Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

[(1*R*,3*S*)-2,2-Dichloro-3-(hydroxymethyl)cyclopropyl]methanol

Mohammed H. Kailani

Department of Chemistry, The University of Jordan, Amman 11942, Jordan Correspondence e-mail: kailani@ju.edu.jo

Received 17 December 2012; accepted 4 January 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.038; wR factor = 0.085; data-to-parameter ratio = 14.5.

The title compound, $C_5H_8Cl_2O_2$, represents a *meso* isomer crystallizing in a chiral space group with two molecules per asymmetric unit. The molecules form helical associates with a pitch of 6.31 Å along the *a* axis *via* O-H···O hydrogen bonds. The overall three-dimesional supramolecular architecture is stabilized by C-Cl···O halogen bonding, with a Cl···O separation of 3.139 (3) Å and a C-Cl···O angle of 162.5 (2)°.

Related literature

For background on this class of compounds, see: Kean *et al.* (2012); Lenhardt *et al.* (2009). For one-handed helical chains caused by hydrogen bonds, see: Abe *et al.* (2012). For the preparation of this type of compound, see: Kailani *et al.* (2012); Pustovit *et al.* (1994).

Experimental

Crystal data $C_5H_8Cl_2O_2$ $M_r = 171.02$ Orthorhombic, $P2_12_12_1$ a = 6.3110 (13) Å b = 15.429 (3) Å

c = 15.433 (3) Å

$V = 1502.7 (5) \text{ Å}^3$
Z = 8
Mo $K\alpha$ radiation
$\mu = 0.79 \text{ mm}^{-1}$
T = 293 K
$0.2 \times 0.1 \times 0.05 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (COLLECT; Nonius, 2004) $T_{min} = 0.91, T_{max} = 0.96$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.038 \\ wR(F^2) &= 0.085 \\ S &= 1.03 \\ 2627 \text{ reflections} \\ 181 \text{ parameters} \\ \text{H atoms treated by a mixture of independent and constrained refinement} \end{split}$$

6911 measured reflections 2628 independent reflections 1969 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$

 $\begin{array}{l} \Delta \rho_{max} = 0.17 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -0.17 \mbox{ e } \mbox{ Å}^{-3} \\ \mbox{ Absolute structure: Flack (1983),} \\ 1081 \mbox{ Friedel pairs} \\ \mbox{ Flack parameter: } 0.03 (9) \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$01A - H4 \cdots 02B^{i}$ $02B - H3 \cdots 02A^{ii}$ $02A - H2 \cdots 01B$ $01B - H1 \cdots 01A^{iii}$	0.76 (3) 0.84 (4) 0.78 (4) 0.84 (4)	1.89 (3) 1.84 (4) 1.90 (4) 1.86 (4)	2.650 (4) 2.668 (4) 2.678 (4) 2.680 (5)	174 (4) 171 (4) 174 (4) 167 (4)
Symmetry codes: $-x + 2, y - \frac{1}{2}, -z + \frac{1}{2}$	(i) $x + \frac{1}{2}, -y$	$+\frac{1}{2}, -z+1;$	(ii) $-x + \frac{5}{2}, -$	$y, z + \frac{1}{2};$ (iii)

Data collection: *COLLECT* (Nonius, 2004); cell refinement: *SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO* (Otwinowski & Minor, 1997) and *SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *SHELXL97*.

Data were collected by Malva Liu Gonzalez (Universitat València–SCSIE, Carrer del Dr Moliner, 50 Edifici de Investigació, Lab-1.46/-1.51, 46100 Burjassot–València, España).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2090).

References

- Abe, Y., Aoki, T., Jia, H., Hadano, H., Namikshi, T., Kakihana, Y., Liu, L., Zang, Y., Teraguchi, M. & Kaneko, T. (2012). *Molecules*, **17**, 433–451.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kailani, M. H., Al-Bakri, A. G., Saadeh, H. & Al-Hiari, Y. M. (2012). Jordan J. Chem. 7, 239–252.
- Kean, Z. S., Black Ramirez, A. L. & Craig, S. L. (2012). J. Polym. Sci. Part A Polym. Chem. 50, 3481–3484.
- Lenhardt, J. M., Black, A. L. & Craig, S. L. (2009). J. Am. Chem. Soc. 131, 10818–10819.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pustovit, Y. M., Ogojko, P. I., Nazaretian, V. P. & Rozhenko, A. B. (1994). J. Fluorine Chem. 69, 231–236.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o225 [doi:10.1107/S1600536813000366]

[(1*R*,3*S*)-2,2-Dichloro-3-(hydroxymethyl)cyclopropyl]methanol

Mohammed H. Kailani

S1. Comment

The title compound contains *gem*-dichlororcyclopropane ring with two symmetrically positioned hydroxy groups. *gem*-dichlororcyclopropane ring was recently recognized as a mechanophore by Lenhardt *et al.* (2009) and the title compound was used by Kean *et al.* (2012) to make polymers with mechanophore properties. Recently, Kailani *et al.* (2012), also reported enhancement of antimicrobial activity for novel *cis*-dicarbamates prepared from title compound.

Although the title compound is a *meso*-isomer, it crystallizes in a chiral supramolecular architecture. Abe *et al.* (2012) suggested that the presence of two hydroxy groups, which form intramolecular hydrogen bonds, can result in formation of one-handed helical structures in polymers, even in an absence of chiral moieties.

The title compound, (I), crystallizes with two molecules in the asymmetric unit, as shown in Fig. 1. Although the title compound is expected to be achiral in solution due to presence of the internal plane of symmetry, in the solid state both of the molecules are found to lack a plane of symmetry. In addition, both of said molecules were found to be not superimposable with each other, resulting in a chiral, orthorhombic P2(1)2(1)2(1) space group. The structure also has a long range chiral order, helical hydrogen bonded O—H···O chains with a pitch of 6.311 Å, running along the *a* axis (Fig. 2). These chains are further reinforced by C1B—C11B···O1A halogen bonding interactions with interaction parameters of 3.139 (3) Å and 162.5 (2)° resulting in the three-dimensional supramolecular structure, as shown in Fig. 3.

The lack of plane of symmetry in each molecule in the asymmetric unit is mainly caused by the differences in the spatial arrangements of the oxygen atoms within each molecule. This is thought to be caused by the presence of high concentration of strongly associating groups, two hydroxy groups and two Cl atoms, in the relatively small title compound.

S2. Experimental

The title compound was prepared according to literature procedure, Kailani *et al.* (2012), which was a modification of reported procedure, Pustovit *et al.* (1994), in order to improve the yield.

S3. Refinement

The structure represents a merohedral twin with 8.2% contribution of the opposite chirality. All carbon-attached hydrogen atoms were placed in the calculated positions using riding model with U_{eq} of 1.2 times that of the riding atom. Oxygen-attached hydrogen atoms were located from Fourier map difference, and then refined isotropically without restraints.

Figure 1

Two independent molecules in asymmetric unit with numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

Left-handed hydrogen-bonded helix (oxygens are in red and hydrogens - in blue), running along *a*-axis with supporting halogen bonding interactions, shown as black dotted lines.

Figure 3

Packing diagram, viewed down the *a*-axis. Hydrogen bonds are shown as blue dotted lines and halogen bonds shown as red dotted lines.

[(1*R*,3*S*)-2,2-Dichloro-3-(hydroxymethyl)cyclopropyl]methanol

Crystal data	
$C_{3}H_{8}Cl_{2}O_{2}$	$D_x = 1.512 \text{ Mg m}^{-3}$
$M_r = 1/1.02$ Orthorhombic, $P2_12_12_1$	Moduli point = 540–547 K Mo K α radiation, λ = 0.71073 Å Call parameters from 2270 reflections
a = 6.3110 (13) Å	$\theta = 1.0-27.5^{\circ}$
b = 15.429 (3) A c = 15.433 (3) Å	$\mu = 0.79 \text{ mm}^{-1}$ T = 293 K
$V = 1502.7 (5) Å^3$ Z = 8	Chunk, colorless $0.2 \times 0.1 \times 0.05 \text{ mm}$
P(000) = 704 Data collection	
Nonius KappaCCD diffractometer	Detector resolution: 9 pixels mm ⁻¹ CCD scans
Radiation source: fine-focus sealed tube Graphite monochromator	Absorption correction: multi-scan (COLLECT; Nonius, 2004)

 $T_{\min} = 0.91, T_{\max} = 0.96$ 6911 measured reflections 2628 independent reflections 1969 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$

Refinement

Rejinemeni	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.085$ S = 1.03 2627 reflections 181 parameters	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0363P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17$ e Å ⁻³ $\Delta\rho_{min} = -0.17$ e Å ⁻³
0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc*=kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4} Extinction coefficient: 0.0080 (12) Absolute structure: Flack (1983), 1081 Friedel
map Hydrogen site location: inferred from neighbouring sites	pairs Absolute structure parameter: 0.03 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 1.3^{\circ}$

 $h = -7 \rightarrow 6$

 $k = -18 \rightarrow 18$

 $l = -12 \rightarrow 18$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl2B	0.87935 (18)	0.17519 (6)	0.46132 (7)	0.0716 (4)	
Cl1B	1.21060 (18)	0.08413 (7)	0.55235 (8)	0.0763 (4)	
Cl2A	1.4218 (2)	0.27973 (6)	0.07758 (7)	0.0795 (4)	
Cl1A	1.08097 (18)	0.18830 (7)	0.16287 (8)	0.0769 (4)	
O1B	1.2516 (5)	-0.04682 (18)	0.3348 (2)	0.0665 (8)	
O1A	1.0243 (5)	0.40988 (19)	0.28993 (19)	0.0620 (8)	
O2B	0.7810 (5)	-0.03519 (18)	0.6574 (2)	0.0690 (9)	
C5B	0.8709 (7)	-0.0635 (2)	0.5790 (2)	0.0600 (11)	
H5BA	0.8091	-0.1187	0.5625	0.072*	
H5BB	1.0222	-0.0718	0.5864	0.072*	
O2A	1.5018 (5)	0.08789 (19)	0.2961 (2)	0.0699 (9)	
C5A	1.4000 (7)	0.1672 (2)	0.3187 (2)	0.0637 (11)	
H5AA	1.4496	0.1865	0.3750	0.076*	
H5AB	1.2481	0.1582	0.3223	0.076*	
C3B	0.8318 (6)	0.0018 (2)	0.5091 (2)	0.0497 (9)	
H3BA	0.6823	0.0172	0.5015	0.060*	
C4A	1.1354 (6)	0.3326 (2)	0.3103 (3)	0.0583 (11)	

H4AA	1.0382	0.2839	0.3078	0.070*	
H4AB	1.1897	0.3365	0.3689	0.070*	
C4B	1.1321 (7)	-0.0657 (2)	0.4107 (3)	0.0626 (11)	
H4BA	1.2261	-0.0667	0.4604	0.075*	
H4BB	1.0689	-0.1227	0.4051	0.075*	
C2B	0.9584 (6)	0.0010 (2)	0.4257 (3)	0.0529 (10)	
H2BB	0.8767	0.0159	0.3738	0.063*	
C3A	1.4473 (6)	0.23491 (19)	0.2521 (3)	0.0548 (10)	
H3AA	1.5983	0.2432	0.2399	0.066*	
C1A	1.3052 (6)	0.2518 (2)	0.1778 (2)	0.0507 (10)	
C2A	1.3162 (6)	0.3166 (2)	0.2490 (2)	0.0524 (9)	
H2AB	1.3973	0.3688	0.2344	0.063*	
C1B	0.9818 (6)	0.07341 (19)	0.4897 (2)	0.0486 (10)	
H4	1.095 (6)	0.448 (2)	0.302 (2)	0.047 (13)*	
H3	0.859 (6)	-0.054 (2)	0.697 (3)	0.060 (13)*	
H2	1.424 (7)	0.051 (2)	0.310 (3)	0.068 (15)*	
H1	1.181 (6)	-0.063 (2)	0.292 (3)	0.066 (14)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl2B	0.0888 (8)	0.0565 (5)	0.0694 (7)	0.0161 (6)	0.0126 (7)	0.0145 (5)
Cl1B	0.0631 (7)	0.0797 (6)	0.0862 (9)	-0.0072 (6)	-0.0204 (7)	-0.0111 (6)
Cl2A	0.1087 (10)	0.0682 (6)	0.0617 (7)	0.0140 (6)	0.0250 (8)	0.0129 (5)
Cl1A	0.0669 (7)	0.0800(7)	0.0837 (8)	-0.0173 (6)	-0.0128 (7)	-0.0142 (6)
O1B	0.068 (2)	0.0746 (17)	0.057 (2)	-0.0007 (16)	0.0102 (19)	-0.0108 (16)
O1A	0.0628 (19)	0.0592 (18)	0.064 (2)	0.0011 (17)	0.0012 (17)	-0.0048 (14)
O2B	0.085 (2)	0.0726 (17)	0.049 (2)	0.0196 (17)	0.0000 (19)	0.0076 (15)
C5B	0.072 (3)	0.047 (2)	0.061 (3)	-0.0013 (19)	0.006 (3)	0.0043 (19)
O2A	0.078 (2)	0.0605 (18)	0.071 (2)	0.0117 (17)	0.0192 (19)	0.0079 (15)
C5A	0.073 (3)	0.070 (2)	0.048 (3)	0.016 (2)	0.005 (3)	0.0061 (19)
C3B	0.043 (2)	0.0554 (19)	0.051 (2)	0.0040 (17)	-0.0057 (19)	-0.0036 (18)
C4A	0.069 (3)	0.058 (2)	0.048 (3)	0.005 (2)	0.003 (2)	0.0028 (18)
C4B	0.073 (3)	0.057 (2)	0.058 (3)	0.007 (2)	-0.003 (3)	-0.0065 (19)
C2B	0.052 (2)	0.058 (2)	0.049 (2)	0.0065 (18)	-0.001 (2)	-0.0027 (17)
C3A	0.047 (2)	0.058 (2)	0.059 (3)	-0.0016 (19)	0.005 (2)	0.0018 (19)
C1A	0.054 (2)	0.053 (2)	0.045 (2)	-0.0014 (17)	0.003 (2)	0.0036 (18)
C2A	0.060 (2)	0.0474 (18)	0.050 (2)	-0.0061 (19)	0.004 (2)	-0.0014 (17)
C1B	0.053 (2)	0.0450 (19)	0.048 (2)	-0.0008 (17)	0.0006 (19)	0.0030 (16)

Geometric parameters (Å, °)

Cl2B—C1B	1.754 (3)	С5А—Н5АВ	0.9700	
Cl1B—C1B	1.746 (4)	C3B—C1B	1.486 (5)	
Cl2A—C1A	1.767 (4)	C3B—C2B	1.515 (5)	
Cl1A—C1A	1.737 (4)	СЗВ—НЗВА	0.9800	
O1B—C4B	1.423 (5)	C4A—C2A	1.502 (5)	
O1B—H1	0.84 (4)	C4A—H4AA	0.9700	

O1A—C4A	1.419 (4)	C4A—H4AB	0.9700
O1A—H4	0.76 (3)	C4B—C2B	1.521 (5)
O2B—C5B	1.407 (4)	C4B—H4BA	0.9700
02B—H3	0.84 (4)	C4B—H4BB	0.9700
C5B—C3B	1.497 (5)	C2B-C1B	1,499 (5)
C5B—H5BA	0.9700	C2B—H2BB	0.9800
C5B—H5BB	0.9700	C3A - C1A	1478(5)
02A - C5A	1 425 (4)	C3A - C2A	1 509 (5)
O2A - H2	0.78(4)	C3A—H3AA	0.9800
$C_{5} = C_{3}$	1 496 (5)	C1A - C2A	1.487(5)
C5A_H5AA	0.9700	C_{2A} H_{2AB}	0.9800
	0.9700		0.9000
C4B—O1B—H1	108 (3)	C2B—C4B—H4BB	109.3
C4A—O1A—H4	108 (3)	H4BA—C4B—H4BB	108.0
С5В—О2В—Н3	107 (3)	C1B—C2B—C3B	59.1 (2)
O2B—C5B—C3B	110.2 (3)	C1B—C2B—C4B	122.2 (3)
O2B—C5B—H5BA	109.6	C3B—C2B—C4B	121.0 (3)
C3B—C5B—H5BA	109.6	C1B—C2B—H2BB	114.5
O2B—C5B—H5BB	109.6	C3B—C2B—H2BB	114.5
C3B—C5B—H5BB	109.6	C4B-C2B-H2BB	114.5
H5BA—C5B—H5BB	108.1	C1A - C3A - C5A	122.3 (3)
C5A - O2A - H2	106 (3)	C1A - C3A - C2A	59.7 (2)
O2A—C5A—C3A	110.0 (3)	C5A—C3A—C2A	119.7 (3)
02A—C5A—H5AA	109.7	C1A—C3A—H3AA	114.7
C3A - C5A - H5AA	109.7	С5А—С3А—НЗАА	114.7
O2A - C5A - H5AB	109.7	C2A - C3A - H3AA	114.7
C3A—C5A—H5AB	109.7	C3A - C1A - C2A	61.2(2)
H5AA—C5A—H5AB	108.2	C3A - C1A - C11A	119.9(3)
C1B-C3B-C5B	122.8 (3)	C2A— $C1A$ — $C11A$	1211(3)
C1B - C3B - C2B	59 9 (2)	C3A - C1A - C12A	1180(3)
C5B-C3B-C2B	1213(3)	C^2A — C^1A — C^12A	117.6(2)
C1B-C3B-H3BA	114 1	$C_{11} = C_{11} = C_{12}$	111.0(2)
C5B-C3B-H3BA	114.1	C1A - C2A - C4A	122.6(3)
C^{2B} C^{3B} H^{3BA}	114.1	C1A - C2A - C3A	591(2)
O1A - C4A - C2A	114.1 112 0 (3)	C4A - C2A - C3A	1223(3)
O1A - C4A - H4AA	109.2	C1A - C2A - H2AB	114.0
$C^2A - C^4A - H^4AA$	109.2	C4A - C2A - H2AB	114.0
O1A - C4A - H4AB	109.2	$C_{3A} = C_{2A} = H_{2AB}$	114.0
$C^{2}A - C^{4}A - H^{4}AB$	109.2	C3B-C1B-C2B	610(2)
H4AA - C4A - H4AB	107.9	C_{3B} C_{1B} C_{2B}	1191(3)
01B-C4B-C2B	111.6 (3)	$C^{2}B$ $C^{1}B$ $C^{1}B$	121.1(3)
O1B - C4B - H4BA	109.3	C_{3B} C_{1B} C_{12B}	121.1(3) 118.8(3)
$C^{2}B - C^{4}B - H^{4}B^{4}A$	109.5	C2B $C1B$ $C12B$	110.0(3) 117.8(3)
O1B-C4B-H4BB	109.3	$C_{11}B_{-}C_{11}B_{-}C_{12}B_{$	111 00 (18)
	107.5		111.00 (10)
O2B—C5B—C3B—C1B	90.9 (4)	Cl1A—C1A—C2A—C3A	109.4 (3)
O2B—C5B—C3B—C2B	163.1 (3)	Cl2A—C1A—C2A—C3A	-108.5 (3)
C5B—C3B—C2B—C1B	-112.3 (4)	O1A—C4A—C2A—C1A	-103.1 (4)

C1B—C3B—C2B—C4B	111.4 (4)	O1A—C4A—C2A—C3A	-174.7 (3)
C5B—C3B—C2B—C4B	-0.9 (5)	C5A—C3A—C2A—C1A	-112.3 (4)
O1B—C4B—C2B—C1B	-100.3 (4)	C1A—C3A—C2A—C4A	111.5 (4)
O1B—C4B—C2B—C3B	-171.0 (3)	C5A—C3A—C2A—C4A	-0.8 (6)
O2A—C5A—C3A—C1A	93.8 (4)	C5B—C3B—C1B—C2B	110.0 (4)
O2A—C5A—C3A—C2A	164.8 (3)	C5B—C3B—C1B—C11B	-1.6 (5)
C5A—C3A—C1A—C2A	108.1 (4)	C2B—C3B—C1B—C11B	-111.6 (3)
C5A—C3A—C1A—Cl1A	-3.2 (5)	C5B—C3B—C1B—Cl2B	-142.3 (3)
C2A—C3A—C1A—Cl1A	-111.3 (3)	C2B—C3B—C1B—Cl2B	107.7 (3)
C5A—C3A—C1A—Cl2A	-144.1 (3)	C4B—C2B—C1B—C3B	-109.4 (4)
C2A—C3A—C1A—Cl2A	107.8 (3)	C3B—C2B—C1B—C11B	108.3 (3)
C3A—C1A—C2A—C4A	-110.8 (4)	C4B—C2B—C1B—C11B	-1.0 (5)
Cl1A—C1A—C2A—C4A	-1.4 (5)	C3B—C2B—C1B—Cl2B	-109.3 (3)
Cl2A—C1A—C2A—C4A	140.7 (3)	C4B—C2B—C1B—C12B	141.4 (3)

Hydrogen-bond geometry (Å, °)

<i>D</i> —Н	H··· <i>A</i>	$D \cdots A$	D—H…A
0.76 (3)	1.89 (3)	2.650 (4)	174 (4)
0.84 (4)	1.84 (4)	2.668 (4)	171 (4)
0.78 (4)	1.90 (4)	2.678 (4)	174 (4)
0.84 (4)	1.86 (4)	2.680 (5)	167 (4)
	<i>D</i> —H 0.76 (3) 0.84 (4) 0.78 (4) 0.84 (4)	D—H H···A 0.76 (3) 1.89 (3) 0.84 (4) 1.84 (4) 0.78 (4) 1.90 (4) 0.84 (4) 1.86 (4)	D—H H···A D···A 0.76 (3) 1.89 (3) 2.650 (4) 0.84 (4) 1.84 (4) 2.668 (4) 0.78 (4) 1.90 (4) 2.678 (4) 0.84 (4) 1.86 (4) 2.680 (5)

Symmetry codes: (i) *x*+1/2, -*y*+1/2, -*z*+1; (ii) -*x*+5/2, -*y*, *z*+1/2; (iii) -*x*+2, *y*-1/2, -*z*+1/2.