2011); Naz et al. (2013).

Experimental

Crystal data C12H15NO5

 $M_r = 253.25$

•	
organic	compounds
o game	compounds

Monoclinic, $C2/c$	Z = 8
a = 22.732 (4) Å	Mo $K\alpha$ radiation
b = 8.2338 (16) Å	$\mu = 0.10 \text{ mm}^{-1}$
c = 14.743 (3) Å	T = 296 K
$\beta = 113.506 \ (9)^{\circ}$	$0.26 \times 0.16 \times 0.14 \text{ mm}$
$V = 2530.4 (9) \text{ Å}^3$	
Data collection	
Bruker Kappa APEXII CCD	8480 measured reflections
	2210 in doman dant noffecti

diffractometer	2218 independent reflections
Absorption correction: multi-scan	950 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2009)	$R_{\rm int} = 0.090$
$T_{\min} = 0.981, \ T_{\max} = 0.985$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.065$	169 parameters
$wR(F^2) = 0.168$	H-atom parameters constrained
S = 0.96	$\Delta \rho_{\rm max} = 0.25 \text{ e} \text{ Å}^{-3}$
2218 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1 \cdots O4$	0.86	2.19	2.604 (4)	109
$O3 - H3 \cdots O2$	0.82	1.87	2.595 (4)	146
$O4 - H4 \cdots O5^{i}$	0.82	1.820	2.633 (4)	174

Symmetry code: (i) $x, -y + 2, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7024).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, G., Gao, H., Tang, J., Huang, Y., Chen, Y., Wang, Y., Zhao, H., Lin, H., Xie, Q., Hong, K., Li, J. & Yao, X. (2011). Chem. Pharm. Bull. 59, 447-451. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Naz, S. S., Islam, N. U., Tahir, M. N. & Shah, M. R. (2013). Acta Cryst. E69, o207.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o221 [doi:10.1107/S1600536813000457]

Methyl 2,4-dihydroxy-5-(2-methylpropanamido)benzoate

Syeda Sohaila Naz, Nazar Ul Islam, M. Nawaz Tahir and Muhammad Raza Shah

S1. Comment

The title compound (I, Fig. 1) has been prepared for derivatization and for the biological studies in continuation to form different derivatives of methyl 5-amino-2,4-dihydroxybenzoate (Naz *et al.*, 2013). The crystal structure of 3-hy-droxy-2-(isobutyrylamino)benzamide (Chen *et al.*, 2011) has been published which is related to the title compound.

In (I), the groups A (C1—C8/O1—O4/N1) of methyl 5-amino-2,4-dihydroxybenzoate is almost planar with r. m. s. deviation of 0.0190 Å. The C9 and O5 atoms are at a distance of -0.1205 (50) and -0.3867 (44) Å from the mean square plane of the group A. The isopropyl group B (C10—C12) is of course planar. The dihedral angle between A/B is 83.24 (15)°. There exist strong intramolecular H-bondings of N—H…O and O—H…O types (Table 1, Fig. 2) completing S(5) and S(6) ring motifs. There also exist strong intermolecular H-bondings of O—H…O type due to which C(7) chains are formed (Table 1, Fig. 2) resulting in the formation of one dimensional polymeric network along the *c*-axis. There also exist π - π interactions between the centroids of benzene rings at a distance of 3.604 (3) Å.

S2. Experimental

Equivalent amounts of methyl 5-amino-2,4-dihydroxybenzoate (0.2 g, 1.1 mmol) and Isobutyric anhydride (0.2 ml, 1.1 mmol) were heated at 333 K for 3 h in dimethylformamide (DMF). The reaction mixture was kept for 48 h to afford brown needles of the title compound.

S3. Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.98, N—H = 0.86 and O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = xU_{eq}$ (C, N, O), where x = 1.5 for hydroxy & methyl groups and x = 1.2 for all other H-atoms.

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The partial packing of (I), which shows that molecules form S(5) & S(6) loops and one dimensional polymeric chains are formed due to O—H···O H-bonds along the [001] direction.

Methyl 2,4-dihydroxy-5-(2-methylpropanamido)benzoate

Crystal data

C₁₂H₁₅NO₅ $M_r = 253.25$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.732 (4) Å b = 8.2338 (16) Å c = 14.743 (3) Å $\beta = 113.506$ (9)° V = 2530.4 (9) Å³ Z = 8

Data collection

Bruker Kappa APEXII CCD	8480 measured reflections
diffractometer	2218 independent reflections
Radiation source: fine-focus sealed tube	950 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.090$
Detector resolution: 8.10 pixels mm ⁻¹	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$
ω scans	$h = -26 \rightarrow 26$
Absorption correction: multi-scan	$k = -9 \rightarrow 9$
(SADABS; Bruker, 2009)	$l = -12 \rightarrow 17$
$T_{\min} = 0.981, \ T_{\max} = 0.985$	
Refinement	

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.065$	H-atom parameters constrained
$wR(F^2) = 0.168$	$w = 1/[\sigma^2(F_o^2) + (0.067P)^2]$
S = 0.96	where $P = (F_o^2 + 2F_c^2)/3$
2218 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
169 parameters	$\Delta ho_{ m max} = 0.25 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: SHELXL97 (Sheldrick,
direct methods	2008), Fc [*] =kFc[1+0.001xFc ² λ^{3} /sin(2 θ)] ^{-1/4}
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0032 (7)
map	

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F(000) = 1072

 $\theta = 2.0-25.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$

Needle, brown

 $0.26 \times 0.16 \times 0.14$ mm

T = 296 K

 $D_{\rm x} = 1.330 {\rm ~Mg} {\rm ~m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 950 reflections

Fractional atomic coordinates a	nd isotropic	or equivalent	isotropic	displacement	parameters	$(Å^2)$
	1	1	1	1	1	· · ·

	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.03069 (13)	0.6890 (3)	0.1237 (2)	0.0561 (11)	
O2	-0.07828 (14)	0.6152 (4)	-0.0343 (2)	0.0674 (14)	
O3	-0.02971 (14)	0.7095 (4)	-0.1577 (2)	0.0664 (13)	

O4	0.15588 (13)	1.0422 (4)	-0.02943 (18)	0.0528 (10)
05	0.15037 (13)	0.9581 (4)	0.28873 (18)	0.0574 (11)
N1	0.15743 (14)	1.0418 (4)	0.1481 (2)	0.0418 (11)
C1	-0.0795 (2)	0.6008 (6)	0.1437 (3)	0.0673 (19)
C2	-0.0344 (2)	0.6874 (5)	0.0313 (3)	0.0473 (17)
C3	0.01556 (18)	0.7776 (5)	0.0160 (3)	0.0393 (16)
C4	0.01545 (19)	0.7844 (5)	-0.0792 (3)	0.0427 (17)
C5	0.06228 (18)	0.8703 (5)	-0.0956 (3)	0.0461 (16)
C6	0.10844 (18)	0.9523 (5)	-0.0193 (3)	0.0394 (14)
C7	0.10893 (18)	0.9489 (5)	0.0764 (3)	0.0347 (14)
C8	0.06285 (18)	0.8611 (5)	0.0931 (3)	0.0401 (16)
C9	0.17569 (18)	1.0465 (5)	0.2465 (3)	0.0405 (16)
C10	0.22833 (19)	1.1646 (5)	0.3026 (3)	0.0488 (16)
C11	0.2012 (2)	1.3027 (6)	0.3419 (3)	0.071 (2)
C12	0.2825 (2)	1.0777 (6)	0.3844 (3)	0.081 (2)
H1	0.17846	1.10489	0.12524	0.0500*
H1A	-0.08075	0.49015	0.12248	0.1011*
H1B	-0.12055	0.65059	0.10854	0.1011*
H1C	-0.06954	0.60325	0.21343	0.1011*
Н3	-0.05505	0.66231	-0.13988	0.0994*
H4	0.15318	1.03493	-0.08643	0.0791*
Н5	0.06261	0.87259	-0.15848	0.0552*
H8	0.06317	0.85732	0.15633	0.0484*
H10	0.24534	1.20993	0.25653	0.0581*
H11A	0.16985	1.36048	0.28749	0.1067*
H11B	0.23520	1.37530	0.37963	0.1067*
H11C	0.18139	1.25979	0.38335	0.1067*
H12A	0.30085	0.99782	0.35606	0.1215*
H12B	0.26605	1.02529	0.42766	0.1215*
H12C	0.31477	1.15496	0.42134	0.1215*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.064 (2)	0.065 (2)	0.0401 (19)	-0.0134 (17)	0.0215 (15)	0.0018 (17)
O2	0.059 (2)	0.084 (3)	0.050 (2)	-0.0224 (18)	0.0122 (16)	-0.0199 (18)
03	0.057 (2)	0.100 (3)	0.0340 (18)	-0.0108 (19)	0.0094 (15)	-0.0240 (19)
O4	0.0585 (18)	0.080 (2)	0.0239 (15)	-0.0023 (17)	0.0207 (14)	-0.0022 (17)
05	0.071 (2)	0.082 (2)	0.0214 (15)	-0.0249 (18)	0.0209 (14)	-0.0079 (16)
N1	0.048 (2)	0.056 (2)	0.0250 (19)	-0.0101 (18)	0.0185 (16)	-0.0026 (18)
C1	0.064 (3)	0.072 (4)	0.070 (3)	-0.017 (3)	0.031 (3)	0.005 (3)
C2	0.055 (3)	0.045 (3)	0.040 (3)	0.007 (2)	0.017 (2)	0.001 (2)
C3	0.044 (3)	0.041 (3)	0.031 (2)	0.002 (2)	0.013 (2)	-0.001 (2)
C4	0.040 (3)	0.053 (3)	0.031 (3)	0.004 (2)	0.010(2)	-0.010 (2)
C5	0.045 (3)	0.062 (3)	0.027 (2)	0.009 (2)	0.010 (2)	-0.006 (2)
C6	0.042 (2)	0.054 (3)	0.024 (2)	0.009 (2)	0.015 (2)	0.005 (2)
C7	0.041 (2)	0.041 (3)	0.020 (2)	0.005 (2)	0.0100 (18)	0.002 (2)
C8	0.049 (3)	0.049 (3)	0.023 (2)	0.005 (2)	0.015 (2)	-0.001 (2)

supporting information

C9	0.046 (3)	0.056 (3)	0.021 (2)	-0.001 (2)	0.015 (2)	-0.010 (2)	
C10	0.053 (3)	0.067 (3)	0.028 (2)	-0.013 (3)	0.018 (2)	-0.009 (2)	
C11	0.081 (4)	0.073 (4)	0.064 (3)	-0.018 (3)	0.034 (3)	-0.022 (3)	
C12	0.057 (3)	0.103 (5)	0.068 (4)	-0.010 (3)	0.009 (3)	-0.009 (3)	

Geometric parameters (Å, °)

01—C1	1.451 (6)	С7—С8	1.373 (6)	
O1—C2	1.331 (5)	C9—C10	1.507 (6)	
O2—C2	1.231 (5)	C10—C11	1.515 (6)	
O3—C4	1.351 (5)	C10—C12	1.516 (6)	
O4—C6	1.364 (5)	C1—H1A	0.9600	
О5—С9	1.239 (5)	C1—H1B	0.9600	
O3—H3	0.8200	C1—H1C	0.9600	
O4—H4	0.8200	C5—H5	0.9300	
N1-C9	1.341 (5)	C8—H8	0.9300	
N1—C7	1.410 (5)	C10—H10	0.9800	
N1—H1	0.8600	C11—H11A	0.9600	
C2—C3	1.448 (6)	C11—H11B	0.9600	
C3—C4	1.404 (6)	C11—H11C	0.9600	
C3—C8	1.395 (6)	C12—H12A	0.9600	
C4—C5	1.377 (6)	C12—H12B	0.9600	
C5—C6	1.371 (6)	C12—H12C	0.9600	
C6—C7	1.407 (6)			
C1 - 01 - C2	117 5 (3)	C11—C10—C12	112.1 (3)	
C4 - O3 - H3	109.00	C9-C10-C11	109.8 (4)	
C6-04-H4	109.00	O1-C1-H1A	110.00	
C7-N1-C9	129.7 (4)	01—C1—H1B	110.00	
C7—N1—H1	115.00	01—C1—H1C	110.00	
C9—N1—H1	115.00	H1A—C1—H1B	109.00	
01-C2-02	120.7 (4)	H1A—C1—H1C	109.00	
O1—C2—C3	114.9 (4)	H1B—C1—H1C	109.00	
O2—C2—C3	124.5 (4)	C4—C5—H5	120.00	
C2—C3—C4	119.2 (4)	C6—C5—H5	120.00	
C4—C3—C8	119.3 (4)	C3—C8—H8	120.00	
C2—C3—C8	121.6 (4)	C7—C8—H8	120.00	
O3—C4—C3	122.4 (4)	C9—C10—H10	108.00	
O3—C4—C5	117.4 (4)	C11—C10—H10	108.00	
C3—C4—C5	120.2 (4)	C12-C10-H10	108.00	
C4—C5—C6	120.1 (4)	C10-C11-H11A	109.00	
C5—C6—C7	120.7 (4)	C10-C11-H11B	109.00	
O4—C6—C5	123.8 (4)	C10-C11-H11C	109.00	
O4—C6—C7	115.5 (4)	H11A—C11—H11B	109.00	
N1—C7—C8	125.1 (4)	H11A—C11—H11C	110.00	
С6—С7—С8	119.3 (4)	H11B—C11—H11C	110.00	
N1—C7—C6	115.6 (4)	C10-C12-H12A	109.00	
C3—C8—C7	120.6 (4)	C10-C12-H12B	109.00	

O5—C9—N1	121.4 (4)	C10—C12—H12C	109.00
O5—C9—C10	122.0 (4)	H12A—C12—H12B	109.00
N1—C9—C10	116.6 (4)	H12A—C12—H12C	110.00
C9—C10—C12	110.3 (4)	H12B—C12—H12C	109.00
C1-O1-C2-O2 C1-O1-C2-C3 C9-N1-C7-C6 C9-N1-C7-C8 C7-N1-C9-O5 C7-N1-C9-C10 O1-C2-C3-C4 O1-C2-C3-C4 O2-C2-C3-C4 O2-C2-C3-C4 O2-C2-C3-C4 C2-C3-C4-O3 C2-C3-C4-O3 C2-C3-C4-O3 C8-C3-C4-C5 C2-C3-C8-C7	$\begin{array}{c} 0.9 \ (6) \\ 179.9 \ (4) \\ -170.2 \ (4) \\ 11.3 \ (7) \\ 2.0 \ (7) \\ -177.9 \ (4) \\ -179.4 \ (4) \\ -1.0 \ (6) \\ -0.5 \ (7) \\ 178.0 \ (4) \\ -0.1 \ (6) \\ 179.6 \ (4) \\ -178.5 \ (4) \\ 1.2 \ (6) \\ -178.5 \ (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.1 (6) 178.3 (4) -1.4 (6) -179.0 (4) 0.5 (6) 1.4 (5) -179.9 (4) -178.1 (4) 0.6 (6) 177.8 (4) -0.7 (6) -70.1 (5) 53.9 (6) 109.9 (4) -126.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…O4	0.86	2.19	2.604 (4)	109
O3—H3…O2	0.82	1.87	2.595 (4)	146
O4— $H4$ ···O5 ⁱ	0.82	1.820	2.633 (4)	174

Symmetry code: (i) x, -y+2, z-1/2.