Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(Pyridin-4-yl)methyl N^{\prime}-(3-phenylallylidene)hydrazinecarbodithioate

May Lee Low, ${ }^{\text {a }}$ Thahira Begum S. A. Ravoof, ${ }^{\text {a }}$ Mohamed Ibrahim Mohamed Tahir, ${ }^{\text {a }}$ Karen A. Crouse ${ }^{\text {a }} \ddagger$ and Edward R. T. Tiekink ${ }^{\text {b* }}$
${ }^{\text {a }}$ Department of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 20 December 2012; accepted 20 December 2012

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \mathrm{~A}$; R factor $=0.042 ; \omega R$ factor $=0.115$; data-to-parameter ratio $=15.1$.

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}_{2}$, the central $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$ residue is planar (r.m.s. deviation $=0.045 \AA$) and the pyridyl and benzene rings are inclined and approximately coplanar to this plane, respectively [dihedral angles $=72.85(9)$ and $\left.10.73(9)^{\circ}\right]$, so that, overall, the molecule adopts an L-shape. The conformation about each of the $\mathrm{N}=\mathrm{C}[1.290(3) \AA]$ and $\mathrm{C}=\mathrm{C}[1.340$ (3) \AA] bonds is E. Supramolecular chains along [110] are stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ (pyridine) hydrogen bonding and these are connected into a double layer that stacks along the c-axis direction by $\mathrm{C}-\mathrm{H} \cdots \pi$ (pyridine) interactions.

Related literature

For background to related Schiff bases of S-substituted dithiocarbazates with cinnamaldehyde, see: Tarafder et al. (2008, 2010). For the corresponding metal complexes, see: Reza et al. (2012); Liu et al. (2009). For the biological activity of similar sulfur-nitrogen-containing Schiff base derivatives, see: Maia et al. (2010); Pavan et al. (2010); Zhu et al. (2009). For the synthesis, see: Crouse et al. (2004); Khoo (2008); Tarafder et al. $(2008,2010)$.

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}_{2}$
$M_{r}=313.43$
Triclinic, $P \overline{1}$
$a=5.3784$ (5) A
$b=10.1570$ (9) A
$c=14.5488(17) \AA$
$\alpha=77.315$ ($^{\circ}{ }^{\circ}$
$\beta=84.735(9)^{\circ}$

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.83, T_{\text {max }}=0.97$
$\gamma=78.193(8)^{\circ}$
$V=758.06(13) \AA^{3}$
$Z=2$
$\mathrm{Cu} K \alpha$ radiation
$\mu=3.14 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.13 \times 0.06 \times 0.01 \mathrm{~mm}$

15664 measured reflections 2918 independent reflections 2469 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$\omega R\left(F^{2}\right)=0.115$
$S=1.05$
2918 reflections
193 parameters 1 restraint

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
Cg1 is the centroid of the $\mathrm{N} 3, \mathrm{C} 12-\mathrm{C} 15$ pyridyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 n \cdots \mathrm{~N}^{3}$	$0.88(2)$	$2.02(2)$	$2.897(3)$	$172(2)$
$\mathrm{C} 8-\mathrm{H} 8 \cdots C g 1^{\mathrm{ii}}$	0.95	2.92	$3.701(3)$	141

Symmetry codes: (i) $x+1, y-1, z$; (ii) $-x+2,-y+1,-z+1$.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Support for this project came from Universiti Putra Malaysia (UPM) under their Research University Grant Scheme (RUGS 9174000) and the Malaysian Ministry of Science Technology and Innovation (MOSTI 09-02-049752EA001) and the Malaysian Fundamental Research Grant Scheme (FRGS 01-13-11-986FR). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIRMOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2090).

[^0]
organic compounds

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. \& Fun, H.-K. (2004). Polyhedron, 23, 161-168. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Khoo, T. J. (2008). PhD thesis, Universiti Putra Malaysia, Malaysia.
Liu, Y.-H., Ye, J., Liu, X.-L. \& Guo, R. (2009). J. Coord. Chem. 62, 3488-3499.
Maia, P. I. D. S., Fernandes, A. G. D. A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. \& Deflon, V. M. (2010). J. Inorg. Biochem. 104, 1276-1282.

Pavan, F. R., Maia, P. I., d, S., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. \& Leite, C. Q. F. (2010). Eur. J. Med. Chem. 45, 18981905.

Reza, M. S., Islam, M. A. A. A. A., Tarafder, M. T. H., Sheikh, M. C. \& Zangrando, E. (2012). Acta Cryst. E68, m976-m977.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. \& Fun, H.-K. (2008). Acta Cryst. E64, o1042-o1043.

Tarafder, M. T. H., Khan, S. S., Islam, M. A. A. A. A., Lorenzi, L. \& Zangrando, E. (2010). Acta Cryst. E66, o2851.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Zhu, Y.-J., Song, K.-K., Ll, Z.-C., Pan, Z.-Z., Guo, Y.-J., Zhou, J.-J., Wang, Q., Liu, B. \& Chen, Q.-X. (2009). J. Agric. Food Chem. 57, 5518-5523.

supporting information

Acta Cryst. (2013). E69, o167-o168 [doi:10.1107/S1600536812051537]

(Pyridin-4-yl)methyl N^{\prime}-(3-phenylallylidene)hydrazinecarbodithioate

May Lee Low, Thahira Begum S. A. Ravoof, Mohamed Ibrahim Mohamed Tahir, Karen A. Crouse and Edward R. T. Tiekink

S1. Comment

Schiff bases of S-substituted dithiocarbazates with cinnamaldehyde attract interest in terms of both coordination chemistry (Reza et al., 2012; Liu et al., 2009) and for their biological activities (Maia et al., 2010; Pavan et al., 2010; Zhu et al., 2009. In pursuing our continuing interest in the coordination chemistry of dithiocarbazate derivatives and their biological importance (Tarafder et al., 2010; Tarafder et al., 2008), the title compound, (I), the product of condensation between S-4-picolyl dithiocarbazate and cinnamaldehyde, was investigated.
In (I), Fig. 1, the central $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{~S}_{2}$ residue is planar (r.m.s. deviation $=0.045 \AA$) with maximum deviations of 0.040 (2) \AA for each of N 1 and C 11 , and -0.048 (1) \AA for the S 1 atom. The pyridyl ring is inclined to this plane, forming a dihedral angle of $72.85(9)^{\circ}$, whereas the benzene ring is almost co-planar [dihedral angle $=10.73(9)^{\circ}$]. The maximum twist from co-planarity along the $\mathrm{C}_{5} \mathrm{~N}_{2}$ chain is seen in the $\mathrm{C} 1 — \mathrm{~N} 1 — \mathrm{~N} 2-\mathrm{C} 2$ torsion angle of -176.15 (19) \AA. The amine-N1—H atom is syn to the thione- S 2 atom. The conformation about each of the $\mathrm{N} 2=\mathrm{C} 2$ [1.290 (3) \AA] and $\mathrm{C} 3=\mathrm{C} 4$ [1.340 (3) \AA] bonds is E. Globally, the molecule adopts an L-shape as the pyridyl residue is anti to the thione- S 2 atom. A very similar conformation was found in the benzyl ester (Tarafder et al., 2008).
The pyridyl ring proves pivotal in the crystal packing by forming a hydrogen bond with the amine- $\mathrm{N} 1-\mathrm{H}$ atom and acting as an acceptor in a $\mathrm{C}-\mathrm{H} \cdots \pi$ (pyridyl) contact, Table 1 . The hydrogen bonding leads to the formation of supramolecular chains along $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ and these are connected into a double layer in the ab plane via the $\mathrm{C}-\mathrm{H} \cdots \pi($ pyridyl) contacts, Fig. 2.

S2. Experimental

The previously reported method for preparation substituted dithiocarbazate (Crouse et al., 2004) was modified by reaction with 4-picolylchloride hydrochloride (Khoo, 2008).
Potassium hydroxide ($11.4 \mathrm{~g}, 0.2 \mathrm{~mol}$) was dissolved completely in 90% ethanol (70 ml) and the mixture was cooled in ice. To the cold solution, hydrazine hydrate $(9.7 \mathrm{ml}, 0.2 \mathrm{~mol})$ was added slowly with stirring. Carbon disulfide (12.0 ml , 0.2 mol) was then added drop-wise with vigorous stirring for about 1 h . The temperature of the reaction mixture was kept below 268 K during addition. During this time two layers formed. The resulting yellow oil (lower layer) was separated and dissolved in 40% ethanol (60 ml). 4-Picolylchloride hydrochloride ($32.8 \mathrm{~g}, 0.2 \mathrm{~mol}$) was completely dissolved in 100 ml of 80% ethanol and added slowly to the above solution with vigorous mechanical stirring. The resulting white product (S4PDTC) was separated by filtration, washed with water and dried. The crude product was recrystallized from absolute ethanol.
Previously reported methods for preparation of Schiff bases (Tarafder et al., 2010; Tarafder et al., 2008) were used to prepare S4PDTC derivatives with cinnamaldehyde. An equimolar amount of cinnamaldehyde (1.26 ml) was added to the solution of S4PDTC ($1.99 \mathrm{~g}, 0.01 \mathrm{~mol}$) dissolved in hot absolute ethanol $(100 \mathrm{ml})$. The mixture was heated while being
stirred to reduce it to half the original volume and then cooled. The orange compound was filtered, washed with absolute ethanol then dried over silica gel. Single crystals were obtained after recrystallization from a mixture of DMF/chloroform. (yield 72%, M.pt: 481-482 K).

S3. Refinement

Carbon-bound H -atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.95$ to $0.99 \AA$) and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {equiv }}(\mathrm{C})$. The nitrogen-bound $\mathrm{H}-$ atom was refined with $\mathrm{N}-\mathrm{H}=$ $0.88 \pm 0.01 \AA$. The (0314) reflection was omitted from the final refinement owing to poor agreement.

Figure 1

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2
A view of the crystal packing in projection down the a axis, highlighting the stacking of supramolecular layers along the c axis. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown as blue and purple dashed lines, respectively.

(Pyridin-4-yl)methyl N^{\prime}-(3-phenylallylidene)hydrazinecarbodithioate

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~S}_{2}$

$M_{r}=313.43$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.3784$ (5) \AA
$b=10.1570$ (9) \AA
$c=14.5488$ (17) \AA
$\alpha=77.315$ (9) $^{\circ}$
$\beta=84.735(9)^{\circ}$
$\gamma=78.193(8)^{\circ}$
$V=758.06(13) \AA^{3}$

Data collection

Oxford Diffraction Xcaliber Eos Gemini diffractometer
Radiation source: fine-focus sealed tube Graphite monochromator
Detector resolution: 16.1952 pixels mm^{-1} ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.83, T_{\text {max }}=0.97$
$Z=2$
$F(000)=328$
$D_{\mathrm{x}}=1.373 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54184 \AA$
Cell parameters from 5833 reflections
$\theta=3-72^{\circ}$
$\mu=3.14 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Thin-plate, orange
$0.13 \times 0.06 \times 0.01 \mathrm{~mm}$

15664 measured reflections
2918 independent reflections
2469 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$
$\theta_{\text {max }}=72.3^{\circ}, \theta_{\text {min }}=3.1^{\circ}$
$h=-6 \rightarrow 6$
$k=-12 \rightarrow 12$
$l=-17 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.115$
$S=1.05$
2918 reflections
193 parameters
1 restraint
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0669 P)^{2}+0.3038 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.42$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
S1	$0.36876(9)$	$0.53086(5)$	$0.18295(4)$	$0.02532(16)$
S2	$0.33320(10)$	$0.32045(5)$	$0.06781(4)$	$0.02701(17)$
N1	$0.6775(3)$	$0.29601(17)$	$0.19095(13)$	$0.0256(4)$
H1n	$0.749(4)$	$0.2148(14)$	$0.1794(18)$	0.031^{*}
N2	$0.7786(3)$	$0.34184(17)$	$0.25917(13)$	$0.0262(4)$
N3	$-0.1177(4)$	$1.01818(18)$	$0.16683(15)$	$0.0338(5)$
C1	$0.4717(4)$	$0.3730(2)$	$0.14713(15)$	$0.0233(4)$
C2	$0.9846(4)$	$0.2638(2)$	$0.29282(16)$	$0.0266(5)$
H2	1.0579	0.1846	0.2682	0.032^{*}
C3	$1.1038(4)$	$0.2962(2)$	$0.36748(16)$	$0.0284(5)$
H3	1.0295	0.3764	0.3909	0.034^{*}
C4	$1.3162(4)$	$0.2171(2)$	$0.40512(16)$	$0.0279(5)$
H4	1.3893	0.1405	0.3776	0.033^{*}
C5	$1.4484(4)$	$0.2350(2)$	$0.48372(16)$	$0.0284(5)$
C6	$1.3649(5)$	$0.3430(2)$	$0.53137(18)$	$0.0370(6)$
H6	1.2139	0.4074	0.5133	0.044^{*}
C7	$1.4982(5)$	$0.3574(3)$	$0.60420(19)$	$0.0393(6)$
H7	1.4401	0.4323	0.6349	0.047^{*}
C8	$1.7160(5)$	$0.2633(3)$	$0.63253(18)$	$0.0368(6)$
H8	1.8074	0.2733	0.6826	0.044^{*}
C9	$1.8000(4)$	$0.1543(3)$	$0.58746(18)$	$0.0359(5)$
H9	1.9484	0.0889	0.043^{*}	
C10	$1.6683(4)$	$0.1405(2)$	$0.51347(17)$	$0.0312(5)$
H10	1.7283	0.0659	0.4827	0.037^{*}

C11	$0.1118(4)$	$0.6125(2)$	$0.10459(17)$	$0.0269(5)$
H11A	0.1725	0.6164	0.0379	0.032^{*}
H11B	-0.0298	0.5612	0.1181	0.032^{*}
C12	$0.0263(4)$	$0.7559(2)$	$0.12385(16)$	$0.0262(5)$
C13	$-0.1950(4)$	$0.7908(2)$	$0.17696(19)$	$0.0357(6)$
H13	-0.3022	0.7258	0.1998	0.043^{*}
C14	$-0.2588(4)$	$0.9219(2)$	$0.1965(2)$	$0.0390(6)$
H14	-0.4112	0.9441	0.2330	0.047^{*}
C15	$0.0961(5)$	$0.9839(2)$	$0.11574(18)$	$0.0345(5)$
H15	0.1999	1.0508	0.0940	0.041^{*}
C16	$0.1742(4)$	$0.8555(2)$	$0.09283(17)$	$0.0314(5)$
H16	0.3277	0.8361	0.0562	0.038^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0270(3)$	$0.0170(3)$	$0.0333(3)$	$0.00106(19)$	$-0.0078(2)$	$-0.0104(2)$
S2	$0.0278(3)$	$0.0215(3)$	$0.0342(3)$	$-0.0011(2)$	$-0.0060(2)$	$-0.0124(2)$
N1	$0.0275(9)$	$0.0184(8)$	$0.0315(10)$	$0.0004(7)$	$-0.0035(8)$	$-0.0100(7)$
N2	$0.0260(9)$	$0.0226(9)$	$0.0312(10)$	$-0.0014(7)$	$-0.0049(7)$	$-0.0095(7)$
N3	$0.0309(10)$	$0.0233(9)$	$0.0484(13)$	$0.0048(7)$	$-0.0124(9)$	$-0.0149(9)$
C1	$0.0249(10)$	$0.0176(9)$	$0.0272(11)$	$-0.0021(8)$	$0.0002(8)$	$-0.0062(8)$
C2	$0.0251(10)$	$0.0224(10)$	$0.0323(12)$	$-0.0021(8)$	$-0.0013(9)$	$-0.0078(9)$
C3	$0.0292(11)$	$0.0234(10)$	$0.0334(12)$	$-0.0025(8)$	$-0.0023(9)$	$-0.0096(9)$
C4	$0.0300(11)$	$0.0238(10)$	$0.0299(12)$	$-0.0020(8)$	$0.0003(9)$	$-0.0089(9)$
C5	$0.0271(11)$	$0.0262(11)$	$0.0313(12)$	$-0.0045(8)$	$-0.0021(9)$	$-0.0051(9)$
C6	$0.0370(13)$	$0.0302(12)$	$0.0429(15)$	$0.0047(9)$	$-0.0111(11)$	$-0.0122(10)$
C7	$0.0419(14)$	$0.0341(13)$	$0.0436(15)$	$0.0009(10)$	$-0.0083(11)$	$-0.0166(11)$
C8	$0.0345(12)$	$0.0433(14)$	$0.0341(13)$	$-0.0045(10)$	$-0.0093(10)$	$-0.0111(11)$
C9	$0.0281(11)$	$0.0395(13)$	$0.0387(14)$	$0.0020(9)$	$-0.0057(10)$	$-0.0111(11)$
C10	$0.0291(11)$	$0.0303(11)$	$0.0339(13)$	$-0.0007(9)$	$-0.0007(9)$	$-0.0108(9)$
C11	$0.0268(10)$	$0.0201(10)$	$0.0344(12)$	$0.0004(8)$	$-0.0097(9)$	$-0.0077(9)$
C12	$0.0270(10)$	$0.0198(10)$	$0.0320(12)$	$0.0022(8)$	$-0.0113(9)$	$-0.0081(8)$
C13	$0.0260(11)$	$0.0314(12)$	$0.0542(16)$	$-0.0051(9)$	$-0.0020(10)$	$-0.0185(11)$
C14	$0.0257(11)$	$0.0359(13)$	$0.0584(17)$	$0.0018(9)$	$-0.0017(11)$	$-0.0235(12)$
C15	$0.0389(13)$	$0.0204(10)$	$0.0439(14)$	$-0.0034(9)$	$-0.0068(11)$	$-0.0060(9)$
C16	$0.0328(11)$	$0.0230(10)$	$0.0363(13)$	$0.0005(9)$	$-0.0022(10)$	$-0.0071(9)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{C} 1$	$1.760(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.383(3)$
$\mathrm{S} 1-\mathrm{C} 11$	$1.817(2)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{~S} 2-\mathrm{C} 1$	$1.662(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.385(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.342(3)$	$\mathrm{C} 8-\mathrm{H} 8$	0.9500
$\mathrm{~N} 1-\mathrm{N} 2$	$1.379(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.389(3)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{n}$	$0.880(10)$	$\mathrm{C} 9-\mathrm{H} 9$	0.9500
$\mathrm{~N} 2-\mathrm{C} 2$	$1.290(3)$	$\mathrm{C} 10-\mathrm{H} 10$	0.9500
$\mathrm{~N} 3-\mathrm{C} 14$	$1.332(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.514(3)$

N3-C15	1.337 (3)
C2-C3	1.439 (3)
C2-H2	0.9500
C3-C4	1.340 (3)
C3-H3	0.9500
C4-C5	1.463 (3)
C4-H4	0.9500
C5-C10	1.398 (3)
C5-C6	1.400 (3)
C6-C7	1.382 (3)
C6-H6	0.9500
C1-S1-C11	101.51 (10)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	119.67 (17)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{n}$	122.4 (17)
N2-N1-H1n	117.9 (17)
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{N} 1$	114.56 (18)
C14-N3-C15	116.84 (19)
N1-C1-S2	121.98 (16)
N1-C1-S1	113.13 (16)
S2-C1-S1	124.88 (12)
N2-C2-C3	120.4 (2)
N2-C2-H2	119.8
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.8
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	122.2 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	118.9
C2-C3-H3	118.9
C3-C4-C5	127.5 (2)
C3-C4-H4	116.3
C5-C4- H 4	116.3
C10-C5-C6	117.9 (2)
C10-C5-C4	119.1 (2)
C6-C5-C4	123.0 (2)
C7-C6-C5	121.1 (2)
C7-C6-H6	119.4
C5-C6-H6	119.4
C6-C7-C8	120.2 (2)
C6-C7-H7	119.9
C8-C7-H7	119.9
C7-C8-C9	119.7 (2)
C7-C8-H8	120.2
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 2$	-176.15 (19)
N2-N1-C1-S2	-177.22 (15)
N2-N1-C1-S1	2.5 (2)
$\mathrm{C} 11-\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 1$	175.41 (16)
$\mathrm{C} 11-\mathrm{S} 1-\mathrm{C} 1-\mathrm{S} 2$	-4.84 (16)
N1-N2-C2-C3	-177.19 (18)

$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.9900
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B}$	0.9900
$\mathrm{C} 12-\mathrm{C} 13$	$1.385(3)$
$\mathrm{C} 12-\mathrm{C} 16$	$1.386(3)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.391(3)$
$\mathrm{C} 13-\mathrm{H} 13$	0.9500
$\mathrm{C} 14-\mathrm{H} 14$	0.9500
$\mathrm{C} 15-\mathrm{C} 16$	$1.389(3)$
$\mathrm{C} 15-\mathrm{H} 15$	0.9500
$\mathrm{C} 16-\mathrm{H} 16$	0.9500

120.2
120.2 (2)
119.9
119.9
120.9 (2)
119.6
119.6
105.44 (14)
110.7
110.7
110.7
110.7
108.8
117.4 (2)
121.6 (2)
121.0 (2)
119.3 (2)
120.3
120.3
123.6 (2)
118.2
118.2
123.4 (2)
118.3
118.3
119.4 (2)
120.3
120.3

$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 5$	$-0.5(4)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$-0.5(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10-\mathrm{C} 9$	$179.6(2)$
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 11-\mathrm{C} 12$	$-174.77(15)$
$\mathrm{S} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$-103.5(2)$
$\mathrm{S} 1-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 16$	$73.2(2)$

$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.2(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-176.9(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 10$	$179.6(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(4)$
$\mathrm{C} 10-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$1.3(4)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$-178.8(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-1.1(4)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$0.1(4)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$0.8(4)$

$\mathrm{C} 16-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$0.1(4)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$176.9(2)$
$\mathrm{C} 15-\mathrm{N} 3-\mathrm{C} 14-\mathrm{C} 13$	$-0.1(4)$
$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{N} 3$	$0.0(4)$
$\mathrm{C} 14-\mathrm{N} 3-\mathrm{C} 15-\mathrm{C} 16$	$0.2(4)$
$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 16-\mathrm{C} 15$	$0.0(3)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 16-\mathrm{C} 15$	$-176.9(2)$
$\mathrm{N} 3-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 12$	$-0.1(4)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{N} 3, \mathrm{C} 12-\mathrm{C} 15$ pyridyl ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 n \cdots \mathrm{~N} 3^{\mathrm{i}}$	$0.88(2)$	$2.02(2)$	$2.897(3)$	$172(2)$
$\mathrm{C} 8 — \mathrm{H} 8 \cdots C g 1^{\mathrm{ii}}$	0.95	2.92	$3.701(3)$	141

Symmetry codes: (i) $x+1, y-1, z$; (ii) $-x+2,-y+1,-z+1$.

[^0]: \ddagger Additional correspondence author, e-mail: crouse@pc.jaring.my.

