

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[2-(Triphenylphosphanylidene)acetyl]-2H-chromen-2-one

Muhammad Taha,^a Nor Hadiani Ismail,^{b,c} Ahmad Nazif Aziza,^d Syed Adnan Ali Shah^{a,e} and Sammer Yousuf^{f*}

^aAtta-ur-Rahman Institute for Natural Product Discovery (RiND), Universiti Teknologi MARA (UITM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia, ^bFaculty of Applied Science, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor D. E., Malaysia, ^cFaculty of Applied Sciences, Universiti Teknologi MARA (UITM), 40000 Shah Alam, Selangor D. E., Malaysia, ^dDepartment of Chemical Sciences, Faculty of Science and Technology, University Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia, ^eDepartment of Pharmacology and Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA (UiMT) Puncak Alam Campus, 42300 Puncak Alam, Selangor D. E., Malaysia, and ^fH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan Correspondence e-mail: dr.sammer.yousuf@gmail.com

Received 23 December 2012; accepted 13 January 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.035; wR factor = 0.093; data-to-parameter ratio = 13.7.

In the title compound, $C_{29}H_{21}O_3P$, a coumarin-substitued ylid, the P atom is linked to three benzene rings and a planar coumarin moiety via a methylenecarbonyl group. The bond lengths in the P=C-C=O fragment clearly indicate a delocalized system involving the olefinic and carbonyl bonds. The molecular structure is stabilized by an intramolecular C- $H \cdots O$ interaction that results in an S7 graph-set ring motif. In the crystal, molecules are linked into a three-dimensional framework by $C-H \cdots O$ hydrogen bonds.

Related literature

For applications and biological activity of coumarin, see: Kabak et al. (1999); El-Ansary et al. (1992); Czerpack & Skolska (1982); Reddy & Somayojulu (1981); Jund et al. (1971). For the crystal structure of a related compound, see: Schobert et al. (2000).

organic compounds

36693 measured reflections 4102 independent reflections

 $R_{\rm int} = 0.045$

299 parameters

 $\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\rm min} = -0.40 \text{ e } \text{\AA}^{-3}$

3716 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Experimental

Crystal data

$C_{29}H_{21}O_{3}P$	$\gamma = 99.746 \ (4)^{\circ}$
$M_r = 448.43$	V = 1103.2 (3) Å ³
Triclinic, P1	Z = 2
a = 9.7837 (12) Å	Mo $K\alpha$ radiation
b = 10.3917 (14) Å	$\mu = 0.16 \text{ mm}^{-1}$
c = 12.2925 (17) Å	$T = 100 { m K}$
$\alpha = 108.669 \ (4)^{\circ}$	$0.46 \times 0.41 \times 0.34 \text{ mm}$
$\beta = 104.484 \ (4)^{\circ}$	

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\rm min} = 0.932, T_{\rm max} = 0.949$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.093$ S = 1.074102 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C2-H2A\cdots O2^{i}$	0.95	2.45	3.378 (2)	166
$C7 - H7A \cdots O3^{ii}$	0.95	2.28	3.171 (2)	156
$C22 - H22A \cdots O2^{iii}$	0.95	2.48	3.398 (2)	163
$C25 - H25A \cdots O3$	0.95	2.31	3.168 (2)	150
$C28-H28A\cdotsO1^{iv}$	0.95	2.54	3.281 (2)	135

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2616).

References

- Bruker (2000). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Czerpack, R. & Skolska, S. (1982). Med. Dosw. Microbiol. 34, 37-50.
- El-Ansary, S. L., Aly, E. I. & Halem, M. A. (1992). Egypt. J. Pharm. Sci. 33, 379-390
- Jund, L., Corse, J., King, A. S., Bayne, H. & Mihrag, K. (1971). Phytochemistry, 10, 2971-2974.
- Kabak, M., Elmali, A. & Elerman, Y. (1999). J. Mol. Struct. 477, 151-158.
- Reddy, Y. D. & Somayojulu, V. V. (1981). J. Indian Chem. Soc. 58, 599-601.
- Schobert, R., Seigfried, S., Nieuwenhuyzen, M., Milius, W. & Hampel, F. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 1723-1730.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o245 [doi:10.1107/S160053681300127X]

3-[2-(Triphenylphosphanylidene)acetyl]-2H-chromen-2-one

Muhammad Taha, Nor Hadiani Ismail, Ahmad Nazif Aziza, Syed Adnan Ali Shah and Sammer Yousuf

S1. Comment

The chromone chemistry continues to draw considerable interest of synthetic organic and medicinal chemists (Kabak *et al.*, 1999). Chromones are more widely distributed in nature, especially in the plant kingdom, and exhibit low toxicity along with a wide spectrum of useful biological activities including antifungal, antiviral, antitublin, anti-inflammatory antiulcer and antihypertensive and immune-stimulating properties (El-Ansary *et al.*, 1992; Czerpack & Skolska, 1982; Reddy & Somayojulu, 1981; Jund *et al.*, 1971). The title compound is a coumarin substitued ylid synthesized as a part of our ongoing resaerch to study biological activities of this medicinally important class of compounds.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Schobert *et al.*, 2000). In the title molecule, the central phosphorus atom adopts a tetrahedral geometry and is linked to three benzene rings and a planner coumarin moiety (maximum deviation of 0.005 (2) Å for C1 atom) *via* methylene carbonyl group. The bond lengths P1–C11 (1.7237 (14) Å) and C10–C11 (1.395 (2) Å), deviating from typical P=C (1.67 Å) and C–C (1.50 Å) support the congugation of double bond with that of carbonyl group *via* keto enol tautomerization. The geomatry of the molecule is stabilized by an intramolecular C25–H25A···O3 hydrogen bonding interaction. The crystal structure is stabilized by intermolecular C2–H2A···O2, C7–H7A···O3, C22–H22A···O2 and C28–H28A···O1 interactions forming a three-dimensional network (Table 1 and Fig. 2).

S2. Experimental

The title compound was synthesized in two steps. In the first step, 3-((triphenylphosphinyl) acetyl)coumarin bromide was synthesized by treating 3-(bromoacetyl)coumarin (2 mmol, 0.534 g) in 10 ml of CH₂Cl₂ and triphenylphosphine (2 mmol, 0.524 g). The mixture was stirred for 3 hrs at room temperature. The solvent was evaporated and washed with diethyl ether, to obtain a yellow crystalline solid (96% yield, 1.14 g). In the next step 3-((triphenylphosphinyl) acetyl)coumarin bromide (1 mmol, 0.528 g) was dissolved in ethanol (10 ml), treated dropwise with potassium carbonate (1 mmol, 0.1 g) in 5 ml of H₂O, stirred for 1.5 h at room temperature, diluted with 40 ml of H₂O, and extracted with 4 × 10 ml of EtOAc. The combined organic phases were dried over MgSO₄, filtered, and evaporated under reduced pressure to give the title compound as a yellow crystalline solid (90% yield, 0.403 g). Mp: 388–390 K.

S3. Refinement

H atoms on were positioned geometrically with C–H = 0.95 Å and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the C—-H…O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.

3-[2-(Triphenylphosphanylidene)acetyl]-2H-chromen-2-one

Crystal data	
$C_{29}H_{21}O_{3}P$	$\gamma = 99.746 \ (4)^{\circ}$
$M_r = 448.43$	V = 1103.2 (3) Å ³
Triclinic, P1	Z = 2
Hall symbol: -P 1	F(000) = 468
a = 9.7837 (12) Å	$D_{\rm x} = 1.350 {\rm ~Mg} {\rm ~m}^{-3}$
b = 10.3917 (14) Å	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
c = 12.2925 (17) Å	Cell parameters from 7459 reflections
$\alpha = 108.669 \ (4)^{\circ}$	$\theta = 3.2 - 26.4^{\circ}$
$\beta = 104.484 \ (4)^{\circ}$	$\mu = 0.16 \mathrm{~mm^{-1}}$

T = 100 K Block, yellow	$0.46 \times 0.41 \times 0.34 \text{ mm}$
Data collection	
Bruker APEXII CCD	36693 measured reflections
diffractometer	4102 independent reflections
Radiation source: fine-focus sealed tube	3716 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.045$
ω scan	$\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 3.2^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(<i>SADABS</i> ; Bruker, 2000)	$k = -12 \rightarrow 12$
$T_{min} = 0.932, T_{max} = 0.949$	$l = -14 \rightarrow 14$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.093$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0408P)^{2} + 0.6733P]$
S = 1.07	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4102 reflections	$(\Delta/\sigma)_{max} < 0.001$
299 parameters	$\Delta \rho_{\text{max}} = 0.32 \text{ e A}^{-3}$
0 restraints	$\Delta \rho_{\text{min}} = -0.40 \text{ e Å}^{-3}$
Primary atom site location: structure-invariant	Extinction correction: <i>SHELXL97</i> (Sheldrick.
direct methods	2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.041 (3)

Special details

map

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 ,

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
P1	0.22033 (4)	0.28713 (4)	0.37638 (3)	0.01546 (12)	
01	0.54288 (11)	0.37113 (10)	0.89176 (9)	0.0192 (2)	
O2	0.32695 (11)	0.37143 (11)	0.78335 (9)	0.0227 (2)	
03	0.32489 (11)	0.06590 (10)	0.47387 (9)	0.0213 (2)	
C1	0.67160 (16)	0.33179 (15)	0.90304 (13)	0.0178 (3)	
C2	0.78228 (17)	0.39917 (16)	1.01425 (13)	0.0222 (3)	
H2A	0.7684	0.4680	1.0801	0.027*	
C3	0.91346 (17)	0.36328 (17)	1.02647 (14)	0.0251 (3)	
H3A	0.9915	0.4093	1.1014	0.030*	
C4	0.93292 (18)	0.26033 (17)	0.93023 (14)	0.0264 (3)	
H4A	1.0236	0.2366	0.9403	0.032*	
C5	0.82116 (17)	0.19312 (16)	0.82082 (14)	0.0235 (3)	

H5A	0.8346	0.1223	0.7560	0.028*
C6	0.68754 (16)	0.22893 (15)	0.80479 (13)	0.0187 (3)
C7	0.57153 (16)	0.17586 (15)	0.69048 (12)	0.0183 (3)
H7A	0.5774	0.1018	0.6237	0.022*
C8	0.45432 (15)	0.22872 (14)	0.67566 (12)	0.0166 (3)
C9	0.43323 (15)	0.32761 (14)	0.78122 (12)	0.0171 (3)
C10	0.35227 (15)	0.19030 (15)	0.54841 (12)	0.0168 (3)
C11	0.30703 (15)	0.30007 (15)	0.52151 (12)	0.0174 (3)
H11A	0.3250	0.3869	0.5869	0.021*
C12	0.05596 (15)	0.14349 (15)	0.29385 (13)	0.0179 (3)
C13	-0.01368 (16)	0.10991 (16)	0.17037 (13)	0.0221 (3)
H13A	0.0293	0.1585	0.1284	0.027*
C14	-0.14561 (17)	0.00551 (17)	0.10911 (13)	0.0244 (3)
H14A	-0.1942	-0.0159	0.0256	0.029*
C15	-0.20609 (17)	-0.06731 (17)	0.16996 (14)	0.0275 (4)
H15A	-0.2963	-0.1388	0.1281	0.033*
C16	-0.13548 (18)	-0.03636 (18)	0.29201 (15)	0.0303 (4)
H16A	-0.1765	-0.0880	0.3329	0.036*
C17	-0.00522 (16)	0.06981 (17)	0.35421 (13)	0.0233 (3)
H17A	0.0421	0.0921	0.4381	0.028*
C18	0.17083 (17)	0.44966 (15)	0.39085 (13)	0.0198 (3)
C19	0.28216 (19)	0.57658 (16)	0.45100 (15)	0.0274 (3)
H19A	0.3809	0.5754	0.4821	0.033*
C20	0.2484 (2)	0.70386 (18)	0.46519 (16)	0.0346 (4)
H20A	0.3235	0.7902	0.5075	0.042*
C21	0.1052 (2)	0.70496 (19)	0.41764 (16)	0.0370 (4)
H21A	0.0830	0.7922	0.4245	0.044*
C22	-0.0057 (2)	0.5810(2)	0.36029 (15)	0.0357 (4)
H22A	-0.1041	0.5833	0.3295	0.043*
C23	0.02628 (18)	0.45223 (18)	0.34736 (14)	0.0260 (3)
H23A	-0.0503	0.3668	0.3090	0.031*
C24	0.33364 (15)	0.26597 (15)	0.27860 (12)	0.0181 (3)
C25	0.41259 (18)	0.16625 (18)	0.27691 (15)	0.0278 (4)
H25A	0.4064	0.1125	0.3260	0.033*
C26	0.5006 (2)	0.1454 (2)	0.20336 (17)	0.0350 (4)
H26A	0.5549	0.0777	0.2028	0.042*
C27	0.50937 (18)	0.22260 (18)	0.13103 (15)	0.0303 (4)
H27A	0.5701	0.2083	0.0813	0.036*
C28	0.42996 (19)	0.32023 (16)	0.13125 (14)	0.0287 (4)
H28A	0.4352	0.3724	0.0808	0.034*
C29	0.34227 (17)	0.34276 (16)	0.20488 (13)	0.0238 (3)
H29A	0.2882	0.4105	0.2050	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
P1	0.0158 (2)	0.01588 (19)	0.01475 (19)	0.00488 (14)	0.00474 (14)	0.00582 (14)
01	0.0200 (5)	0.0226 (5)	0.0143 (5)	0.0084 (4)	0.0057 (4)	0.0046 (4)

supporting information

O2	0.0203 (5)	0.0268 (6)	0.0200 (5)	0.0101 (4)	0.0074 (4)	0.0050 (4)
O3	0.0249 (5)	0.0174 (5)	0.0173 (5)	0.0062 (4)	0.0046 (4)	0.0023 (4)
C1	0.0199 (7)	0.0190 (7)	0.0177 (7)	0.0069 (6)	0.0072 (6)	0.0094 (6)
C2	0.0261 (8)	0.0239 (7)	0.0157 (7)	0.0079 (6)	0.0065 (6)	0.0063 (6)
C3	0.0247 (8)	0.0312 (8)	0.0177 (7)	0.0083 (7)	0.0023 (6)	0.0103 (6)
C4	0.0246 (8)	0.0338 (9)	0.0258 (8)	0.0154 (7)	0.0077 (6)	0.0144 (7)
C5	0.0282 (8)	0.0258 (8)	0.0200 (7)	0.0142 (6)	0.0090 (6)	0.0088 (6)
C6	0.0235 (7)	0.0180 (7)	0.0173 (7)	0.0075 (6)	0.0075 (6)	0.0085 (6)
C7	0.0242 (7)	0.0159 (7)	0.0152 (7)	0.0067 (6)	0.0076 (6)	0.0050 (5)
C8	0.0197 (7)	0.0143 (6)	0.0157 (7)	0.0032 (5)	0.0069 (6)	0.0054 (5)
C9	0.0180 (7)	0.0170 (7)	0.0157 (7)	0.0033 (5)	0.0056 (5)	0.0060 (5)
C10	0.0158 (7)	0.0181 (7)	0.0156 (7)	0.0033 (5)	0.0066 (5)	0.0046 (5)
C11	0.0181 (7)	0.0176 (7)	0.0132 (6)	0.0040 (5)	0.0031 (5)	0.0035 (5)
C12	0.0161 (7)	0.0177 (7)	0.0186 (7)	0.0052 (5)	0.0054 (5)	0.0053 (6)
C13	0.0231 (8)	0.0242 (7)	0.0185 (7)	0.0047 (6)	0.0060 (6)	0.0086 (6)
C14	0.0225 (8)	0.0280 (8)	0.0173 (7)	0.0048 (6)	0.0028 (6)	0.0053 (6)
C15	0.0190 (7)	0.0298 (8)	0.0249 (8)	-0.0010 (6)	0.0044 (6)	0.0050 (7)
C16	0.0247 (8)	0.0379 (9)	0.0256 (8)	-0.0019 (7)	0.0096 (7)	0.0131 (7)
C17	0.0205 (7)	0.0297 (8)	0.0178 (7)	0.0032 (6)	0.0061 (6)	0.0085 (6)
C18	0.0259 (8)	0.0220 (7)	0.0168 (7)	0.0108 (6)	0.0100 (6)	0.0097 (6)
C19	0.0321 (9)	0.0225 (8)	0.0309 (8)	0.0085 (7)	0.0146 (7)	0.0105 (7)
C20	0.0533 (11)	0.0227 (8)	0.0363 (9)	0.0135 (8)	0.0247 (9)	0.0128 (7)
C21	0.0681 (13)	0.0321 (9)	0.0290 (9)	0.0317 (9)	0.0267 (9)	0.0174 (8)
C22	0.0452 (10)	0.0527 (11)	0.0235 (8)	0.0361 (9)	0.0151 (8)	0.0183 (8)
C23	0.0284 (8)	0.0332 (9)	0.0182 (7)	0.0155 (7)	0.0069 (6)	0.0089 (6)
C24	0.0163 (7)	0.0184 (7)	0.0158 (7)	0.0014 (5)	0.0040 (5)	0.0041 (5)
C25	0.0320 (9)	0.0336 (9)	0.0297 (8)	0.0166 (7)	0.0170 (7)	0.0182 (7)
C26	0.0362 (10)	0.0445 (10)	0.0385 (10)	0.0236 (8)	0.0228 (8)	0.0197 (8)
C27	0.0292 (9)	0.0338 (9)	0.0253 (8)	0.0026 (7)	0.0161 (7)	0.0055 (7)
C28	0.0396 (9)	0.0213 (8)	0.0221 (8)	-0.0013 (7)	0.0142 (7)	0.0057 (6)
C29	0.0306 (8)	0.0188 (7)	0.0211 (7)	0.0048 (6)	0.0091 (6)	0.0067 (6)

Geometric parameters (Å, °)

P1-C11	1.7237 (14)	C14—C15	1.384 (2)
P1—C12	1.8014 (15)	C14—H14A	0.9500
P1-C18	1.8019 (15)	C15—C16	1.389 (2)
P1—C24	1.8171 (15)	C15—H15A	0.9500
01—C1	1.3769 (17)	C16—C17	1.387 (2)
O1—C9	1.3838 (17)	C16—H16A	0.9500
O2—C9	1.2064 (18)	C17—H17A	0.9500
O3—C10	1.2586 (17)	C18—C23	1.389 (2)
C1—C2	1.386 (2)	C18—C19	1.400 (2)
C1—C6	1.396 (2)	C19—C20	1.385 (2)
C2—C3	1.382 (2)	C19—H19A	0.9500
C2—H2A	0.9500	C20—C21	1.380 (3)
C3—C4	1.397 (2)	C20—H20A	0.9500
С3—НЗА	0.9500	C21—C22	1.377 (3)

C4—C5	1.377 (2)	C21—H21A	0.9500
C4—H4A	0.9500	C22—C23	1.395 (2)
C5—C6	1.403 (2)	C22—H22A	0.9500
C5—H5A	0.9500	С23—Н23А	0.9500
C6—C7	1.436 (2)	C24—C25	1.391 (2)
C7—C8	1.350 (2)	C24—C29	1.394 (2)
C7—H7A	0.9500	C25—C26	1.390 (2)
C8—C9	1.4610 (19)	С25—Н25А	0.9500
C8—C10	1.5123 (19)	C26—C27	1.383 (3)
C10—C11	1.395 (2)	C26—H26A	0.9500
С11—Н11А	0.9500	C27—C28	1.378 (3)
C12—C17	1.388 (2)	C27—H27A	0.9500
C12—C13	1.398 (2)	C28—C29	1.390 (2)
C13—C14	1.388 (2)	C28—H28A	0.9500
C13—H13A	0.9500	C29—H29A	0.9500
	0.9200		0.9000
C11—P1—C12	114.64 (7)	C15—C14—H14A	120.1
C11—P1—C18	106.69 (7)	C13—C14—H14A	120.1
C12—P1—C18	108.00 (7)	C14—C15—C16	120.32 (14)
C11—P1—C24	114.32 (7)	C14—C15—H15A	119.8
C12—P1—C24	105.28 (6)	C16—C15—H15A	119.8
C18—P1—C24	107.59 (7)	C17—C16—C15	120.08 (15)
C1—O1—C9	122.54 (11)	С17—С16—Н16А	120.0
01	117.19 (13)	C15—C16—H16A	120.0
01	120.27 (13)	C16—C17—C12	119.93 (14)
C2—C1—C6	122.53 (13)	С16—С17—Н17А	120.0
C3—C2—C1	118.02 (14)	С12—С17—Н17А	120.0
C3—C2—H2A	121.0	C23—C18—C19	119.69 (14)
C1—C2—H2A	121.0	C23—C18—P1	122.02 (12)
C2—C3—C4	120.94 (14)	C19—C18—P1	118.27 (12)
С2—С3—НЗА	119.5	C20—C19—C18	120.03 (16)
C4—C3—H3A	119.5	С20—С19—Н19А	120.0
C5—C4—C3	120.28 (14)	C18—C19—H19A	120.0
C5—C4—H4A	119.9	C21—C20—C19	119.81 (17)
C3—C4—H4A	119.9	C21—C20—H20A	120.1
C4—C5—C6	120.17 (14)	С19—С20—Н20А	120.1
C4—C5—H5A	119.9	C22—C21—C20	120.71 (15)
C6—C5—H5A	119.9	C22—C21—H21A	119.6
C1—C6—C5	118.03 (13)	C20—C21—H21A	119.6
C1—C6—C7	117.86 (13)	C21—C22—C23	120.09 (16)
C5—C6—C7	123.85 (13)	C21—C22—H22A	120.0
C8—C7—C6	121.52 (13)	C23—C22—H22A	120.0
C8—C7—H7A	119.2	C18 - C23 - C22	119.60 (16)
С6—С7—Н7А	119.2	C18—C23—H23A	120.2
C7—C8—C9	119.72 (13)	С22—С23—Н23А	120.2
C7—C8—C10	118.80 (12)	C25—C24—C29	119.40 (14)
C9—C8—C10	121.38 (12)	C25—C24—P1	117.57 (11)
02—C9—O1	116.03 (12)	C29—C24—P1	123.02 (11)

02	126.74 (13)	C26—C25—C24	119.95 (15)
01-C9-C8	117.16 (12)	C26—C25—H25A	120.0
O3-C10-C11	125.68 (13)	C24—C25—H25A	120.0
03-C10-C8	117.62 (12)	C_{27} C_{26} C_{25}	120.35 (16)
$C_{11} - C_{10} - C_{8}$	116 45 (12)	C27—C26—H26A	119.8
C10-C11-P1	123 73 (11)	C_{25} C_{26} H_{26A}	119.8
C10—C11—H11A	118.1	C_{28} C_{27} C_{26}	119.91 (15)
P1-C11-H11A	118.1	$C_{28} = C_{27} = H_{27A}$	120.0
C17 - C12 - C13	119.83 (13)	$C_{26} = C_{27} = H_{27A}$	120.0
C17 - C12 - P1	119.88 (11)	C_{27} C_{28} C_{29}	120.0 120.33(15)
C13 - C12 - P1	120 23 (11)	C_{27} C_{28} H_{28A}	110.8
C_{14} C_{13} C_{12} C_{12}	120.23(11) 120.01(14)	C_{29} C_{28} H_{28A}	119.8
$C_{14} = C_{13} = C_{12}$	120.01 (14)	$C_{29} = C_{20} = C_{20} = C_{20}$	119.0
$C_{12} = C_{13} = H_{13} \Lambda$	120.0	$C_{28} = C_{29} = C_{24}$	120.05 (15)
$C_{12} = C_{13} = M_{13} + M_{13}$	120.0 110.81(14)	$C_{20} = C_{20} = H_{20A}$	120.0
015-014-015	119.01 (14)	C24—C29—II29A	120.0
C_{9} O_{1} C_{1} C_{2}	170 11 (13)	C24 P1 C12 C13	-44.96(13)
$C_{2}^{0} = 01 - C_{1}^{0} - C_{2}^{0}$	-0.35(10)	$C_{17} = C_{12} = C_{13} = C_{14}$	16(2)
$C_{9} = 01 = C_{1} = C_{0}$	-9.55(19) -178.61(12)	C17 - C12 - C13 - C14	1.0(2) -175 62 (12)
01 - 01 - 02 - 03	-1/8.01(13)	$r_1 - c_{12} - c_{13} - c_{14}$	-175.02(12)
$C_0 - C_1 - C_2 - C_3$	0.8(2)	C12 - C13 - C14 - C15	-1.3(2)
C1 - C2 - C3 - C4	-1.1(2)	C13 - C14 - C13 - C10	0.0(2)
$C_2 = C_3 = C_4 = C_5$	0.3(2)	C14 - C15 - C16 - C17	1.3(3)
$C_{3} - C_{4} - C_{5} - C_{6}$	0.8(2)	C13 - C10 - C17 - C12	-1.2(3)
01-01-06-05	1/9.69 (12)	C13 - C12 - C17 - C16	-0.3(2)
$C_2 - C_1 - C_6 - C_5$	0.3 (2)	PI - CI2 - CI7 - CI6	176.96 (12)
01-01-06-07	5.4 (2)	C11—P1—C18—C23	-121.10(13)
C2-C1-C6-C7	-174.07 (13)	C12—P1—C18—C23	2.62 (14)
C4—C5—C6—C1	-1.1 (2)	C24—P1—C18—C23	115.81 (13)
C4—C5—C6—C7	172.88 (14)	C11—P1—C18—C19	57.07 (13)
C1—C6—C7—C8	3.8 (2)	C12—P1—C18—C19	-179.21 (11)
C5—C6—C7—C8	-170.22 (14)	C24—P1—C18—C19	-66.02 (13)
C6—C7—C8—C9	-8.9 (2)	C23—C18—C19—C20	-1.1 (2)
C6—C7—C8—C10	167.60 (13)	P1-C18-C19-C20	-179.28 (12)
C1	-178.77 (12)	C18—C19—C20—C21	-1.4 (2)
C1—O1—C9—C8	4.13 (18)	C19—C20—C21—C22	2.6 (3)
C7—C8—C9—O2	-171.75 (14)	C20—C21—C22—C23	-1.4 (2)
C10—C8—C9—O2	11.9 (2)	C19—C18—C23—C22	2.3 (2)
C7—C8—C9—O1	5.00 (19)	P1—C18—C23—C22	-179.58 (11)
C10—C8—C9—O1	-171.38 (12)	C21—C22—C23—C18	-1.1 (2)
C7—C8—C10—O3	38.62 (19)	C11—P1—C24—C25	47.08 (14)
C9—C8—C10—O3	-144.96 (13)	C12—P1—C24—C25	-79.63 (13)
C7—C8—C10—C11	-135.98 (14)	C18—P1—C24—C25	165.36 (12)
C9—C8—C10—C11	40.43 (18)	C11—P1—C24—C29	-134.07 (12)
O3—C10—C11—P1	-6.8 (2)	C12—P1—C24—C29	99.21 (13)
C8—C10—C11—P1	167.32 (10)	C18—P1—C24—C29	-15.79 (14)
C12—P1—C11—C10	55.66 (14)	C29—C24—C25—C26	0.9 (2)
C18—P1—C11—C10	175.16 (12)	P1-C24-C25-C26	179.75 (13)
C24—P1—C11—C10	-66.05 (14)	C24—C25—C26—C27	-0.4(3)

supporting information

C11—P1—C12—C17	11.30 (15)	C25—C26—C27—C28	-0.4 (3)
C18—P1—C12—C17	-107.47 (12)	C26—C27—C28—C29	0.8 (3)
C24—P1—C12—C17	137.81 (12)	C27—C28—C29—C24	-0.3 (2)
C11—P1—C12—C13	-171.47 (11)	C25—C24—C29—C28	-0.5 (2)
C18—P1—C12—C13	69.77 (13)	P1-C24-C29-C28	-179.31 (11)

Hydrogen-bond geometry (Å, °)

	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
C2— $H2A$ ···O2 ⁱ	0.95	2.45	3.378 (2)	166
С7—Н7А…ОЗ ^{іі}	0.95	2.28	3.171 (2)	156
C22—H22A····O2 ⁱⁱⁱ	0.95	2.48	3.398 (2)	163
C25—H25A····O3	0.95	2.31	3.168 (2)	150
C28—H28A…O1 ^{iv}	0.95	2.54	3.281 (2)	135

Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z+1.