

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Methylpyridinium 4-hydroxybenzoate

S. Sudhahar,^a M. Krishnakumar,^a B. M. Sornamurthy,^a G. Chakkaravarthi^b* and R. Mohankumar^a*

^aDepartment of Physics, Presidency College, Chennai 600 005, India, and ^bDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India Correspondence e-mail: chakkaravarthi_2005@yahoo.com, mohan66@hotmail.com

Received 24 December 2012; accepted 17 January 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.128; data-to-parameter ratio = 16.4.

In the crystal structure of the title salt, $C_6H_8N^+ \cdot C_7H_5O_3^-$, the anions and cations are linked by classical $N-H\cdots O$ hydrogen bonds. The anions are connected by pairs of $C-H\cdots O$ hydrogen bonds into inversion dimers and further linked by classical $O-H\cdots O$ hydrogen bonds. Weak $\pi-\pi$ interactions [centroid–centroid distances = 3.740 (3) and 3.855 (3) Å] also occur. The dihedral angle between the CO_2^- group and the benzene ring to which it is attached is 20.95 (8)°.

Related literature

For biological applications of picolinium-containing compounds, see: Butler & Walker (1993); Roy *et al.* (2001). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data C₆H₈N⁺·C₇H₅O₃⁻

 $M_r = 231.24$

 Monoclinic, $P2_1/c$ Z = 4

 a = 7.479 (5) Å
 Mo Kα radiation

 b = 11.671 (4) Å
 $\mu = 0.10 \text{ mm}^{-1}$

 c = 13.520 (5) Å
 T = 295 K

 $\beta = 100.217$ (5)°
 $0.24 \times 0.20 \times 0.18 \text{ mm}$

 V = 1161.4 (10) Å³

Data collection

Bruker Kappa APEXII CCD	11741 measured reflections
diffractometer	2564 independent reflections
Absorption correction: multi-scan	1939 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.029$
$T_{\rm min} = 0.978, \ T_{\rm max} = 0.983$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.043 & 156 \text{ parameters} \\ wR(F^2) &= 0.128 & H\text{-atom parameters constrained} \\ S &= 1.06 & \Delta\rho_{\text{max}} &= 0.38 \text{ e } \text{\AA}^{-3} \\ 2564 \text{ reflections} & \Delta\rho_{\text{min}} &= -0.34 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1\cdots O2^i$	0.82	1.85	2.6707 (19)	176
$N1 - H1A \cdots O3^{ii}$	0.86	1.73	2.5889 (19)	173
$C2-H2\cdots O1^{iii}$	0.93	2.60	3.485 (2)	160

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) -x + 1, -y, -z + 1; (iii) -x + 1, -y, -z.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*.

MK would like to thank Council of Scientific and Industrial Research, New Delhi, India, for providing financial support [project No. 03 (1200)/11/EMR–II].

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2392).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Butler, A. & Walker, J. V. (1993). Chem. Rev. 93, 1937–1944.
- Roy, S. C., Guin, C., Rana, K. K. & Maiti, G. (2001). *Tetrahedron Lett.* 42, 6941–6942.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2013). E69, o279 [doi:10.1107/S1600536813001785]

4-Methylpyridinium 4-hydroxybenzoate

S. Sudhahar, M. Krishnakumar, B. M. Sornamurthy, G. Chakkaravarthi and R. Mohankumar

S1. Comment

Picolinium compounds are valuable intermediates in organic synthesis and they have been used widely in industrially important products and biologically active substrates as antitumor, antifungal, antibacterial, antineoplastic and antviral (Butler & Walker, 1993; Roy *et al.*, 2001) activities.

The asymmetric unit of the title salt, **I**, (Fig. 1), contains $C_6H_8N^+$ cation and $C_7H_5O_3^-$ anion. The bond lengths and angles in both anion and cation are within normal range (Allen *et al.*, 1987). The crystal structure exhibit weak intermolecular classical N—H···O, O—H···O and non–classical C—H···O interactions (Table 1 & Fig. 2). The π – π interactions are found in crystal structure: Cg1··· $Cg2^{iv} = 3.740$ (3)Å; Cg1··· $Cg2^{v} = 3.855$ (3)Å, where Cg1 and Cg2 are the centroids of the rings (C1–C6) and (N1/C8–C12), respectively. Symmetry codes: (iv) *x*, -*y*+1/2, *z*+1/2); (v) *x*+1, *y*, *z*;

S2. Experimental

4-Picolinium 4-hydroxybenzoate compound was synthesized by using the starting materials of 4-picoline (1.66 g) and 4-hydroxybenzoic acid (1.12 g) in methanol and the single crystals suitable for X-ray diffraction were grown by slow evaporation.

S3. Refinement

The H atoms were positioned geometrically with C—H = 0.93Å and 0.96Å, O—H = 0.82Å and N—H = 0.86Å, and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(O)$ for hydroxy group, $U_{iso}(H) = 1.2U_{eq}(N)$ for amino group, $U_{iso}(H) = 1.2U_{eq}(C)$ for aryl H and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H.

Figure 1

The molecular structure of title compound with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

The crystal packing of I, viewed down a axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

4-Methylpyridinium 4-hydroxybenzoate

Crystal data	
$C_6H_8N^+ \cdot C_7H_5O_3^-$	F(000) = 488
$M_r = 231.24$	$D_{\rm x} = 1.322 {\rm Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Melting point = 470.4 – 481.2 K
Hall symbol: -P 2ybc	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
a = 7.479 (5) Å	Cell parameters from 7082 reflections
b = 11.671 (4) Å	$\theta = 2.3 - 27.1^{\circ}$
c = 13.520(5) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 100.217 (5)^{\circ}$	T = 295 K
V = 1161.4 (10) Å ³	Block, colourless
Z = 4	$0.24 \times 0.20 \times 0.18 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine–focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.978, T_{\max} = 0.983$ Refinement	11741 measured reflections 2564 independent reflections 1939 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 27.2^{\circ}, \theta_{min} = 2.3^{\circ}$ $h = -9 \rightarrow 9$ $k = -14 \rightarrow 8$ $l = -17 \rightarrow 17$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.128$ S = 1.06 2564 reflections 156 parameters 0 restraints Primary atom site location: structure-invariant	Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.058P)^2 + 0.3003P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.38 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.34 \text{ e } \text{Å}^{-3}$ Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008) $\Sigma = 125 (1+0.001) \Sigma \Sigma^{2/3} (-2.001)^{1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: $0.010(2)$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.55020 (18)	0.18454 (10)	0.02055 (8)	0.0578 (4)
H1	0.5981	0.2464	0.0131	0.087*
O2	0.7215 (2)	0.11967 (10)	0.49538 (9)	0.0599 (4)
03	0.71511 (18)	-0.05893 (9)	0.44053 (8)	0.0563 (4)
C1	0.5832 (2)	0.15548 (13)	0.11952 (11)	0.0396 (4)
C2	0.5407 (2)	0.04549 (13)	0.14510 (11)	0.0435 (4)
H2	0.4883	-0.0056	0.0955	0.052*
C3	0.5761 (2)	0.01174 (12)	0.24435 (11)	0.0394 (4)
H3	0.5492	-0.0628	0.2612	0.047*
C4	0.6512(2)	0.08716 (12)	0.31929 (10)	0.0356 (3)
C5	0.6894 (2)	0.19833 (12)	0.29287 (11)	0.0394 (4)
Н5	0.7375	0.2503	0.3427	0.047*
C6	0.6571 (2)	0.23261 (13)	0.19390 (11)	0.0397 (4)
H6	0.6846	0.3070	0.1769	0.048*
C7	0.6972 (2)	0.05049 (13)	0.42610 (11)	0.0412 (4)

N1	0.18709 (19)	0.10699 (12)	0.37067 (10)	0.0475 (4)	
H1A	0.2170	0.0966	0.4344	0.057*	
C8	0.2266 (2)	0.20451 (14)	0.32853 (13)	0.0490 (4)	
H8	0.2872	0.2617	0.3692	0.059*	
С9	0.1813 (2)	0.22368 (14)	0.22732 (12)	0.0473 (4)	
H9	0.2099	0.2933	0.2005	0.057*	
C10	0.0932 (2)	0.13982 (14)	0.16510(11)	0.0446 (4)	
C11	0.0517 (2)	0.03949 (14)	0.20988 (13)	0.0480 (4)	
H11	-0.0091	-0.0190	0.1709	0.058*	
C12	0.1000(2)	0.02581 (14)	0.31174 (13)	0.0478 (4)	
H12	0.0710	-0.0424	0.3407	0.057*	
C13	0.0475 (3)	0.15746 (19)	0.05391 (14)	0.0686 (6)	
H13A	0.0259	0.2374	0.0398	0.103*	
H13B	-0.0596	0.1145	0.0272	0.103*	
H13C	0.1469	0.1318	0.0234	0.103*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0913 (9)	0.0446 (7)	0.0328 (6)	-0.0132 (6)	-0.0014 (6)	0.0060 (5)
O2	0.1019 (10)	0.0430 (7)	0.0334 (6)	0.0124 (6)	0.0079 (6)	-0.0037 (5)
03	0.0980 (10)	0.0342 (6)	0.0363 (6)	0.0073 (6)	0.0106 (6)	0.0038 (5)
C1	0.0502 (9)	0.0365 (8)	0.0309 (7)	0.0008 (6)	0.0040 (6)	0.0032 (6)
C2	0.0561 (9)	0.0357 (8)	0.0363 (8)	-0.0062 (7)	0.0014 (7)	-0.0028 (6)
C3	0.0509 (9)	0.0283 (7)	0.0391 (8)	-0.0019 (6)	0.0081 (7)	0.0025 (6)
C4	0.0440 (8)	0.0316 (7)	0.0320 (7)	0.0046 (6)	0.0091 (6)	0.0012 (6)
C5	0.0520 (9)	0.0325 (8)	0.0339 (8)	-0.0003 (6)	0.0085 (6)	-0.0050 (6)
C6	0.0537 (9)	0.0282 (7)	0.0383 (8)	-0.0022 (6)	0.0106 (7)	0.0016 (6)
C7	0.0554 (9)	0.0357 (8)	0.0343 (8)	0.0052 (7)	0.0123 (7)	-0.0005 (6)
N1	0.0592 (9)	0.0506 (8)	0.0323 (7)	0.0066 (6)	0.0073 (6)	0.0070 (6)
C8	0.0561 (10)	0.0450 (9)	0.0441 (9)	-0.0015 (7)	0.0036 (7)	-0.0009 (7)
C9	0.0550 (10)	0.0417 (9)	0.0454 (9)	-0.0008 (7)	0.0089 (7)	0.0087 (7)
C10	0.0468 (9)	0.0502 (10)	0.0365 (8)	0.0059 (7)	0.0068 (7)	0.0045 (7)
C11	0.0544 (10)	0.0446 (9)	0.0440 (9)	-0.0011 (7)	0.0057 (7)	-0.0018 (7)
C12	0.0563 (10)	0.0415 (9)	0.0474 (9)	0.0016 (7)	0.0138 (8)	0.0070 (7)
C13	0.0898 (15)	0.0731 (13)	0.0400 (10)	0.0027 (11)	0.0039 (9)	0.0092 (9)

Geometric parameters (Å, °)

01—C1	1.3599 (18)	N1—C8	1.329 (2)	
01—H1	0.8200	N1—C12	1.331 (2)	
O2—C7	1.2255 (19)	N1—H1A	0.8600	
O3—C7	1.2953 (19)	C8—C9	1.369 (2)	
C1—C2	1.381 (2)	C8—H8	0.9300	
C1—C6	1.389 (2)	C9—C10	1.379 (2)	
C2—C3	1.378 (2)	С9—Н9	0.9300	
С2—Н2	0.9300	C10—C11	1.379 (2)	
C3—C4	1.384 (2)	C10—C13	1.496 (2)	

С3—Н3	0.9300	C11—C12	1.370 (2)
C4—C5	1.389 (2)	C11—H11	0.9300
C4—C7	1.487 (2)	C12—H12	0.9300
C5—C6	1.376 (2)	C13—H13A	0.9600
С5—Н5	0.9300	C13—H13B	0.9600
С6—Н6	0.9300	C13—H13C	0.9600
C1—O1—H1	109.5	C8—N1—H1A	120.8
O1—C1—C2	117.94 (13)	C12—N1—H1A	120.8
O1—C1—C6	122.02 (14)	N1—C8—C9	122.28 (16)
C2—C1—C6	120.05 (14)	N1—C8—H8	118.9
C3—C2—C1	119.75 (14)	С9—С8—Н8	118.9
C3—C2—H2	120.1	C8—C9—C10	120.04 (15)
C1—C2—H2	120.1	С8—С9—Н9	120.0
C2—C3—C4	120.93 (14)	С10—С9—Н9	120.0
С2—С3—Н3	119.5	C11—C10—C9	117.07 (15)
С4—С3—Н3	119.5	C11—C10—C13	121.95 (16)
C3—C4—C5	118.77 (13)	C9—C10—C13	120.97 (16)
C3—C4—C7	121.46 (13)	C12—C11—C10	120.06 (16)
C5—C4—C7	119.74 (13)	C12—C11—H11	120.0
C6—C5—C4	120.85 (14)	C10—C11—H11	120.0
С6—С5—Н5	119.6	N1—C12—C11	122.17 (15)
С4—С5—Н5	119.6	N1—C12—H12	118.9
C5—C6—C1	119.62 (14)	C11—C12—H12	118.9
С5—С6—Н6	120.2	С10—С13—Н13А	109.5
С1—С6—Н6	120.2	C10—C13—H13B	109.5
O2—C7—O3	122.48 (15)	H13A—C13—H13B	109.5
O2—C7—C4	122.01 (14)	С10—С13—Н13С	109.5
O3—C7—C4	115.47 (13)	H13A—C13—H13C	109.5
C8—N1—C12	118.37 (14)	H13B—C13—H13C	109.5
O1—C1—C2—C3	178.41 (14)	C5—C4—C7—O2	20.1 (2)
C6—C1—C2—C3	-1.7 (2)	C3—C4—C7—O3	20.0 (2)
C1—C2—C3—C4	1.1 (2)	C5—C4—C7—O3	-157.84 (15)
C2—C3—C4—C5	0.4 (2)	C12—N1—C8—C9	-0.1 (2)
C2—C3—C4—C7	-177.46 (14)	N1-C8-C9-C10	-0.7 (3)
C3—C4—C5—C6	-1.4 (2)	C8—C9—C10—C11	1.2 (2)
C7—C4—C5—C6	176.54 (14)	C8—C9—C10—C13	-178.06 (16)
C4—C5—C6—C1	0.8 (2)	C9—C10—C11—C12	-0.9 (2)
O1—C1—C6—C5	-179.34 (14)	C13—C10—C11—C12	178.39 (17)
C2-C1-C6-C5	0.7 (2)	C8—N1—C12—C11	0.5 (2)
C3—C4—C7—O2	-162.01 (16)	C10-C11-C12-N1	0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
O1—H1···O2 ⁱ	0.82	1.85	2.6707 (19)	176

			supporting information		
N1—H1 <i>A</i> ···O3 ⁱⁱ	0.86	1.73	2.5889 (19)	173	
C2—H2···O1 ⁱⁱⁱ	0.93	2.60	3.485 (2)	160	

Symmetry codes: (i) *x*, -*y*+1/2, *z*-1/2; (ii) -*x*+1, -*y*, -*z*+1; (iii) -*x*+1, -*y*, -*z*.