

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(2-Methylphenyl)-3a,4-dihydro-3*H*chromeno[4,3-c]isoxazole-3a-carbonitrile

G. Suresh,^a J. Srinivasan,^b M. Bakthadoss^b and S. Aravindhan^a*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^bDepartment of Organic Chemistry, University of Madras, Chennai 600 025, India

Correspondence e-mail: aravindhanpresidency@gmail.com

Received 16 December 2012; accepted 22 December 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.059; wR factor = 0.146; data-to-parameter ratio = 8.8.

In the title compound, $C_{18}H_{14}N_2O_2$, the pyran ring of the chromeno ring system has a half-chair conformation, and the dihedral angle between its mean plane and the benzene ring is 5.3 (2)°. The isoxazole ring forms a dihedral angle of 74.6 (2)° with the attached benzene ring and is inclined to the mean plane of the chromeno ring system by 15.06 (19)°. In the crystal, there are no significant intermolecular interactions.

Related literature

For the biological importance of 4*H*-chromene derivatives, see: Cai (2007, 2008); Cai *et al.* (2006); Gabor (1988); Brooks (1998); Valenti *et al.* (1993); Hyana & Saimoto (1987); Tang *et al.* (2007). For related structures, see: Gangadharan *et al.* (2011); Swaminathan *et al.* (2011).

Experimental

Crystal data C₁₈H₁₄N₂O₂

 $M_r = 290.31$

Orthorhombic, $Pca2_1$ a = 19.326 (3) Å b = 10.7866 (17) Å c = 6.9072 (11) Å V = 1439.9 (4) Å³

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2008) $T_{\rm min} = 0.970, T_{\rm max} = 0.987$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.059$ $wR(F^2) = 0.146$ S = 1.091750 reflections 200 parameters Z = 4Mo K α radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K $0.35 \times 0.25 \times 0.15 \text{ mm}$

4742 measured reflections 1750 independent reflections 1100 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.047$

 $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{\rm max} = 0.21 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{\rm min} = -0.17 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

GS and SA thank the UGC, India, for financial support. GS thanks the SAIF, IIT-Madras, for the instrumentation facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2544).

References

- Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.
- Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.
- Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.
- Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.
- Gangadharan, R., SethuSankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, 0942.
- Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Swaminathan, K., Sethusankar, K., Murugan, G. & Bakthadoss, M. (2011). Acta Cryst. E67, 0905.
- Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, 01437–01438.
- Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.

supporting information

Acta Cryst. (2013). E69, o181 [doi:10.1107/S1600536812051732]

3-(2-Methylphenyl)-3a,4-dihydro-3H-chromeno[4,3-c]isoxazole-3a-carbonitrile

G. Suresh, J. Srinivasan, M. Bakthadoss and S. Aravindhan

S1. Comment

4*H*-Chromenes are biologically important compounds used as synthetic ligands for drug designing and discovery process. They exhibit numerous biological and pharmacological properties such as anti-viral, anti-fungal, anti-inflammatory, anti-diabetic, cardionthonic, anti anaphylactic and anti-cancer activity (Cai, 2008; Cai, 2007; Cai *et al.*, 2006; Gabor, 1988; Brooks, 1998; Valenti *et al.*, 1993; Hyana & Saimoto, 1987; Tang *et al.*, 2007). We report herein on the synthesis of a new chromeno compound and its crystal structure.

The molecular structure of the title molecule is illustrated in Fig. 1. In the chromeno ring system, the dihedral angle between the mean plane of the pyran ring, which has a half-chair conformation, and the benzene ring is $5.3 (2)^{\circ}$. The dihedral angle between the mean plane of the chromeno ring system and isoxazole ring is $15.06 (19)^{\circ}$. The isoxazole ring also forms a dihedral angle of 74.6 (2)° with the the benzene ring (C11—C16). The geometric parameters of the title molecule agree well with those reported for closely related structures (Gangadharan *et al.*, 2011; Swaminathan *et al.*, 2011).

In the crystal, there are no significant intermolecular interactions.

S2. Experimental

NCS (4 mmol) was added pinch wise over 3h to a solution of (*E*)-2-((2-((*E*)-(hydroxyimino)methyl)phenoxy)methyl)-3*o*-tolylacrylonitrile(2 mmol) in CCl₄ at 273 - 283 K. After Et₃N (4 mmol) was added to the reaction mixture which was stirred at room temperature for 2 h. After completion of the reaction, the mixture was evaporated under reduced pressure and the resulting crude mass was diluted with water (15 ml) and extracted with ethyl acetate (3×15 ml). The combined organic layers washed with brine (2×10 ml) and dried over anhydrous Na₂SO₄. The organic layer was evaporated and purified by column chromatography (silica gel 60–120 mesh; 7% EtOAc in hexanes) to provide the desired title product as a colourless solid. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

S3. Refinement

All the hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93–0.98 Å with $U_{iso}(H)$ = 1.5U_{eq}(C) for methyl group and = 1.2U_{eq}(C) for other groups. In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf " set to zero.

Figure 1

The molecular structure of the title compound, with the atom labeling. Displacement ellipsoids are drawn at the 30% probability level.

3-(2-Methylphenyl)-3a,4-dihydro-3H-chromeno[4,3-c]isoxazole-3a- carbonitrile

Crystal data	
Crystal data $C_{18}H_{14}N_2O_2$ $M_r = 290.31$ Orthorhombic, $Pca2_1$ Hall symbol: P 2c -2ac a = 19.326 (3) Å b = 10.7866 (17) Å c = 6.9072 (11) Å	F(000) = 608 $D_x = 1.339 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 1750 reflections $\theta = 1.9-27.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 298 K
$V = 1439.9 (4) \text{ Å}^3$ Z = 4	Orthorhombic, colourless $0.35 \times 0.25 \times 0.15$ mm
Data collection Bruker APEXII CCD area-detector	4742 measured reflections
Radiation source: fine-focus sealed tube Graphite monochromator	1/50 independent reflections 1100 reflections with $I > 2\sigma(I)$ $R_{int} = 0.047$
ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2008) $T_{\min} = 0.970, T_{\max} = 0.987$	$\theta_{\text{max}} = 27.7^\circ, \ \theta_{\text{min}} = 1.9^\circ$ $h = -24 \rightarrow 25$ $k = -10 \rightarrow 13$ $l = -8 \rightarrow 6$
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$K[F^2 > 2\sigma(F^2)] = 0.059$	Hydrogen site location: inferred from

neighbouring sites H-atom parameters constrained $w = 1/[\sigma^{\bar{2}}(F_o^2) + (0.0456P)^2 + 0.5663P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Primary atom site location: structure-invariant

 $wR(F^2) = 0.146$

1750 reflections 200 parameters

direct methods

S = 1.09

1 restraint

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ Ζ х v C1 0.6812 (9) 0.0493 (12) 0.8559(2)-0.2941(4)C2 0.8529(2)0.0659 (16) -0.4218(5)0.6834(12)0.8639 0.079* H2 -0.46670.5727 C3 0.8336 (3) -0.4824(5)0.8491 (13) 0.0725 (18) H3 0.8311 -0.56850.8502 0.087* C4 0.8177(2)-0.4155(6)1.0168 (11) 0.0717 (18) H4 0.8053 1.1294 0.086* -0.4572C5 0.8204 (2) -0.2907(5)1.0155 (9) 0.0597(14)H5 0.8093 -0.24701.1274 0.072* C6 0.8397(2)-0.2254(5)0.8478 (8) 0.0494(13)C7 0.84595 (19) -0.0931(5)0.8391 (7) 0.0421 (12) C8 0.8522(2)0.0964(4)0.6809 (8) 0.0457 (11) H8 0.8093 0.1013 0.6058 0.055* C9 0.88122 (19) -0.0358(4)0.6634(7) 0.0384 (10) C10 0.8602(2)-0.1104(5)0.4876 (8) 0.0482(12)0.058* H10A 0.8109 -0.10070.4659 0.8842 -0.07890.058* H10B 0.3746 C11 0.8981(2)0.2017(4)0.6220(7)0.0434(12)C12 0.9523(2)0.2369(4)0.7453 (9) 0.0558(14)H12 0.9572 0.1988 0.8653 0.067* C13 0.9984(2)0.3274(5)0.6900 (11) 0.0674(17)H13 1.0337 0.3520 0.7733 0.081* C14 0.9919 (3) 0.3817 (5) 0.5095 (13) 0.0744 (19) H14 0.089* 1.0239 0.4406 0.4686 C15 0.9383(3)0.3483(5)0.3917 (9) 0.0618 (14) 0.074* H15 0.9341 0.3865 0.2716 C16 0.8901 (2) 0.2600 (4) 0.4442 (8) 0.0474 (12) C17 0.8323(3)0.2283(5)0.3092(9)0.0668(15)H17A 0.7888 0.2425 0.3726 0.100* 0.100* H17B 0.8357 0.1426 0.2726 H17C 0.8353 0.2793 0.1957 0.100* C18 0.9575(2)-0.0430(4)0.6899(7)0.0412(10)N1 0.82063 (19) -0.0141(4)0.9557(7) 0.0556(11) N2 1.01564 (18) -0.0484(4)0.7066 (7) 0.0570(11) -0.2367 (3) 01 0.87563 (16) 0.5112 (6) 0.0556(9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

02	0.83494	4 (17)	0.1062 (3)	0.8863 (5)	0.0582 (9)	
Atomic displacement parameters (\hat{A}^2)						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.038 (2)	0.057 (3)	0.054 (3)	-0.001 (2)	0.006 (2)	-0.002 (3)
C2	0.054 (3)	0.056 (4)	0.088 (5)	0.003 (2)	0.001 (3)	-0.021 (4)
C3	0.059 (3)	0.048 (3)	0.110 (6)	-0.003 (2)	-0.006 (3)	0.005 (4)
C4	0.051 (3)	0.083 (4)	0.081 (5)	0.001 (3)	0.006 (3)	0.025 (5)
C5	0.050 (3)	0.075 (4)	0.055 (4)	0.008 (3)	0.008 (3)	0.005 (3)
C6	0.034 (2)	0.069 (3)	0.046 (3)	0.002 (2)	0.003 (2)	-0.002 (3)
C7	0.035 (2)	0.058 (3)	0.033 (3)	0.004 (2)	0.0013 (19)	-0.009 (3)
C8	0.043 (2)	0.056 (3)	0.038 (3)	0.003 (2)	-0.004 (2)	-0.005 (3)
C9	0.042 (2)	0.045 (2)	0.029 (2)	0.0030 (18)	0.0034 (19)	-0.007 (2)
C10	0.047 (2)	0.062 (3)	0.036 (3)	0.001 (2)	0.004 (2)	-0.009 (3)
C11	0.041 (2)	0.042 (3)	0.047 (3)	0.0072 (19)	0.001 (2)	-0.015 (2)
C12	0.054 (3)	0.055 (3)	0.057 (4)	0.010 (2)	-0.014 (2)	-0.004 (3)
C13	0.050 (3)	0.056 (3)	0.097 (5)	-0.001 (2)	-0.019 (3)	-0.012 (4)
C14	0.055 (3)	0.062 (4)	0.106 (6)	-0.001 (2)	0.003 (3)	-0.001 (4)
C15	0.065 (3)	0.064 (3)	0.057 (4)	0.008 (3)	0.005 (3)	-0.003 (3)
C16	0.051 (2)	0.044 (3)	0.047 (3)	0.009 (2)	0.001 (2)	-0.010 (3)
C17	0.087 (4)	0.068 (4)	0.045 (4)	-0.005 (3)	-0.015 (3)	0.005 (3)
C18	0.044 (2)	0.049 (3)	0.030 (2)	0.0022 (19)	0.007 (2)	-0.004 (2)
N1	0.052 (2)	0.071 (3)	0.043 (3)	0.003 (2)	0.0102 (18)	-0.008(2)
N2	0.041 (2)	0.072 (3)	0.057 (3)	0.0055 (18)	0.001 (2)	-0.007 (3)
01	0.068 (2)	0.053 (2)	0.045 (2)	0.0031 (17)	0.0091 (18)	-0.0161 (19)
O2	0.070 (2)	0.062 (2)	0.042 (2)	0.0082 (16)	0.0097 (17)	-0.012 (2)

Geometric parameters (Å, °)

C1—C2	1.379 (7)	C10—O1	1.405 (6)
C1—O1	1.381 (7)	C10—H10A	0.9700
C1—C6	1.404 (7)	C10—H10B	0.9700
C2—C3	1.370 (10)	C11—C16	1.388 (7)
С2—Н2	0.9300	C11—C12	1.403 (6)
C3—C4	1.399 (9)	C12—C13	1.376 (7)
С3—Н3	0.9300	C12—H12	0.9300
C4—C5	1.347 (8)	C13—C14	1.383 (10)
C4—H4	0.9300	C13—H13	0.9300
C5—C6	1.406 (7)	C14—C15	1.365 (8)
С5—Н5	0.9300	C14—H14	0.9300
C6—C7	1.433 (7)	C15—C16	1.381 (7)
C7—N1	1.271 (6)	C15—H15	0.9300
С7—С9	1.523 (6)	C16—C17	1.495 (7)
C8—O2	1.461 (6)	C17—H17A	0.9600
C8—C11	1.497 (6)	C17—H17B	0.9600
C8—C9	1.537 (6)	C17—H17C	0.9600
С8—Н8	0.9800	C18—N2	1.131 (5)

C9—C18	1.487 (5)	N1—O2	1.410 (5)
C9—C10	1.512 (7)		
C2-C1-O1	118.0 (5)	O1-C10-H10A	109.3
C2—C1—C6	120.6 (6)	C9—C10—H10A	109.3
O1—C1—C6	121.5 (4)	O1—C10—H10B	109.3
C3—C2—C1	119.8 (6)	C9—C10—H10B	109.3
С3—С2—Н2	120.1	H10A—C10—H10B	108.0
С1—С2—Н2	120.1	C16—C11—C12	119.8 (4)
C2—C3—C4	120.4 (5)	C16—C11—C8	121.2 (4)
С2—С3—Н3	119.8	C12—C11—C8	118.9 (5)
C4—C3—H3	119.8	C13—C12—C11	120.5 (6)
C5-C4-C3	120.1 (6)	C13—C12—H12	119.8
C5—C4—H4	119.9	C11—C12—H12	119.8
C3—C4—H4	119.9	C12—C13—C14	119.5 (5)
C4—C5—C6	121.0 (6)	C12—C13—H13	120.3
C4—C5—H5	119.5	C14—C13—H13	120.3
С6—С5—Н5	119.5	C15-C14-C13	119.6 (6)
C1 - C6 - C5	118.0 (5)	C15—C14—H14	120.2
C1 - C6 - C7	118.2 (5)	C13 - C14 - H14	120.2
$C_{5}-C_{6}-C_{7}$	123.7(5)	C14-C15-C16	122.5 (6)
N1-C7-C6	1275(4)	C14—C15—H15	118 7
N1-C7-C9	113 8 (4)	C16—C15—H15	118.7
C6-C7-C9	118.4 (4)	C_{15} C_{16} C_{11}	118.0(5)
02-C8-C11	110.1 (4)	C_{15} C_{16} C_{17}	110.0(5)
02 - C8 - C9	103.1(4)	$C_{11} - C_{16} - C_{17}$	117.9(3)
$C_{11} - C_{8} - C_{9}$	105.1(4) 117.8(4)	C_{16} C_{17} H_{17A}	109 5
02 - C8 - H8	108 5	C16—C17—H17B	109.5
C_{11} C_{8} H_{8}	108.5	H17A - C17 - H17B	109.5
C9_C8_H8	108.5	C_{16} C_{17} H_{17} C_{17}	109.5
$C_{18} - C_{9} - C_{10}$	109.7 (3)	H17A - C17 - H17C	109.5
C18 - C9 - C7	109.7(3) 108.9(4)	H17B_C17_H17C	109.5
C10 - C9 - C7	107.6(3)	N_{2} C_{18} C_{9}	178 8 (5)
$C_{10} = C_{10} = C_{10}$	107.0(3) 113.6(3)	C7 N1 O2	170.0(3)
$C_{10} - C_{9} - C_{8}$	117.3(4)	$C_1 = 0_1 = 0_2$	109.1(4) 1183(4)
$C_{10} = C_{20} = C_{20}$	117.3(4)	$N_1 = 02 = 08$	110.3(4)
$C_{1} = C_{2} = C_{3}$	50.7(4)	NI-02-08	107.9 (3)
01-010-03	111.3 (4)		
01 - C1 - C2 - C3	179 9 (4)	C18 - C9 - C10 - O1	62.9(5)
C6-C1-C2-C3	0.4(7)	C7 - C9 - C10 - 01	-555(4)
$C_1 - C_2 - C_3 - C_4$	-0.8(8)	$C_{8} = C_{9} = C_{10} = O_{1}$	-165.5(4)
$C_1 = C_2 = C_3 = C_4$	0.0(8)	$0^{2}-0^{8}-0^{11}-0^{16}$	-140.8(4)
$C_2 = C_3 = C_4 = C_5$	-0.7(7)	C_{2} C_{3} C_{11} C_{16}	140.0(4)
$C_{2} = C_{1} = C_{2} = C_{2}$	-0.2(6)	02 - C8 - C11 - C12	426(5)
01 - C1 - C6 - C5	-1797(4)	$C_{2} = C_{3} = C_{11} = C_{12}$	-75.2(6)
$C_{-C_{1}-C_{0}-C_{2}}$	177 9 (4)	C_{16} C_{11} C_{12} C_{13}	-1.1(7)
01 - C1 - C6 - C7	-15(6)	C_{8} C_{11} C_{12} C_{13}	1.1(7) 175 5 (5)
$C_{1} = C_{1} = C_{0} = C_{1}$	1.3(0)	$C_{11} = C_{12} = C_{13}$	-15(9)
	0.5(7)	011 - 012 - 013 - 014	1.5 (0)

C4—C5—C6—C7	-177.7 (4)	C12—C13—C14—C15	2.6 (8)
C1C6C7N1	163.8 (4)	C13—C14—C15—C16	-1.0 (9)
C5—C6—C7—N1	-18.2 (7)	C14—C15—C16—C11	-1.5 (7)
C1—C6—C7—C9	-10.4 (5)	C14—C15—C16—C17	179.5 (5)
C5—C6—C7—C9	167.6 (4)	C12—C11—C16—C15	2.6 (6)
N1—C7—C9—C18	103.9 (4)	C8-C11-C16-C15	-174.0 (4)
C6—C7—C9—C18	-81.1 (4)	C12-C11-C16-C17	-178.5 (5)
N1—C7—C9—C10	-137.2 (4)	C8-C11-C16-C17	5.0 (6)
C6—C7—C9—C10	37.8 (5)	C6—C7—N1—O2	-175.9 (4)
N1—C7—C9—C8	-14.8 (5)	C9—C7—N1—O2	-1.4 (5)
C6—C7—C9—C8	160.2 (4)	C2-C1-O1-C10	162.0 (4)
O2—C8—C9—C18	-91.3 (4)	C6-C1-O1-C10	-18.6 (6)
C11—C8—C9—C18	30.2 (7)	C9-C10-O1-C1	48.4 (5)
O2—C8—C9—C10	138.9 (4)	C7—N1—O2—C8	18.6 (4)
C11—C8—C9—C10	-99.6 (5)	C11—C8—O2—N1	-153.6 (3)
O2—C8—C9—C7	23.9 (4)	C9—C8—O2—N1	-27.1 (4)
C11—C8—C9—C7	145.4 (4)		