Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[(1R,3S)-2,2-Dichloro-3-(hydroxymethyl)cyclopropyl]methanol

Mohammed H. Kailani

Department of Chemistry, The University of Jordan, Amman 11942, Jordan Correspondence e-mail: kailani@ju.edu.jo

Received 17 December 2012; accepted 4 January 2013

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.038 ; w R$ factor $=0.085$; data-to-parameter ratio $=14.5$.

The title compound, $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$, represents a meso isomer crystallizing in a chiral space group with two molecules per asymmetric unit. The molecules form helical associates with a pitch of $6.31 \AA$ along the a axis via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The overall three-dimesional supramolecular architecture is stabilized by $\mathrm{C}-\mathrm{Cl} \cdots \mathrm{O}$ halogen bonding, with a $\mathrm{Cl} \cdots \mathrm{O}$ separation of 3.139 (3) \AA and a $\mathrm{C}-\mathrm{Cl} \cdots \mathrm{O}$ angle of 162.5 (2) ${ }^{\circ}$.

Related literature

For background on this class of compounds, see: Kean et al. (2012); Lenhardt et al. (2009). For one-handed helical chains caused by hydrogen bonds, see: Abe et al. (2012). For the preparation of this type of compound, see: Kailani et al. (2012); Pustovit et al. (1994)

Experimental

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=171.02$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=6.3110$ (13) £
$b=15.429$ (3) A
$c=15.433$ (3) \AA
$V=1502.7$ (5) \AA^{3}
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.2 \times 0.1 \times 0.05 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (COLLECT; Nonius, 2004) $T_{\text {min }}=0.91, T_{\text {max }}=0.96$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.085$
$S=1.03$
2627 reflections
181 parameters
H atoms treated by a mixture of independent and constrained refinement

6911 measured reflections 2628 independent reflections 1969 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.047$
$\Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1081 Friedel pairs
Flack parameter: 0.03 (9)

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $A-\mathrm{H} 4 \cdots \mathrm{O} 2 B^{\text {i }}$	$0.76(3)$	$1.89(3)$	$2.650(4)$	$174(4)$
O2B-H3 \cdots O2 $A^{\text {ii }}$	$0.84(4)$	$1.84(4)$	$2.668(4)$	$171(4)$
O2A-H2 \cdots O1B B	$0.78(4)$	$1.90(4)$	$2.678(4)$	$174(4)$
O1 $B-\mathrm{H} 1 \cdots \mathrm{O} 1 A^{\text {iii }}$	$0.84(4)$	$1.86(4)$	$2.680(5)$	$167(4)$
Symmetry codes:	(i)	$x+\frac{1}{2},-y+\frac{1}{2},-z+1 ;$	(ii)	$-x+\frac{5}{2},-y, z+\frac{1}{2} ; \quad$ (iii)
$-x+2, y-\frac{1}{2},-z+\frac{1}{2}$.				

Data collection: COLLECT (Nonius, 2004); cell refinement: SCALEPACK (Otwinowski \& Minor, 1997); data reduction: DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97.

Data were collected by Malva Liu Gonzalez (Universitat València-SCSIE, Carrer del Dr Moliner, 50 Edifici de Investigació, Lab-1.46/-1.51, 46100 Burjassot-València, España).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2090).

References

Abe, Y., Aoki, T., Jia, H., Hadano, H., Namikshi, T., Kakihana, Y., Liu, L., Zang, Y., Teraguchi, M. \& Kaneko, T. (2012). Molecules, 17, 433-451.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Kailani, M. H., Al-Bakri, A. G., Saadeh, H. \& Al-Hiari, Y. M. (2012). Jordan J. Chem. 7, 239-252.
Kean, Z. S., Black Ramirez, A. L. \& Craig, S. L. (2012). J. Polym. Sci. Part A Polym. Chem. 50, 3481-3484
Lenhardt, J. M., Black, A. L. \& Craig, S. L. (2009). J. Am. Chem. Soc. 131, 10818-10819.
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Nonius (2004). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Pustovit, Y. M., Ogojko, P. I., Nazaretian, V. P. \& Rozhenko, A. B. (1994), J. Fluorine Chem. 69, 231-236.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122

supporting information

Acta Cryst. (2013). E69, o225 [doi:10.1107/S1600536813000366]

[(1R,3S)-2,2-Dichloro-3-(hydroxymethyl)cyclopropyl]methanol

Mohammed H. Kailani

S1. Comment

The title compound contains gem-dichlororcyclopropane ring with two symmetrically positioned hydroxy groups. gemdichlororcyclopropane ring was recently recognized as a mechanophore by Lenhardt et al. (2009) and the title compound was used by Kean et al. (2012) to make polymers with mechanophore properties. Recently, Kailani et al. (2012), also reported enhancement of antimicrobial activity for novel cis-dicarbamates prepared from title compound.

Although the title compound is a meso-isomer, it crystallizes in a chiral supramolecular architecture. Abe et al. (2012) suggested that the presence of two hydroxy groups, which form intramolecular hydrogen bonds, can result in formation of one-handed helical structures in polymers, even in an absence of chiral moieties.
The title compound, (I), crystallizes with two molecules in the asymmetric unit, as shown in Fig. 1. Although the title compound is expected to be achiral in solution due to presence of the internal plane of symmetry, in the solid state both of the molecules are found to lack a plane of symmetry. In addition, both of said molecules were found to be not superimposable with each other, resulting in a chiral, orthorhombic P2(1)2(1)2(1) space group. The structure also has a long range chiral order, helical hydrogen bonded $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ chains with a pitch of $6.311 \AA$, running along the a axis (Fig. 2). These chains are further reinforced by $\mathrm{C} 1 \mathrm{~B}-\mathrm{Cl1B} \cdots \mathrm{O} 1 \mathrm{~A}$ halogen bonding interactions with interaction parameters of 3.139 (3) \AA and 162.5 (2) ${ }^{\circ}$ resulting in the three-dimensional supramolecular structure, as shown in Fig. 3.

The lack of plane of symmetry in each molecule in the asymmetric unit is mainly caused by the differences in the spatial arrangements of the oxygen atoms within each molecule. This is thought to be caused by the presence of high concentration of strongly associating groups, two hydroxy groups and two Cl atoms, in the relatively small title compound.

S2. Experimental

The title compound was prepared according to literature procedure, Kailani et al. (2012), which was a modification of reported procedure, Pustovit et al. (1994), in order to improve the yield.

S3. Refinement

The structure represents a merohedral twin with 8.2% contribution of the opposite chirality. All carbon-attached hydrogen atoms were placed in the calculated positions using riding model with $U_{\text {eq. }}$ of 1.2 times that of the riding atom. Oxygenattached hydrogen atoms were located from Fourier map difference, and then refined isotropically without restraints.

Figure 1
Two independent molecules in asymmetric unit with numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
Left-handed hydrogen-bonded helix (oxygens are in red and hydrogens - in blue), running along a-axis with supporting halogen bonding interactions, shown as black dotted lines.

Figure 3
Packing diagram, viewed down the a-axis. Hydrogen bonds are shown as blue dotted lines and halogen bonds shown as red dotted lines.
[(1R,3S)-2,2-Dichloro-3-(hydroxymethyl)cyclopropyl]methanol

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$M_{r}=171.02$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=6.3110$ (13) \AA
$b=15.429$ (3) \AA
$c=15.433$ (3) \AA
$V=1502.7(5) \AA^{3}$
$Z=8$
$F(000)=704$

Data collection

Nonius KappaCCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$D_{\mathrm{x}}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point $=346-347 \mathrm{~K}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2370 reflections
$\theta=1.0-27.5^{\circ}$
$\mu=0.79 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Chunk, colorless
$0.2 \times 0.1 \times 0.05 \mathrm{~mm}$

Detector resolution: 9 pixels mm^{-1}
CCD scans
Absorption correction: multi-scan
(COLLECT; Nonius, 2004)
$T_{\text {min }}=0.91, T_{\text {max }}=0.96$
6911 measured reflections
2628 independent reflections
1969 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.085$
$S=1.03$
2627 reflections
181 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites

$$
\begin{aligned}
& \theta_{\max }=25.0^{\circ}, \theta_{\min }=1.3^{\circ} \\
& h=-7 \rightarrow 6 \\
& k=-18 \rightarrow 18 \\
& l=-12 \rightarrow 18
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0363 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.17$ e \AA^{-3}
$\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0080 (12)
Absolute structure: Flack (1983), 1081 Friedel pairs
Absolute structure parameter: 0.03 (9)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C12B	$0.87935(18)$	$0.17519(6)$	$0.46132(7)$	$0.0716(4)$
C11B	$1.21060(18)$	$0.08413(7)$	$0.55235(8)$	$0.0763(4)$
C12A	$1.4218(2)$	$0.27973(6)$	$0.07758(7)$	$0.0795(4)$
C11A	$1.08097(18)$	$0.18830(7)$	$0.16287(8)$	$0.0769(4)$
O1B	$1.2516(5)$	$-0.04682(18)$	$0.3348(2)$	$0.0665(8)$
O1A	$1.0243(5)$	$0.40988(19)$	$0.28993(19)$	$0.0620(8)$
O2B	$0.7810(5)$	$-0.03519(18)$	$0.6574(2)$	$0.0690(9)$
C5B	$0.8709(7)$	$-0.0635(2)$	$0.5790(2)$	$0.0600(11)$
H5BA	0.8091	-0.1187	0.5625	0.072^{*}
H5BB	1.0222	-0.0718	0.5864	0.072^{*}
O2A	$1.5018(5)$	$0.08789(19)$	$0.2961(2)$	$0.0699(9)$
C5A	$1.4000(7)$	$0.1672(2)$	$0.3187(2)$	$0.0637(11)$
H5AA	1.4496	0.1865	0.3750	0.076^{*}
H5AB	1.2481	0.1582	0.3223	0.076^{*}
C3B	$0.8318(6)$	$0.0018(2)$	$0.5091(2)$	$0.0497(9)$
H3BA	0.6823	0.0172	0.5015	0.060^{*}
C4A	$1.1354(6)$	$0.3326(2)$	$0.3103(3)$	$0.0583(11)$

H4AA	1.0382	0.2839	0.3078	0.070^{*}
H4AB	1.1897	0.3365	0.3689	0.070^{*}
C4B	$1.1321(7)$	$-0.0657(2)$	$0.4107(3)$	$0.0626(11)$
H4BA	1.2261	-0.0667	0.4604	0.075^{*}
H4BB	1.0689	-0.1227	0.4051	0.075^{*}
C2B	$0.9584(6)$	$0.0010(2)$	$0.3738(3)$	0.063^{*}
H2BB	0.8767	0.0159	$0.2521(3)$	$0.0548(10)$
C3A	$1.4473(6)$	$0.23491(19)$	0.2399	0.066^{*}
H3AA	1.5983	0.2432	$0.1778(2)$	$0.0507(10)$
C1A	$1.3052(6)$	$0.2518(2)$	$0.2490(2)$	$0.0524(9)$
C2A	$1.3162(6)$	$0.3166(2)$	0.2344	0.063^{*}
H2AB	1.3973	0.3688	$0.4897(2)$	$0.0486(10)$
C1B	$0.9818(6)$	$0.07341(19)$	$0.302(2)$	$0.047(13)^{*}$
H4	$1.095(6)$	$0.448(2)$	$0.697(3)$	$0.060(13)^{*}$
H3	$0.859(6)$	$-0.054(2)$	$0.310(3)$	$0.068(15)^{*}$
H2	$1.424(7)$	$0.051(2)$	$0.292(3)$	$0.066(14)^{*}$
H1	$1.181(6)$	$-0.063(2)$		

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C12B	$0.0888(8)$	$0.0565(5)$	$0.0694(7)$	$0.0161(6)$	$0.0126(7)$	$0.0145(5)$
C11B	$0.0631(7)$	$0.0797(6)$	$0.0862(9)$	$-0.0072(6)$	$-0.0204(7)$	$-0.0111(6)$
C12A	$0.1087(10)$	$0.0682(6)$	$0.0617(7)$	$0.0140(6)$	$0.0250(8)$	$0.0129(5)$
C11A	$0.0669(7)$	$0.0800(7)$	$0.0837(8)$	$-0.0173(6)$	$-0.0128(7)$	$-0.0142(6)$
O1B	$0.068(2)$	$0.0746(17)$	$0.057(2)$	$-0.0007(16)$	$0.0102(19)$	$-0.0108(16)$
O1A	$0.0628(19)$	$0.0592(18)$	$0.064(2)$	$0.0011(17)$	$0.0012(17)$	$-0.0048(14)$
O2B	$0.085(2)$	$0.0726(17)$	$0.049(2)$	$0.0196(17)$	$0.0000(19)$	$0.0076(15)$
C5B	$0.072(3)$	$0.047(2)$	$0.061(3)$	$-0.0013(19)$	$0.006(3)$	$0.0043(19)$
O2A	$0.078(2)$	$0.0605(18)$	$0.071(2)$	$0.0117(17)$	$0.0192(19)$	$0.0079(15)$
C5A	$0.073(3)$	$0.070(2)$	$0.048(3)$	$0.016(2)$	$0.005(3)$	$0.0061(19)$
C3B	$0.043(2)$	$0.0554(19)$	$0.051(2)$	$0.0040(17)$	$-0.0057(19)$	$-0.0036(18)$
C4A	$0.069(3)$	$0.058(2)$	$0.048(3)$	$0.005(2)$	$0.003(2)$	$0.0028(18)$
C4B	$0.073(3)$	$0.057(2)$	$0.058(3)$	$0.007(2)$	$-0.003(3)$	$-0.0065(19)$
C2B	$0.052(2)$	$0.058(2)$	$0.049(2)$	$0.0065(18)$	$-0.001(2)$	$-0.0027(17)$
C3A	$0.047(2)$	$0.058(2)$	$0.059(3)$	$-0.0016(19)$	$0.005(2)$	$0.0018(19)$
C1A	$0.054(2)$	$0.053(2)$	$0.045(2)$	$-0.0014(17)$	$0.003(2)$	$0.0036(18)$
C2A	$0.060(2)$	$0.0474(18)$	$0.050(2)$	$-0.0061(19)$	$0.004(2)$	$-0.0014(17)$
C1B	$0.053(2)$	$0.0450(19)$	$0.048(2)$	$-0.0008(17)$	$0.0006(19)$	$0.0030(16)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C12B-C1B	$1.754(3)$	C5A-H5AB	0.9700
C11B-C1B	$1.746(4)$	C3B-C1B	$1.486(5)$
C12A-C1A	$1.767(4)$	C3B-C2B	$1.515(5)$
C11A-C1A	$1.737(4)$	C3B-H3BA	0.9800
O1B-C4B	$1.423(5)$	C4A-C2A	$1.502(5)$
O1B-H1	$0.84(4)$	C4A-H4AA	0.9700

O1A-C4A	1.419 (4)
$\mathrm{O} 1 \mathrm{~A}-\mathrm{H} 4$	0.76 (3)
O2B-C5B	1.407 (4)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{H} 3$	0.84 (4)
C5B-C3B	1.497 (5)
C5B-H5BA	0.9700
C5B-H5BB	0.9700
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	1.425 (4)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{H} 2$	0.78 (4)
C5A-C3A	1.496 (5)
C5A-H5AA	0.9700
C4B-O1B-H1	108 (3)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{O} 1 \mathrm{~A}-\mathrm{H} 4$	108 (3)
C5B-O2B-H3	107 (3)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	110.2 (3)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 5 \mathrm{BA}$	109.6
C3B-C5B-H5BA	109.6
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{H} 5 \mathrm{BB}$	109.6
C3B-C5B-H5BB	109.6
H5BA-C5B-H5BB	108.1
$\mathrm{C} 5 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{H} 2$	106 (3)
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	110.0 (3)
O2A-C5A-H5AA	109.7
C3A-C5A-H5AA	109.7
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{H} 5 \mathrm{AB}$	109.7
C3A-C5A-H5AB	109.7
H5AA-C5A-H5AB	108.2
C1B-C3B-C5B	122.8 (3)
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	59.9 (2)
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	121.3 (3)
C1B-C3B-H3BA	114.1
C5B-C3B-H3BA	114.1
C2B-C3B-H3BA	114.1
O1A-C4A-C2A	112.0 (3)
O1A-C4A-H4AA	109.2
C2A-C4A-H4AA	109.2
O1A-C4A-H4AB	109.2
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{AB}$	109.2
H4AA-C4A-H4AB	107.9
O1B-C4B-C2B	111.6 (3)
O1B-C4B-H4BA	109.3
C2B-C4B-H4BA	109.3
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{BB}$	109.3
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	90.9 (4)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	163.1 (3)
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	-112.3 (4)

$\mathrm{C} 4 \mathrm{~A}-\mathrm{H} 4 \mathrm{AB}$	0.9700
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$1.521(5)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{BA}$	0.9700
C4B-H4BB	0.9700
C2B-C1B	$1.499(5)$
C2B-H2BB	0.9800
C3A-C1A	$1.478(5)$
C3A-C2A	$1.509(5)$
C3A-H3AA	0.9800
C1A-C2A	$1.487(5)$
C2A-H2AB	0.9800

$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{BB}$	109.3
$\mathrm{H} 4 \mathrm{BA}-\mathrm{C} 4 \mathrm{~B}-\mathrm{H} 4 \mathrm{BB}$	108.0
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$59.1(2)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$122.2(3)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$121.0(3)$
$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BB}$	114.5
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BB}$	114.5
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{H} 2 \mathrm{BB}$	114.5
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	$122.3(3)$

59.7 (2)
119.7 (3)
114.7
114.7
114.7
61.2 (2)
119.9 (3)
121.1 (3)
118.0 (3)
117.6 (2)
111.1 (2)
122.6 (3)
59.1 (2)
122.3 (3)
114.0
114.0
114.0
61.0 (2)
119.1 (3)
121.1 (3)
118.8 (3)
117.8 (3)
111.00 (18)

$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$109.4(3)$
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-108.5(3)$
$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$-103.1(4)$

$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$111.4(4)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}$	$-0.9(5)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}$	$-100.3(4)$
$\mathrm{O} 1 \mathrm{~B}-\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-171.0(3)$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$93.8(4)$
$\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$164.8(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$108.1(4)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	$-3.2(5)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$	$-111.3(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	$-144.1(3)$
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	$107.8(3)$
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-110.8(4)$
$\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-1.4(5)$
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$140.7(3)$

$\mathrm{O} 1 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	$-174.7(3)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}$	$-112.3(4)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$111.5(4)$
$\mathrm{C} 5 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	$-0.8(6)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$110.0(4)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	$-1.6(5)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	$-111.6(3)$
$\mathrm{C} 5 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}$	$-142.3(3)$
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	$107.7(3)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	$-109.4(4)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	$108.3(3)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$	$-1.0(5)$
$\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}$	$-109.3(3)$
$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 12 \mathrm{~B}$	$141.4(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D — \mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 4 \cdots \mathrm{O} 2 B^{\mathrm{i}}$	$0.76(3)$	$1.89(3)$	$2.650(4)$	$174(4)$
$\mathrm{O} 2 B — \mathrm{H} 3 \cdots \mathrm{O} 2 A^{\mathrm{ii}}$	$0.84(4)$	$1.84(4)$	$2.668(4)$	$171(4)$
$\mathrm{O} 2 A — \mathrm{H} 2 \cdots \mathrm{O} 1 B$	$0.78(4)$	$1.90(4)$	$2.678(4)$	$174(4)$
$\mathrm{O} 1 B — \mathrm{H} 1 \cdots \mathrm{O} 1 A^{\mathrm{iii}}$	$0.84(4)$	$1.86(4)$	$2.680(5)$	$167(4)$

Symmetry codes: (i) $x+1 / 2,-y+1 / 2,-z+1$; (ii) $-x+5 / 2,-y, z+1 / 2$; (iii) $-x+2, y-1 / 2,-z+1 / 2$.

