

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

9-(2,4-Dinitrophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1*H*xanthene-1,8(2*H*)-dione

N. Sureshbabu and V. Sughanya*

Department of Chemistry, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India

Correspondence e-mail: saisukanyashri@gmail.com

Received 6 January 2013; accepted 14 January 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.002 Å; R factor = 0.052; wR factor = 0.159; data-to-parameter ratio = 25.4.

In the title compound, $C_{23}H_{24}N_2O_7$, the central 4*H*-pyran ring adopts a flattened boat conformation, whereas both cyclohexenone rings adopt envelope conformations, the C atom bearing the dimethyl substituent being the flap atom in each case. The mean and maximum deviation of the pyran ring are 0.0379 (4) and 0.0605 (3) Å. The mean plane of the pyran ring and the dinitrobenzene ring make a dihedral angle of 85.88 (2)°.

Related literature

For the synthesis of xanthenes, see: Vanag & Stankevich (1960); Hilderbrand & Weissleder (2007). For their pharmaceutical properties, see: Dimmock *et al.* (1988); Lambert *et al.* (1997); Poupelin *et al.* (1978); Hideo (1981); Selvanayagam *et al.* (1996). For bond-length data, see: Allen *et al.* (1987). For related structures, see: Odabaşoğlu *et al.* (2008); Reddy *et al.* (2009); Mehdi *et al.* (2011); Sughanya & Sureshbabu (2012). For ring conformation analysis, see: Cremer & Pople (1975).

 $M_r = 440.44$

Experimental

Crystal data C₂₃H₂₄N₂O₇ Monoclinic, $P2_1/c$ a = 9.7733 (3) Å b = 19.6193 (5) Å c = 11.7922 (3) Å $\beta = 109.603$ (1)° V = 2130.04 (10) Å³

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{min} = 0.905, T_{max} = 0.975$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.052$ 289 parameters $wR(F^2) = 0.159$ H-atom parameters constrainedS = 1.03 $\Delta \rho_{max} = 0.38$ e Å⁻³7327 reflections $\Delta \rho_{min} = -0.30$ e Å⁻³

Data collection: *APEX2* (Bruker, 2004); cell refinement: *APEX2* and *SAINT* (Bruker, 2004); data reduction: *SAINT* and *XPREP* (Bruker, 2004); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr Babu Varghese and the SAIF, IIT Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2418).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Bruker (2004). APEX2, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dimmock, J. R., Raghavan, S. K. & Bigam, G. E. (1988). Eur. J. Med. Chem. 23, 111–117.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hideo, T. (1981). Jpn Kokai Tokkyo Koho JP 56 005480.
- Hilderbrand, S. A. & Weissleder, R. (2007). Tetrahedron Lett. 48, 4383-4385.
- Lambert, R. W., Martin, J. A., Merrett, J. H., Parkes, K. E. B. & Thomas, G. J. (1997). PCT Int. Appl. WO 9706178.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mehdi, S. H., Sulaiman, O., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, 01719–01720.
- Odabaşoğlu, M., Kaya, M., Yıldırır, Y. & Büyükgüngör, O. (2008). Acta Cryst. E64, o681.
- Poupelin, J. P., Saint-Ruf, G., Foussard-Blanpin, O., Narcisse, G., Uchida-Ernouf, G. & Lacroix, R. (1978). Eur. J. Med. Chem. 13, 67–71.
- Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, 0916.
- Selvanayagam, Z. E., Gnanavendhan, S. G., Balakrishnan, K., Rao, R. B., Sivaraman, J., Subramanian, K., Puri, R. & Puri, R. K. (1996). J. Nat. Prod. 59, 664–667.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o1060.
- Vanag, G. Y. & Stankevich, E. L. (1960). Zh. Obshch. Khim. 30, 3287-3290.

Z = 4

Mo $K\alpha$ radiation

 $0.35 \times 0.30 \times 0.25 \text{ mm}$

29785 measured reflections

7327 independent reflections

4793 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.031$

supporting information

Acta Cryst. (2013). E69, o281 [doi:10.1107/S1600536813001384]

9-(2,4-Dinitrophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1*H*-xanthene-1,8(2*H*)-dione

N. Sureshbabu and V. Sughanya

S1. Comment

Xanthene is the parent compound of a number of naturally occurring substances and some synthetic dyes. Xanthene derivatives are used as dyes (Hilderbrand & Weissleder, 2007), possess biological properties like antibacterial, antiviral and anti-inflammatory (Dimmock *et al.*, 1988) activities and are used in medicine. Ehretianone, a quinonoid xanthene was reported to possess antisnake venom activity (Selvanayagam *et al.*, 1996; Lambert *et al.*, 1997; Poupelin *et al.*, 1978; Hideo, 1981).

The central pyran B (O1/C1/C6/C7/C8/C13) ring almost planar with a mean deviation from the mean plane of 0.0379 (4) Å and a maximum deviation of 0.061 (3) Å for C7. O1 and C7 are moved out of this mean plane towards the direction which means that the ring may also be described as a highly flattened boat conformation. The rings A (C8—C13), B (O1/C1/C6/C7/C8/C13) and C (C1—C6) show total puckering amplitudes Q(T) of 0.4602 (15) Å, 0.0988 (2) Å, 0.4479 (16) Å, respectively. The cyclohexenone rings A and C both adopt envelope conformations, whereas the central B ring adopts a flattened boat conformation. This can be rationalized by the respective puckering parameters (Cremer & Pople, 1975) $\varphi = 177.6$ (2)° and $\theta = 53.65$ (2)° for A, $\varphi = 179.0$ (8)° and $\theta = 84.7$ (2)° for B, $\varphi = -54.5$ (12)° and $\theta = 126.82$ (2)° for C, respectively. The planar phenyl substituent and the central pyran ring form a dihedral angle of 85.88 (2)°. In the title compound, bond lengths (Allen *et al.*, 1987) and angles are generally within normal ranges. In the pyran ring C1—C6 and C8—C13 are double bonds in nature (C1—C6 1.333 (8) Å and C8—C13 1.334 (2) Å), as indicated by the bond distances. The C1—C6—C5 (118.81 (12)°) and C13—C8—C9 (118.70 (2)°) angles are almost identical. In this conformation C3 and C11 must be described as flap atoms being situated out of the plane of the ring with deviations of 0.316 (2) Å are also normal.

S2. Experimental

Following a literature method (Vanag & Stankevich, 1960) a mixture of 2,4-dinitrobenzaldehyde (0.588 g, 3 m mol) and 5,5-dimethylcyclohexane-1,3-dione (0.84 g, 6 m mol) was dissolved in 25 ml of ethanol in a 100 ml round bottomed flask. To this solution about 15 drops of concentrated hydrochloric acid were added and the content was refluxed for 30 minutes. The reaction was monitored by TLC. After completion of the reaction, the reaction mixture was poured into crushed ice and stirred well. The formed precipitate was filtered and dried. The yellow crystal used for data collection was obtained by crystallization from ethanol at room temperature, (m.p.446 K, yield: 86%).

S3. Refinement

Hydrogen atoms were fixed in calculated positions and allowed to ride on their parent atom with distances of d(C-H) = 0.96 Å (for CH₃) with $U_{iso}(H) = 1.5U_{eq}(C)$, d(C-H) = 0.97 Å (for CH₂) with $U_{iso}(H) = 1.2U_{eq}(C)$, d(C-H) = 0.98 Å (for

CH) with $U_{iso}(H) = 1.2U_{eq}(C)$ and d(C-H) = 0.93 Å (for aromatic CH) with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

A view of the structure of title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

9-(2,4-Dinitrophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H- xanthene-1,8(2H)-dione

Crystal data	
$C_{23}H_{24}N_2O_7$	F(000) = 928
$M_r = 440.44$	$D_{\rm x} = 1.373 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 446 K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 9.7733 (3) Å	Cell parameters from 8512 reflections
b = 19.6193 (5) Å	$\theta = 2.2 - 31.1^{\circ}$
c = 11.7922 (3) Å	$\mu=0.10~\mathrm{mm^{-1}}$
$\beta = 109.603 \ (1)^{\circ}$	T = 296 K
$V = 2130.04 (10) Å^3$	Block, yellow
Z = 4	$0.35 \times 0.30 \times 0.25 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD	29785 measured reflections
diffractometer	7327 independent reflections
Radiation source: fine-focus sealed tube	4793 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.031$
ω and φ scan	$\theta_{max} = 32.0^{\circ}, \theta_{min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 14$
(<i>SADABS</i> ; Bruker, 2004)	$k = -29 \rightarrow 27$
$T_{\min} = 0.905, T_{\max} = 0.975$	$l = -15 \rightarrow 17$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.159$	neighbouring sites
S = 1.03	H-atom parameters constrained
7327 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0777P)^2 + 0.3517P]$
289 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} < 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.38 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta\rho_{min} = -0.30 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.51973 (13)	0.15131 (7)	0.58305 (11)	0.0339 (3)	
C2	0.41933 (15)	0.19984 (8)	0.61245 (13)	0.0434 (3)	
H2A	0.4760	0.2353	0.6648	0.052*	
H2B	0.3659	0.1758	0.6561	0.052*	
C3	0.31152 (14)	0.23285 (8)	0.50052 (13)	0.0397 (3)	
C4	0.24534 (14)	0.17645 (8)	0.40933 (14)	0.0432 (3)	
H4A	0.1827	0.1488	0.4393	0.052*	
H4B	0.1851	0.1973	0.3347	0.052*	
C5	0.35407 (13)	0.13059 (7)	0.38268 (12)	0.0372 (3)	
C6	0.49306 (12)	0.11891 (7)	0.47847 (11)	0.0325 (3)	
C7	0.59949 (13)	0.06997 (6)	0.45403 (10)	0.0303 (2)	
H7	0.5504	0.0265	0.4260	0.036*	
C8	0.72373 (13)	0.05827 (6)	0.56996 (11)	0.0309 (2)	
C9	0.83150 (13)	0.00583 (7)	0.57141 (11)	0.0338 (3)	
C10	0.95370 (15)	-0.00702 (7)	0.68746 (12)	0.0393 (3)	
H10A	1.0378	-0.0227	0.6687	0.047*	

H10B	0.9251	-0.0433	0.7308	0.047*
C11	0.99723 (14)	0.05519 (7)	0.76956 (12)	0.0383 (3)
C12	0.85972 (15)	0.08387 (8)	0.78692 (11)	0.0406 (3)
H12A	0.8279	0.0530	0.8374	0.049*
H12B	0.8822	0.1274	0.8281	0.049*
C13	0.73989 (13)	0.09328 (7)	0.67058 (11)	0.0330 (3)
C14	0.38929 (18)	0.28478 (9)	0.44734 (16)	0.0541 (4)
H14A	0.4308	0.3198	0.5056	0.081*
H14B	0.3210	0.3048	0.3766	0.081*
H14C	0.4649	0.2624	0.4264	0.081*
C15	0.19240 (17)	0.26822 (10)	0.53505 (17)	0.0551 (4)
H15A	0.2344	0.3036	0.5925	0.083*
H15B	0.1449	0.2356	0.5699	0.083*
H15C	0.1228	0.2878	0.4645	0.083*
C16	1.10517 (18)	0.03431 (10)	0.89168 (14)	0.0594 (5)
H16A	1.0614	0.0007	0.9279	0.089*
H16B	1.1313	0.0736	0.9431	0.089*
H16C	1.1906	0.0155	0.8808	0.089*
C17	1.06762 (17)	0.10848 (9)	0.71315 (15)	0.0509 (4)
H17A	1.0003	0.1220	0.6365	0.076*
H17B	1.1530	0.0896	0.7023	0.076*
H17C	1.0940	0.1475	0.7651	0.076*
C18	0.65475 (12)	0.09886 (6)	0.35707 (10)	0.0295 (2)
C19	0.61732 (13)	0.07634 (7)	0.23872 (11)	0.0313 (2)
C20	0.66867 (14)	0.10639(7)	0.15506 (11)	0.0361 (3)
H20	0.6414	0.0904	0.0764	0.043*
C21	0.76167 (14)	0.16090 (7)	0.19241 (12)	0.0379 (3)
C22	0.80053 (16)	0.18654 (8)	0.30670 (13)	0.0425 (3)
H22	0.8618	0.2241	0.3294	0.051*
C23	0.74630 (15)	0.15511 (7)	0.38759 (12)	0.0382 (3)
H23	0.7721	0.1723	0.4655	0.046*
N1	0.51735 (13)	0.01863 (7)	0.19194 (10)	0.0422 (3)
N2	0.81838 (16)	0.19342 (8)	0.10531 (13)	0.0543 (4)
01	0.64491 (10)	0.14292 (5)	0.67914 (8)	0.0384 (2)
O2	0.32732 (11)	0.10217 (6)	0.28536 (9)	0.0516 (3)
O3	0.81924 (12)	-0.02696 (6)	0.48107 (9)	0.0491 (3)
O4	0.52780 (15)	-0.03162 (6)	0.25373 (11)	0.0642 (4)
05	0.42986 (15)	0.02476 (8)	0.09097 (11)	0.0723 (4)
O6	0.7810 (2)	0.17153 (9)	0.00386 (14)	0.0984 (6)
07	0.89653 (17)	0.24275 (8)	0.13837 (14)	0.0805 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0318 (5)	0.0406 (7)	0.0304 (6)	0.0049 (5)	0.0120 (5)	0.0037 (5)
C2	0.0425 (7)	0.0530 (9)	0.0372 (7)	0.0145 (6)	0.0168 (6)	0.0015 (6)
C3	0.0347 (6)	0.0417 (8)	0.0427 (7)	0.0055 (5)	0.0131 (5)	0.0038 (6)
C4	0.0306 (6)	0.0467 (8)	0.0494 (8)	0.0011 (5)	0.0095 (5)	0.0013 (6)

supporting information

C5	0.0308 (6)	0.0426 (7)	0.0377 (7)	-0.0029 (5)	0.0109 (5)	0.0018 (5)
C6	0.0295 (5)	0.0382 (7)	0.0311 (6)	0.0010 (5)	0.0119 (4)	0.0029 (5)
C7	0.0317 (5)	0.0334 (6)	0.0268 (5)	-0.0018 (5)	0.0109 (4)	-0.0004 (4)
C8	0.0317 (5)	0.0343 (6)	0.0279 (5)	0.0012 (5)	0.0116 (4)	0.0014 (5)
C9	0.0354 (6)	0.0329 (6)	0.0343 (6)	-0.0005 (5)	0.0133 (5)	-0.0013 (5)
C10	0.0377 (6)	0.0379 (7)	0.0400 (7)	0.0065 (5)	0.0099 (5)	-0.0002 (6)
C11	0.0346 (6)	0.0439 (8)	0.0331 (6)	0.0061 (5)	0.0069 (5)	-0.0041 (5)
C12	0.0403 (6)	0.0539 (9)	0.0263 (6)	0.0099 (6)	0.0094 (5)	-0.0011 (5)
C13	0.0328 (5)	0.0394 (7)	0.0283 (6)	0.0063 (5)	0.0125 (4)	0.0025 (5)
C14	0.0495 (8)	0.0476 (9)	0.0650 (10)	-0.0020 (7)	0.0189 (7)	0.0097 (8)
C15	0.0455 (8)	0.0576 (10)	0.0643 (10)	0.0162 (7)	0.0212 (7)	0.0023 (8)
C16	0.0495 (8)	0.0747 (12)	0.0417 (8)	0.0207 (8)	-0.0010 (7)	-0.0062 (8)
C17	0.0452 (8)	0.0524 (9)	0.0559 (9)	-0.0092 (7)	0.0180 (7)	-0.0133 (7)
C18	0.0309 (5)	0.0316 (6)	0.0270 (5)	0.0013 (4)	0.0108 (4)	0.0006 (4)
C19	0.0321 (5)	0.0334 (6)	0.0281 (6)	0.0002 (5)	0.0098 (4)	-0.0014 (5)
C20	0.0403 (6)	0.0426 (7)	0.0272 (6)	0.0066 (5)	0.0137 (5)	0.0023 (5)
C21	0.0406 (6)	0.0399 (7)	0.0399 (7)	0.0055 (5)	0.0222 (5)	0.0101 (5)
C22	0.0452 (7)	0.0382 (7)	0.0463 (8)	-0.0086 (6)	0.0183 (6)	0.0017 (6)
C23	0.0444 (7)	0.0381 (7)	0.0328 (6)	-0.0073 (6)	0.0138 (5)	-0.0034 (5)
N1	0.0436 (6)	0.0483 (7)	0.0337 (6)	-0.0087 (5)	0.0115 (5)	-0.0092 (5)
N2	0.0629 (8)	0.0574 (9)	0.0552 (8)	0.0032 (7)	0.0367 (7)	0.0144 (7)
01	0.0376 (5)	0.0481 (6)	0.0284 (4)	0.0115 (4)	0.0096 (4)	-0.0031 (4)
O2	0.0387 (5)	0.0704 (8)	0.0398 (6)	0.0021 (5)	0.0052 (4)	-0.0092 (5)
O3	0.0528 (6)	0.0513 (6)	0.0419 (6)	0.0084 (5)	0.0141 (5)	-0.0121 (5)
04	0.0859 (9)	0.0470 (7)	0.0540 (7)	-0.0244 (6)	0.0157 (6)	-0.0048 (5)
05	0.0660 (8)	0.0897 (10)	0.0424 (6)	-0.0206 (7)	-0.0067 (6)	-0.0088 (6)
06	0.1521 (16)	0.1066 (13)	0.0657 (9)	-0.0304 (11)	0.0749 (11)	-0.0055 (9)
O7	0.0924 (10)	0.0799 (10)	0.0826 (10)	-0.0268 (8)	0.0471 (8)	0.0168 (8)

Geometric parameters (Å, °)

C1—C6	1.3331 (18)	C12—H12B	0.9700	
C101	1.3702 (15)	C13—O1	1.3723 (15)	
C1—C2	1.4892 (18)	C14—H14A	0.9600	
С2—С3	1.5293 (19)	C14—H14B	0.9600	
C2—H2A	0.9700	C14—H14C	0.9600	
C2—H2B	0.9700	C15—H15A	0.9600	
C3—C15	1.523 (2)	C15—H15B	0.9600	
C3—C14	1.526 (2)	C15—H15C	0.9600	
С3—С4	1.527 (2)	C16—H16A	0.9600	
C4—C5	1.504 (2)	C16—H16B	0.9600	
C4—H4A	0.9700	C16—H16C	0.9600	
C4—H4B	0.9700	C17—H17A	0.9600	
С5—О2	1.2226 (17)	C17—H17B	0.9600	
С5—С6	1.4643 (17)	C17—H17C	0.9600	
С6—С7	1.5127 (17)	C18—C23	1.3899 (18)	
С7—С8	1.5107 (16)	C18—C19	1.3908 (16)	
C7—C18	1.5279 (17)	C19—C20	1.3801 (18)	

С7—Н7	0 9800	C19—N1	1 4762 (17)
C8-C13	13338(17)	C_{20} C_{21}	1.1702(17) 1.377(2)
	1.683(17)	C20—H20	0.9300
C_{9}	1,1005(17) 1,2155(15)	C_{21} C_{22}	1.368(2)
C_{9} C_{10}	1 5054 (18)	C21_022	1.300(2) 1 4667(18)
C_{10} C_{11}	1.5034(10) 1.5270(10)	C_{21} C_{23} C_{23}	1.4007(10)
C10_U10A	0.0700	$C_{22} = C_{23}$	0.0300
C10_H10A	0.9700	$C_{22} = 1122$	0.9300
C10—H10B	1.522 (2)	N1 04	0.9300
	1.522(2)	N1_05	1.2090(17)
	1.5280 (19)	N1-05	1.2100 (10)
	1.5327(18)	N2	1.207 (2)
C12—C13	1.4864 (17)	N207	1.213 (2)
C12—H12A	0.9700		
C6—C1—O1	123.43 (11)	C11—C12—H12B	109.2
C6—C1—C2	125.49 (11)	H12A—C12—H12B	107.9
01—C1—C2	111.07 (11)	C8—C13—O1	123.36 (11)
C1 - C2 - C3	112.76 (11)	C8—C13—C12	125.35(11)
C1 - C2 - H2A	109.0	01-C13-C12	111.29 (11)
$C_3 - C_2 - H_2 A$	109.0	C3-C14-H14A	109.5
C1 - C2 - H2B	109.0	C_3 — C_14 — H_14B	109.5
$C_3 - C_2 - H_2B$	109.0	H_{14A} C_{14} H_{14B}	109.5
$H^2A - C^2 - H^2B$	107.8	C_3 — C_14 — H_14C	109.5
C_{15} C_{3} C_{14}	109.66 (13)	$H_{14} = C_{14} = H_{14} C_{14}$	109.5
$C_{15} = C_{3} = C_{4}$	109.00(13) 109.71(12)	H_{14B} C_{14} H_{14C}	109.5
$C_{13} = C_{3} = C_{4}$	109.71(12) 110.24(13)	C_3 C_15 H_15A	109.5
$C_{14} = C_{3} = C_{4}$	100.24(13) 100.23(12)	$C_3 = C_{15} = H_{15R}$	109.5
$C_{13} - C_{3} - C_{2}$	109.23(12) 110.00(12)	H15A C15 H15B	109.5
$C_1 = C_2 = C_2$	10.09(12) 107.80(12)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_4 - C_5 - C_2$	107.09(12) 114.75(11)	Ц15A С15 Н15С	109.5
$C_5 = C_4 = U_{4,A}$	114.75 (11)	HISA-CIS-HISC	109.5
C_{3} C_{4} H_{4A}	108.0		109.5
C_{3} — C_{4} — $H_{4}A$	108.0	C11 - C16 - H16A	109.5
C_{3} C_{4} H_{4} H_{4	108.0		109.5
	108.0		109.5
H4A - C4 - H4B	107.0		109.5
02 - 05 - 06	120.23(12)	H16A - C16 - H16C	109.5
02	121.70 (12)	HI6B—CI6—HI6C	109.5
$C_{6} - C_{5} - C_{4}$	118.04 (12)	СП—СТ/—НТ/А	109.5
	118.81 (12)	CII—CI7—HI7B	109.5
CIC6C/	123.05 (11)	H1/A—C1/—H1/B	109.5
C5—C6—C7	118.14 (11)	C11—C17—H17C	109.5
C8—C7—C6	108.62 (10)	H17A—C17—H17C	109.5
C8—C7—C18	110.80 (10)	H17B—C17—H17C	109.5
C6—C7—C18	110.21 (10)	C23—C18—C19	116.22 (11)
С8—С7—Н7	109.1	C23—C18—C7	117.34 (11)
С6—С7—Н7	109.1	C19—C18—C7	126.38 (11)
С18—С7—Н7	109.1	C20—C19—C18	123.04 (12)
C13—C8—C9	118.70 (11)	C20-C19-N1	114.48 (11)

C13—C8—C7	123 10 (11)	C18—C19—N1	122 48 (11)
C9—C8—C7	118.21 (11)	C21—C20—C19	117.55 (12)
03-09-08	120.08 (12)	C21—C20—H20	121.2
O3—C9—C10	121.53 (12)	С19—С20—Н20	121.2
C8—C9—C10	118.37 (11)	C22—C21—C20	122.43 (12)
C9-C10-C11	114.19 (11)	C22—C21—N2	119.00 (13)
C9—C10—H10A	108.7	C20—C21—N2	118.56 (13)
C11—C10—H10A	108.7	C21—C22—C23	118.17 (13)
С9—С10—Н10В	108.7	C21—C22—H22	120.9
C11—C10—H10B	108.7	С23—С22—Н22	120.9
H10A—C10—H10B	107.6	C22—C23—C18	122.56 (12)
C17—C11—C10	110.04 (12)	C22—C23—H23	118.7
C17—C11—C16	109.01 (13)	C18—C23—H23	118.7
C10-C11-C16	109.91 (12)	04—N1—05	124.03 (13)
C17—C11—C12	110.57 (12)	04—N1—C19	119.24 (11)
C10-C11-C12	107.93 (11)	05-N1-C19	116.72 (13)
C16-C11-C12	109.37 (11)	06—N2—07	12344(15)
C13 - C12 - C11	112 15 (11)	06-N2-C21	118 66 (15)
C13 - C12 - H12A	109.2	07 - N2 - C21	117.84 (15)
C_{11} C_{12} H_{12A}	109.2	C1 - C1 - C13	117.56 (10)
C13 - C12 - H12B	109.2		117.50 (10)
	109.2		
C6—C1—C2—C3	-24.1 (2)	C16—C11—C12—C13	-169.45 (14)
O1—C1—C2—C3	156.81 (12)	C9—C8—C13—O1	-179.49 (11)
C1—C2—C3—C15	166.99 (13)	C7—C8—C13—O1	0.5 (2)
C1—C2—C3—C14	-72.55 (17)	C9—C8—C13—C12	-0.1(2)
C1—C2—C3—C4	47.79 (16)	C7—C8—C13—C12	179.97 (12)
$C_{15} - C_{3} - C_{4} - C_{5}$	-170.89(13)	C11—C12—C13—C8	26.1 (2)
C14—C3—C4—C5	68.26 (16)	C11—C12—C13—O1	-154.43 (12)
C2—C3—C4—C5	-51.99 (16)	C8—C7—C18—C23	-50.45 (15)
C3—C4—C5—O2	-151.35 (14)	C6-C7-C18-C23	69.81 (14)
C3—C4—C5—C6	30.51 (18)	C8—C7—C18—C19	132.67 (13)
O1—C1—C6—C5	178.65 (12)	C6—C7—C18—C19	-107.07 (14)
C2-C1-C6-C5	-0.3(2)	C23—C18—C19—C20	1.15 (19)
01—C1—C6—C7	-0.9(2)	C7—C18—C19—C20	178.06 (12)
C2-C1-C6-C7	-179.87(13)	C23-C18-C19-N1	-178.00(12)
O2—C5—C6—C1	179.17 (13)	C7—C18—C19—N1	-1.09(19)
C4—C5—C6—C1	-2.66(19)	C18—C19—C20—C21	0.32 (19)
02	-1.26(19)	N1-C19-C20-C21	179.54 (11)
C4-C5-C6-C7	176.91 (12)	C19-C20-C21-C22	-1.7(2)
C1 - C6 - C7 - C8	7 67 (17)	C19 - C20 - C21 - N2	179.64(12)
C5-C6-C7-C8	-171.88(11)	C_{20} C_{21} C_{22} C_{23}	1.5 (2)
C1 - C6 - C7 - C18	-11388(13)	N_{2} C_{21} C_{22} C_{23}	-179.84(13)
C_{5} C_{6} C_{7} C_{18}	66 57 (14)	$C_{21} - C_{22} - C_{23} - C_{18}$	01(2)
C6-C7-C8-C13	-750(17)	C19 - C18 - C23 - C22	-14(2)
C18 - C7 - C8 - C13	113 70 (13)	C7-C18-C23-C22	-17856(13)
C6-C7-C8-C9	172 53 (11)	C_{20} C_{19} N_{1} O_{4}	138 94 (14)
C_{18} C_{7} C_{8} C_{9}	-66 27 (14)	C18 - C19 - N1 - O4	-41.84(10)
010 - 07 - 00 - 07	00.27 (17)	010 -017-111-04	F1.07 (17)

C13—C8—C9—O3	179.81 (13)	C20-C19-N1-O5	-39.93 (18)
C7—C8—C9—O3	-0.22 (19)	C18—C19—N1—O5	139.28 (14)
C13—C8—C9—C10	1.31 (18)	C22—C21—N2—O6	-178.31 (17)
C7—C8—C9—C10	-178.72 (11)	C20-C21-N2-O6	0.4 (2)
O3—C9—C10—C11	152.40 (13)	C22—C21—N2—O7	-1.0 (2)
C8—C9—C10—C11	-29.12 (17)	C20-C21-N2-O7	177.70 (15)
C9—C10—C11—C17	-68.38 (15)	C6-C1-O1-C13	-7.06 (19)
C9—C10—C11—C16	171.56 (12)	C2-C1-O1-C13	172.05 (12)
C9—C10—C11—C12	52.36 (16)	C8-C13-O1-C1	7.24 (19)
C17—C11—C12—C13	70.50 (16)	C12—C13—O1—C1	-172.26 (11)
C10-C11-C12-C13	-49.90 (16)		