

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

rac-1-[6-Hydroxy-4-(4-methoxyphenyl)-3,6-dimethyl-4,5,6,7-tetrahydro-2*H*indazol-5-yl]ethanone

Konstantin A. Potekhin,^a Rizvan K. Askerov,^b Kushvar E. Hajiyeva,^b Narmina A. Gadirova^b* and Shahkaram I. Nazarov^b

^aVladimir State University, Qor'ky St 87, 600000 Vladimir, Russian Federation, and ^bBaku State University, Z. Khalilov St 23, AZ-1148 Baku, Azerbaijan Correspondence e-mail: Naralab7@gmail.com

Received 30 November 2012; accepted 10 January 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.057; wR factor = 0.151; data-to-parameter ratio = 18.2.

The title compound, $C_{18}H_{22}N_2O_3$, represents a (4S,5R,6S)stereoisomer, crystallizing as a racemate in a centrosymmetric space group. The six-membered aliphatic ring adopts a halfchair conformation, with the hydroxy- and acetyl-substituted C atoms deviating by 0.458 (2) and -0.366 (2) Å, respectively, from the plane defined by other four ring atoms. The pyrazole ring is essentially planar [r.m.s deviation = 0.004 (2) Å]. In the crystal, the molecules are linked into chains along the *b* axis by $N-H \cdots N$ hydrogen bonds. The chains are linked by O- $H \cdots N$ hydrogen bonds into layers parallel to the *bc* plane.

Related literature

For background to the use of β -cycloketols as synthons in the synthesis of pyrazoles, see: Pramula *et al.* (1985). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For ring conformations, see: Cremer & Pople (1975).

17994 measured reflections

 $R_{\rm int} = 0.053$

4015 independent reflections

2740 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) T_{min} = 0.974, T_{max} = 0.982

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.057 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.151 & \text{independent and constrained} \\ S &= 1.00 & \text{refinement} \\ 4015 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.28 \text{ e} \text{ Å}^{-3} \\ 220 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.26 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$	
$\begin{array}{c} O1 - H1O \cdots N2^{i} \\ N1 - H1N \cdots N2^{ii} \end{array}$	0.81 (3) 0.87 (2)	2.15 (3) 2.27 (2)	2.948 (2) 3.093 (2)	168 (2) 157 (2)	
Summatry and (i) $x + 1$ $y = z + 1$ (ii) $x + 1$ $y + \frac{1}{z} + \frac{3}{z}$					

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

We thank Baku State University and Vladimir State University for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2089).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

- Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Pramula, B., Rajanarender, E., Shoolery, J. N. & Krishna, M. (1985). Indian J. Chem. Sect. B, 24, 1255–1258.
- Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o243 [doi:10.1107/S1600536813000937]

rac-1-[6-Hydroxy-4-(4-methoxyphenyl)-3,6-dimethyl-4,5,6,7-tetrahydro-2*H*-indazol-5-yl]ethanone

Konstantin A. Potekhin, Rizvan K. Askerov, Kushvar E. Hajiyeva, Narmina A. Gadirova and Shahkaram I. Nazarov

S1. Comment

We explore the use of simple molecules with different functionalities for synthesis of heterocycles. Particularly, the β -cycloketols have been used as an effective synthon in syntheses of pyrazoles (Pramula *et al.* 1985).

Fig. 1 shows the molecular structure of title compound (I), $C_{18}H_{22}N_2O_3$. The six-membered ring C_1 , C_2 , C_3 , C_4 , C_5 , C_6 has a half-chair conformation. Four atoms of a six-membered ring C_1 , C_2 , C_5 , C_6 are located on the same plane within 0.004 (2) Å while C_3 (+ 0.458 (2) Å) and C_4 (- 0.366 (2) Å) atoms are deviating to the opposite sides of the plane. The pyrazole ring is essentially planar (r.m.s deviation is 0.004 (2) Å). Hydrogen bonds N—H … N combine molecules into chains oriented along the axis *b* (Fig.2). H-bonds O—H … N form centrosymmetric cycles. Through these cycles, the above chains are combined into two-dimensional layers parallel to the plane *bc*.

S2. Experimental

2,4-Diacetyl-5-hydroxy-5-metyl-3(4-methoxyphenyl)cyclohexanone (20 mmol) and hydrazine hydrate (20 mmol) were dissolved in 20 ml of ethanol. The mixture was stirred at 335–340 K for 10 h. After cooling to the room temperature, white crystals were obtained. The crystals were filtered off and washed with cold ethanol. Then they were dissolved in ethanol (50 ml) and recrystallized to yield colourless block-shaped crystals suitable for data collection.

S3. Refinement

Hydrogen atoms of the OH and NH group found in difference-Fourier maps and included in the refinement with isotropic displacement parameters. The other hydrogen atoms were placed in calculated positions with and refined in the riding mode with isotropic displacement parameters restricted to $1.2U_{eq}$ of the adjacent C atom ($1.5U_{eq}$ for methyl C atoms).

Figure 1

The molecular structure of the title compound with the atomic numbering scheme. Non-essential H-atoms were removed for clarity. Displacement ellipsoids were drawn at 50% probability.

Figure 2

The projection of the crystal structure (I) along the b axis. H bonds are shown as a dashed lines. H atoms not involved in the formation of the hydrogen bonds are not shown.

rac-1-[6-Hydroxy-4-(4-methoxyphenyl)-3,6-dimethyl-4,5,6,7- tetrahydro-2H-indazol-5-yl]ethanone

C₁₈H₂₂N₂O₃ $M_r = 314.38$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 18.3693 (14) Å b = 5.6971 (4) Å c = 16.3049 (12) Å $\beta = 109.526 (1)^{\circ}$ $V = 1608.2 (2) \text{ Å}^3$ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\min} = 0.974, T_{\max} = 0.982$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.151$ S = 1.004015 reflections F(000) = 672 $D_x = 1.298 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2645 reflections $\theta = 2.4-27.8^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 KPrism, yellow $0.30 \times 0.20 \times 0.20 \text{ mm}$

17994 measured reflections 4015 independent reflections 2740 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 28.4^\circ, \ \theta_{min} = 2.4^\circ$ $h = -24 \rightarrow 24$ $k = -7 \rightarrow 7$ $l = -21 \rightarrow 21$

220 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map	
H atoms treated by a mixture of independent	
and constrained refinement	

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0775P)^{2} + 0.4526P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.26 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.37902 (8)	0.0325 (2)	0.39112 (9)	0.0292 (3)	
H1O	0.4175 (15)	0.014 (4)	0.3782 (15)	0.042 (7)*	
O2	0.17526 (9)	-0.3321 (3)	0.33143 (10)	0.0509 (5)	
03	0.02786 (9)	0.2338 (3)	0.60541 (12)	0.0581 (5)	
N1	0.44992 (10)	0.1360 (3)	0.68991 (11)	0.0323 (4)	
H1N	0.4757 (13)	0.189 (4)	0.7417 (15)	0.036 (6)*	
N2	0.47720 (9)	-0.0401 (3)	0.65158 (10)	0.0317 (4)	
C1	0.41943 (10)	-0.0765 (3)	0.57672 (11)	0.0250 (4)	
C2	0.42242 (11)	-0.2495 (3)	0.50915 (12)	0.0291 (4)	
H2B	0.4132	-0.4062	0.5267	0.035*	
H2C	0.4732	-0.2469	0.5033	0.035*	
C3	0.36087 (10)	-0.1881 (3)	0.42137 (11)	0.0240 (4)	
C4	0.28224 (10)	-0.1512 (3)	0.43618 (11)	0.0233 (4)	
H4A	0.2756	-0.2845	0.4710	0.028*	
C5	0.28328 (10)	0.0725 (3)	0.49055 (11)	0.0224 (4)	
H5A	0.2854	0.2083	0.4545	0.027*	
C6	0.35664 (10)	0.0713 (3)	0.56806 (11)	0.0236 (4)	
C7	0.37853 (10)	0.2084 (3)	0.64195 (12)	0.0274 (4)	
C8	0.35771 (13)	-0.3796 (4)	0.35532 (13)	0.0359 (5)	
H8A	0.4077	-0.3967	0.3494	0.054*	
H8B	0.3206	-0.3377	0.3001	0.054*	
H8C	0.3428	-0.5252	0.3748	0.054*	
C9	0.21385 (11)	-0.1556 (4)	0.35177 (12)	0.0296 (4)	
C10	0.19493 (14)	0.0554 (4)	0.29457 (13)	0.0429 (5)	
H10A	0.1628	0.0102	0.2372	0.064*	
H10B	0.2418	0.1242	0.2919	0.064*	
H10C	0.1681	0.1676	0.3178	0.064*	
C11	0.21160 (10)	0.0998 (3)	0.51714 (11)	0.0241 (4)	
C12	0.16362 (11)	0.2925 (4)	0.49013 (13)	0.0327 (4)	
H12A	0.1726	0.3980	0.4511	0.039*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C13	0.10256 (12)	0.3313 (4)	0.52006 (15)	0.0404 (5)	
H13A	0.0713	0.4625	0.5014	0.048*	
C14	0.08796 (11)	0.1756 (4)	0.57763 (14)	0.0366 (5)	
C15	0.13375 (13)	-0.0199 (4)	0.60398 (15)	0.0406 (5)	
H15A	0.1237	-0.1274	0.6418	0.049*	
C16	0.19500 (12)	-0.0552 (4)	0.57368 (14)	0.0368 (5)	
H16A	0.2259	-0.1873	0.5920	0.044*	
C17	0.00859 (16)	0.0772 (6)	0.66259 (19)	0.0634 (8)	
H17A	-0.0343	0.1391	0.6768	0.095*	
H17B	0.0522	0.0593	0.7149	0.095*	
H17C	-0.0051	-0.0727	0.6348	0.095*	
C18	0.33930 (13)	0.4034 (4)	0.67129 (14)	0.0416 (5)	
H18A	0.3487	0.3891	0.7326	0.062*	
H18B	0.2847	0.3962	0.6406	0.062*	
H18C	0.3591	0.5510	0.6596	0.062*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0287 (7)	0.0281 (7)	0.0358 (7)	0.0006 (6)	0.0173 (6)	0.0041 (6)
O2	0.0481 (10)	0.0498 (10)	0.0436 (9)	-0.0213 (8)	0.0006 (7)	-0.0046 (8)
03	0.0388 (9)	0.0800 (13)	0.0677 (11)	0.0212 (9)	0.0342 (8)	0.0121 (10)
N1	0.0282 (9)	0.0422 (10)	0.0218 (8)	0.0005 (7)	0.0023 (7)	-0.0050 (7)
N2	0.0244 (8)	0.0415 (10)	0.0266 (8)	0.0043 (7)	0.0049 (7)	0.0006 (7)
C1	0.0211 (9)	0.0299 (10)	0.0240 (9)	0.0020 (7)	0.0074 (7)	0.0029 (7)
C2	0.0266 (9)	0.0295 (10)	0.0316 (10)	0.0059 (8)	0.0101 (8)	0.0004 (8)
C3	0.0249 (9)	0.0237 (9)	0.0245 (9)	0.0008 (7)	0.0096 (7)	-0.0002 (7)
C4	0.0229 (9)	0.0255 (9)	0.0217 (8)	-0.0025 (7)	0.0074 (7)	0.0017 (7)
C5	0.0199 (8)	0.0247 (9)	0.0220 (8)	0.0016 (7)	0.0063 (7)	0.0022 (7)
C6	0.0225 (9)	0.0277 (9)	0.0218 (8)	0.0003 (7)	0.0087 (7)	0.0003 (7)
C7	0.0255 (9)	0.0339 (10)	0.0218 (9)	0.0008 (8)	0.0067 (7)	0.0001 (8)
C8	0.0416 (12)	0.0330 (11)	0.0361 (11)	-0.0005 (9)	0.0169 (9)	-0.0083 (9)
C9	0.0264 (9)	0.0381 (11)	0.0257 (9)	-0.0038 (8)	0.0106 (8)	-0.0045 (8)
C10	0.0413 (12)	0.0506 (14)	0.0284 (10)	-0.0003 (10)	0.0006 (9)	0.0047 (10)
C11	0.0196 (8)	0.0281 (9)	0.0227 (8)	0.0012 (7)	0.0045 (7)	-0.0006 (7)
C12	0.0287 (10)	0.0326 (11)	0.0360 (10)	0.0038 (8)	0.0098 (8)	0.0062 (9)
C13	0.0284 (10)	0.0418 (12)	0.0500 (13)	0.0158 (9)	0.0120 (9)	0.0071 (10)
C14	0.0247 (10)	0.0484 (13)	0.0388 (11)	0.0053 (9)	0.0133 (9)	-0.0028 (10)
C15	0.0384 (12)	0.0461 (13)	0.0440 (12)	0.0059 (9)	0.0227 (10)	0.0142 (10)
C16	0.0358 (11)	0.0355 (11)	0.0439 (12)	0.0133 (9)	0.0198 (9)	0.0129 (9)
C17	0.0423 (14)	0.094 (2)	0.0652 (17)	-0.0028 (14)	0.0330 (13)	-0.0015 (16)
C18	0.0427 (12)	0.0475 (13)	0.0321 (11)	0.0069 (10)	0.0091 (9)	-0.0116 (10)

Geometric parameters (Å, °)

01-C3	1.430 (2)	C8—H8A	0.9600
01—H10	0.81 (3)	C8—H8B	0.9600
O2—C9	1.211 (2)	C8—H8C	0.9600

O3—C14	1.367 (2)	C9—C10	1.489 (3)
O3—C17	1.418 (3)	C10—H10A	0.9600
N1—C7	1.348 (2)	C10—H10B	0.9600
N1—N2	1.363 (2)	C10—H10C	0.9600
N1—H1N	0.87 (2)	C11—C16	1.382 (3)
N2—C1	1.339 (2)	C11—C12	1.385 (3)
C1—C6	1.397 (2)	C12—C13	1.382 (3)
C1—C2	1.493 (3)	C12—H12A	0.9300
C2—C3	1.539 (3)	C13—C14	1.382 (3)
C2—H2B	0.9700	C13—H13A	0.9300
C2—H2C	0.9700	C14—C15	1.375 (3)
C3—C8	1.520 (3)	C15—C16	1.386 (3)
C3—C4	1.556 (2)	C15—H15A	0.9300
C4—C9	1.522 (2)	C16—H16A	0.9300
C4—C5	1.549 (2)	C17—H17A	0.9600
C4—H4A	0.9800	C17—H17B	0.9600
C5—C6	1.508(2)	C17—H17C	0.9600
C5-C11	1.525 (2)	C18—H18A	0.9600
С5—Н5А	0.9800	C18—H18B	0.9600
C6—C7	1.378(3)	C18—H18C	0.9600
C7-C18	1.576(3) 1 488(3)		0.9000
0, 010	1.100 (5)		
C3-01-H10	107.3 (17)	C3—C8—H8C	109.5
C14—O3—C17	118.17 (19)	H8A—C8—H8C	109.5
C7—N1—N2	113.26 (16)	H8B—C8—H8C	109.5
C7-N1-H1N	124.4 (15)	Ω^2 —C9—C10	120.39 (18)
N2—N1—H1N	122.3(15)	$0^{2}-0^{2}-0^{4}$	119 46 (18)
C1-N2-N1	103.36 (15)	C10-C9-C4	120.14 (17)
N2-C1-C6	112.02(16)	C9-C10-H10A	109 5
$N_2 - C_1 - C_2$	124.16 (16)	C9—C10—H10B	109.5
C6-C1-C2	123.80 (16)	H10A - C10 - H10B	109.5
C1 - C2 - C3	109 87 (14)	C9-C10-H10C	109.5
C1 - C2 - H2B	109.37 (11)	H10A - C10 - H10C	109.5
$C_3 - C_2 - H_2B$	109.7	H10B-C10-H10C	109.5
$C_1 - C_2 - H_2C$	109.7	C16-C11-C12	117 36 (17)
$C_1 = C_2 = H_2C$	109.7	C16-C11-C5	121.89 (16)
H_{2B}	109.7	C10 - C11 - C5	121.09(10) 120.58(17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.2	C12 - C11 - C5	120.38(17) 121.33(10)
$01 - C_3 - C_3$	110.14(14) 100.60(15)	C13 - C12 - C11	121.33 (19)
$C_{1} - C_{2} - C_{2}$	109.09(15) 109.78(15)	C13 - C12 - H12A	119.3
$C_{0} - C_{3} - C_{2}$	105.66 (14)	C12 C13 C14	119.3 120.12(10)
C^{8} C^{3} C^{4}	103.00(14) 112.02(15)	C12 - C13 - C14 C12 - C13 - H13A	120.12 (19)
$C_{3} = C_{3} = C_{4}$	112.92(13) 108.54(14)	C12 - C13 - H13A	119.9
$C_2 - C_3 - C_4$	100.34(14) 112.31(15)	$O_2 C_1 4 C_1 5$	119.9 124.8(2)
$C_{1} = C_{1} = C_{2}$	112.31(13) 112.70(14)	03 - C14 - C13	127.0(2) 115 54 (10)
$C_{-}C_{+}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	112.70(14) 111.46(14)	C_{15} C_{14} C_{13} C_{15} C_{14} C_{13}	110.54 (19)
$C_{1} = C_{1} = C_{2}$	106.6	C14-C15 $C16$	110.07(10)
C5_C4_H4A	106.6	C14 - C15 - C10	119.4 (2)
	100.0		14(1)

C3—C4—H4A	106.6	C16—C15—H15A	120.3
C6—C5—C11	112.13 (14)	C11—C16—C15	122.11 (18)
C6—C5—C4	108.23 (14)	C11—C16—H16A	118.9
C11—C5—C4	113.58 (14)	C15—C16—H16A	118.9
С6—С5—Н5А	107.5	O3—C17—H17A	109.5
С11—С5—Н5А	107.5	O3—C17—H17B	109.5
C4—C5—H5A	107.5	H17A—C17—H17B	109.5
C7—C6—C1	105.28 (16)	O3—C17—H17C	109.5
C7—C6—C5	130.39 (16)	H17A—C17—H17C	109.5
C1—C6—C5	124.31 (16)	H17B—C17—H17C	109.5
N1—C7—C6	106.07 (16)	C7—C18—H18A	109.5
N1—C7—C18	121.61 (17)	C7—C18—H18B	109.5
C6—C7—C18	132.32 (17)	H18A-C18-H18B	109.5
С3—С8—Н8А	109.5	C7—C18—H18C	109.5
C3—C8—H8B	109.5	H18A-C18-H18C	109.5
H8A—C8—H8B	109.5	H18B-C18-H18C	109.5
C7—N1—N2—C1	-0.1 (2)	N2—N1—C7—C6	0.7 (2)
N1—N2—C1—C6	-0.6 (2)	N2—N1—C7—C18	-178.36 (18)
N1—N2—C1—C2	177.76 (17)	C1—C6—C7—N1	-1.0 (2)
N2—C1—C2—C3	-160.60 (17)	C5—C6—C7—N1	-179.50 (18)
C6—C1—C2—C3	17.5 (2)	C1—C6—C7—C18	178.0 (2)
C1—C2—C3—O1	65.31 (18)	C5—C6—C7—C18	-0.6 (4)
C1—C2—C3—C8	-173.54 (15)	C5—C4—C9—O2	-132.80 (19)
C1—C2—C3—C4	-49.68 (19)	C3—C4—C9—O2	100.3 (2)
O1—C3—C4—C9	78.02 (18)	C5—C4—C9—C10	47.5 (2)
C8—C3—C4—C9	-42.4 (2)	C3—C4—C9—C10	-79.4 (2)
C2—C3—C4—C9	-164.39 (15)	C6—C5—C11—C16	-57.2 (2)
O1—C3—C4—C5	-49.32 (17)	C4—C5—C11—C16	65.9 (2)
C8—C3—C4—C5	-169.78 (15)	C6—C5—C11—C12	117.95 (19)
C2—C3—C4—C5	68.27 (18)	C4—C5—C11—C12	-118.97 (19)
C9—C4—C5—C6	-174.75 (14)	C16—C11—C12—C13	1.4 (3)
C3—C4—C5—C6	-47.19 (18)	C5—C11—C12—C13	-173.94 (19)
C9—C4—C5—C11	60.06 (19)	C11—C12—C13—C14	-0.4 (3)
C3—C4—C5—C11	-172.39 (14)	C17—O3—C14—C15	-3.0 (4)
N2—C1—C6—C7	1.0 (2)	C17—O3—C14—C13	178.2 (2)
C2—C1—C6—C7	-177.33 (17)	C12—C13—C14—O3	178.0 (2)
N2—C1—C6—C5	179.63 (16)	C12—C13—C14—C15	-1.0 (3)
C2—C1—C6—C5	1.3 (3)	O3—C14—C15—C16	-177.5 (2)
C11—C5—C6—C7	-42.2 (3)	C13—C14—C15—C16	1.3 (4)
C4—C5—C6—C7	-168.21 (18)	C12—C11—C16—C15	-1.0 (3)
C11—C5—C6—C1	139.57 (18)	C5-C11-C16-C15	174.3 (2)
C4—C5—C6—C1	13.5 (2)	C14—C15—C16—C11	-0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
01—H1 <i>O</i> …N2 ⁱ	0.81 (3)	2.15 (3)	2.948 (2)	168 (2)

Acta Cryst. (2013). E69, o243

			supporting information		
N1—H1N····N2 ⁱⁱ	0.87 (2)	2.27 (2)	3.093 (2)	157 (2)	
Symmetry codes: (i) $-x+1$, $-y$, $-z+1$; (ii)	-x+1, y+1/2, -z+3/2.				