organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl [(2-chloroanilino)(1,3-diphenyl-1*H*-pyrazol-4-yl)methyl]phosphonate

G. Suresh,^a A. Nandakumar,^b V. Sabari,^a P. T. Perumal^b and S. Aravindhan^a*

^aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and ^bOrganic Chemistry Laboratory, CLRI, Chennai, Tamilnadu, India Correspondence e-mail: aravindhanpresidency@gmail.com

Received 16 December 2012; accepted 22 December 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.045; wR factor = 0.135; data-to-parameter ratio = 12.4.

In the title compound, $C_{26}H_{27}ClN_3O_3P$, the mean plane of the central pyrazole ring forms a dihedral angle of $71.37 (14)^{\circ}$ with the chlorophenyl ring. In the crystal, molecules are linked by pairs of N-H···O hydrogen bonds, forming inversion dimers with $R_2^2(10)$ ring motifs. The 3-phenyl ring is disordered with four C atoms occupying two sets of sites with an occupancy ratio of 0.748 (4):0.252 (4).

Related literature

For information on pyrazole derivatives, see: Sullivan et al. (2006); Patel et al. (2010). For related structures, see: Saeed et al. (2009); Suresh et al. (2012). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data $C_{26}H_{27}ClN_3O_3P$

 $M_r = 495.93$

Monoclinic, $P2_1/c$	
a = 11.2379 (3) Å	
b = 23.7075 (6) Å	
c = 9.4570 (2) Å	
$\beta = 90.809 (1)^{\circ}$	
$V = 2519.31 (11) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector	14995 measured reflections
diffractometer	4289 independent reflections
Absorption correction: multi-scan	3322 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2008)	$R_{\rm int} = 0.020$
$T_{\min} = 0.941, \ T_{\max} = 0.957$	

Z = 4

Mo $K\alpha$ radiation

 $0.25 \times 0.20 \times 0.18 \; \mathrm{mm}$

 $\mu = 0.25 \text{ mm}^{-1}$

T = 298 K

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ wR(F²) = 0.135 99 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^-$ S = 1.05 $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$ 4289 reflections 346 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$			
$N3-H3A\cdotsO1^{i}$	0.86	2.37	3.199 (3)	163			
Symmetry and (i) x y + 1 z							

Symmetry code: (i) -x, -y + 1, -z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

GS and SA thank the UGC, India, for financial support. GS thanks the SAIF, IIT-Madras, for the instrumentation facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2545).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73-78.
- Saeed, A., Hussain, S. & Bolte, M. (2009). Acta Cryst. E65, o1231.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Sullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H.-J., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). ACS Chem. Biol. 1, 43-53.
- Suresh, G., Sabari, V., Nandakumar, A., Perumal, P. T. & Aravindhan, S. (2012). Acta Cryst. E68, o1554.

supporting information

Acta Cryst. (2013). E69, o182 [doi:10.1107/S1600536812051719]

Diethyl [(2-chloroanilino)(1,3-diphenyl-1H-pyrazol-4-yl)methyl]phosphonate

G. Suresh, A. Nandakumar, V. Sabari, P. T. Perumal and S. Aravindhan

S1. Comment

Pyrazoles exhibit a variety of pharmacological properties for e.g antibacterial and anti-inflammatory activities (Sullivan *et al.*, 2006; Patel *et al.*, 2010). In view of their importance, the title compound was synthesized and we report herein on its crystal structure.

The molecular structure of the title molecule is illustrated in Fig. 1. The bond lengths N2—C13 and N3—C14 are normal and comparable to the corresponding values observed in the related structure of 3-(3-Chloroanilino)-1-(3,5-di-methyl-1*H*-pyrazol-1-yl)propan-1-one (Saeed *et al.*, 2009). The pyrazole ring system is essentially planar, with a maximum deviation of -0.003 (2) Å for atom N2. The mean plane of the pyrazole ring and the chlorophenyl ring (C17-C22) are almost perpendicular to one another with a dihedral angle of 71.37 (14) °, whereas the two phenyl rings (C4-C9) and the major component of ring (C10-C15) are twisted out of the plane of the pyrazole ring, as can be seen from the dihedral angles of 15.84 (14)° and 39.2 (2)°, respectively.

The sum of the bond angles around atom N2 [359.75 (2)°] of the pyrazole ring is in accordance with sp³ hybridization. Atoms Cl1 and N3 deviate by -0.0278 (9) Å and 0.0206 (21) Å from the mean plane of the benzene (C17—C22) ring. The four carbon atoms in the phenyl ring (C10-C16) are disordered over two sets of sites [site occupancies = 0.748 (4) and 0.252 (4)]. The phosphinite group assumes an extended conformation as can be seen from the torsion angles P1—O2 —C23—C24 of 179.2 (3)° and P1—O3—C25—C26 of 131.2 (2)°. They are close to those observed in a similar structure (Suresh *et al.*, 2012).

In the crystal, a pair of N—H···O hydrogen bonds link molecules to form inversion dimers, with an $R^2_2(10)$ ring motif (Bernstein *et al.*, 1995), that stack along the c axis (Fig. 2 and Table 1).

S2. Experimental

A mixture of 1,3-diphenyl-1*H*-pyrazole-4-carbaldehyde (1 mmol), 2-chloroaniline (1 mmol), diethyl phosphite (1.5 mmol), and pottasium hydrogen sulfate (20 mol%) under neat condition was stirred at room temperature. After completion of the reaction as indicated by TLC, it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuum. The crude product was chromatographed using an ethyl acetate/petroleum ether (30:70) mixture. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

S3. Refinement

Four carbon atoms in phenyl ring (C10-C16) are disordered over two positions (C11/C11', C12/C12', C14/C14' and C15/C15') with refined occupancies of 0.748 (4)/0.252 (4). All C-bound H atoms were fixed geometrically and allowed to ride on their parent atom: C—H = 0.93–0.97 Å with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and = $1.2U_{eq}(C)$ for other H atoms.

Figure 1

The molecular structure of the title molecule, with atom numbering. Displacement ellipsoids are drawn at the 30% probability level. Four C atoms in phenyl ring (C10-C16) are disordered over two positions (C11/C11', C12/C12', C14/C14' and C15/C15') with refined occupancies of 0.748 (4)/0.252 (4).

Figure 2

A view along the c axis of the crystal packing of the title compound, showing the formation of the inversion dimers (N-H…O hydrogen bonds are drawn as dashed lines).

Diethyl [(2-chloroanilino)(1,3-diphenyl-1*H*-pyrazol-4-yl)methyl]phosphonate

Iall symbol: -P 2ybc
e = 11.2379 (3) Å
e = 23.7075 (6) Å

Cell parameters from 4289 reflections

 $\theta = 1.8 - 25.0^{\circ}$ $\mu = 0.25 \text{ mm}^{-1}$

Monoclinic, colourless

 $0.25 \times 0.20 \times 0.18 \text{ mm}$

T = 298 K

c = 9.4570 (2) Å $\beta = 90.809 (1)^{\circ}$ $V = 2519.31 (11) \text{ Å}^{3}$ Z = 4 F(000) = 1040 $D_x = 1.308 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Data collection

Bruker APEXII CCD area-detector	14995 measured reflections
diffractometer	4289 independent reflections
Radiation source: fine-focus sealed tube	3322 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.020$
ω and φ scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 13$
(SADABS; Bruker, 2008)	$k = -27 \rightarrow 27$
$T_{\min} = 0.941, \ T_{\max} = 0.957$	$l = -11 \rightarrow 8$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.045$	Hydrogen site location: inferred from
$wR(F^2) = 0.135$	neighbouring sites
<i>S</i> = 1.05	H-atom parameters constrained
4289 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0609P)^2 + 1.4582P]$
346 parameters	where $P = (F_o^2 + 2F_c^2)/3$
99 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	Fractional atomic coordinates an	d isotropic or	equivalent isotropic	c displacement	parameters (A	$Å^2$)
--	----------------------------------	----------------	----------------------	----------------	---------------	---------

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.2516 (2)	0.38895 (10)	0.2029 (2)	0.0451 (5)	
C2	0.1701 (2)	0.41684 (10)	0.1112 (2)	0.0446 (5)	
C3	0.1721 (2)	0.47164 (11)	0.1545 (2)	0.0493 (6)	
H3	0.1278	0.5011	0.1155	0.059*	
C4	0.2883 (2)	0.52521 (10)	0.3362 (2)	0.0472 (6)	
C5	0.2621 (3)	0.57751 (12)	0.2825 (3)	0.0707 (8)	
Н5	0.2154	0.5808	0.2010	0.085*	
C6	0.3046 (3)	0.62490 (13)	0.3490 (4)	0.0801 (10)	
H6	0.2858	0.6603	0.3126	0.096*	
C7	0.3747 (3)	0.62076 (13)	0.4687 (3)	0.0713 (8)	

H7	0.4067	0.6529	0.5110	0.086*	
C8	0.3967 (3)	0.56867 (14)	0.5246 (3)	0.0785 (10)	
H8	0.4420	0.5656	0.6073	0.094*	
C9	0.3528 (3)	0.52038 (13)	0.4605 (3)	0.0686 (8)	
H9	0.3666	0.4852	0.5008	0.082*	
C10	0.2882 (2)	0.32923 (11)	0.2039 (3)	0.0540 (6)	
C13	0.3581 (4)	0.21686 (16)	0.2042 (5)	0.1082 (13)	
H13	0.3818	0.1793	0.2048	0.130*	
C11	0.4035 (4)	0.31377 (19)	0.2283 (6)	0.0841 (14)	0.748 (4)
H11	0.4605	0.3414	0.2457	0.101*	0.748 (4)
C12	0.4372 (5)	0.2577 (2)	0.2276 (8)	0.1102 (19)	0.748 (4)
H12	0.5166	0.2483	0.2438	0.132*	0.748 (4)
C14	0.2368 (5)	0.23124 (18)	0.1783 (6)	0.0879 (14)	0.748 (4)
H14	0.1809	0.2031	0.1608	0.106*	0.748 (4)
C15	0.2025 (4)	0.28700 (16)	0.1793 (4)	0.0658 (11)	0.748 (4)
H15	0.1232	0.2967	0.1638	0.079*	0.748 (4)
C11′	0.3088 (8)	0.2986 (5)	0.0798 (12)	0.070 (3)	0.252 (4)
H11′	0.2980	0.3164	-0.0071	0.084*	0.252 (4)
C12′	0.3449 (8)	0.2426 (5)	0.0829 (16)	0.087 (4)	0.252 (4)
H12′	0.3596	0.2235	-0.0010	0.104*	0.252 (4)
C14′	0.3428 (10)	0.2451 (6)	0.3322 (18)	0.099 (4)	0.252 (4)
H14′	0.3563	0.2267	0.4178	0.119*	0.252 (4)
C15′	0.3071 (9)	0.3009 (5)	0.3293 (13)	0.078 (3)	0.252 (4)
H15′	0.2957	0.3198	0.4142	0.094*	0.252 (4)
C16	0.1013 (2)	0.39307 (10)	-0.0133 (2)	0.0470 (6)	
H16	0.1320	0.3551	-0.0314	0.056*	
C17	-0.0919 (2)	0.34143 (10)	-0.0260 (2)	0.0494 (6)	
C18	-0.0505 (3)	0.30056 (12)	-0.1201 (3)	0.0654 (7)	
H18	0.0252	0.3043	-0.1575	0.078*	
C19	-0.1197 (3)	0.25502 (13)	-0.1583 (3)	0.0782 (9)	
H19	-0.0898	0.2282	-0.2202	0.094*	
C20	-0.2315 (4)	0.24868 (15)	-0.1066 (4)	0.0876 (11)	
H20	-0.2776	0.2178	-0.1336	0.105*	
C21	-0.2758 (3)	0.28790 (14)	-0.0146 (4)	0.0790 (9)	
H21	-0.3521	0.2839	0.0208	0.095*	
C22	-0.2059 (2)	0.33367 (11)	0.0254 (3)	0.0577 (7)	
C23	0.0637 (4)	0.42448 (19)	-0.4309 (3)	0.1112 (15)	
H23A	0.0251	0.4611	-0.4308	0.133*	
H23B	0.1444	0.4297	-0.4637	0.133*	
C24	0.0018 (4)	0.3882 (2)	-0.5261 (3)	0.1217 (17)	
H24A	0.0476	0.3545	-0.5404	0.183*	
H24B	-0.0102	0.4071	-0.6150	0.183*	
H24C	-0.0740	0.3784	-0.4874	0.183*	
C25	0.3665 (3)	0.46024 (16)	-0.1595 (4)	0.0920 (11)	
H25A	0.3975	0.4777	-0.2441	0.110*	
H25B	0.3381	0.4900	-0.0982	0.110*	
C26	0.4602 (3)	0.4301 (2)	-0.0887 (6)	0.1312 (18)	
H26A	0.4325	0.4167	0.0009	0.197*	

H26B	0.5269	0.4547	-0.0737	0.197*	
H26C	0.4838	0.3986	-0.1456	0.197*	
Cl1	-0.26240 (7)	0.38210 (4)	0.14418 (9)	0.0802 (3)	
N1	0.24974 (17)	0.47557 (8)	0.26426 (19)	0.0464 (5)	
N2	0.30036 (17)	0.42479 (9)	0.2952 (2)	0.0489 (5)	
N3	-0.02512 (18)	0.38798 (9)	0.0135 (2)	0.0533 (5)	
H3A	-0.0602	0.4153	0.0559	0.064*	
01	0.10231 (18)	0.49551 (8)	-0.15609 (19)	0.0643 (5)	
O2	0.06769 (17)	0.40281 (8)	-0.28883 (17)	0.0617 (5)	
O3	0.26813 (16)	0.42354 (9)	-0.1981 (2)	0.0670 (5)	
P1	0.13347 (6)	0.43618 (3)	-0.16802 (6)	0.0497 (2)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	<i>U</i> ³³	U^{12}	<i>U</i> ¹³	U ²³
C1	0.0444 (13)	0.0487 (14)	0.0421 (12)	-0.0027 (11)	-0.0041 (10)	0.0027 (10)
C2	0.0463 (13)	0.0481 (14)	0.0393 (11)	-0.0002 (11)	-0.0060 (9)	-0.0011 (10)
C3	0.0538 (14)	0.0513 (15)	0.0422 (12)	0.0051 (12)	-0.0145 (10)	-0.0016 (11)
C4	0.0485 (13)	0.0519 (15)	0.0410 (12)	0.0028 (11)	-0.0057 (10)	-0.0064 (11)
C5	0.094 (2)	0.0553 (18)	0.0615 (16)	-0.0018 (16)	-0.0321 (15)	0.0019 (14)
C6	0.108 (3)	0.0520 (18)	0.080(2)	-0.0001 (17)	-0.0261 (19)	-0.0025 (15)
C7	0.077 (2)	0.0625 (19)	0.0740 (19)	0.0005 (16)	-0.0107 (15)	-0.0258 (16)
C8	0.094 (2)	0.075 (2)	0.0650 (18)	0.0122 (18)	-0.0344 (16)	-0.0233 (16)
C9	0.089 (2)	0.0608 (18)	0.0551 (15)	0.0094 (16)	-0.0290 (14)	-0.0082 (14)
C10	0.0607 (16)	0.0463 (15)	0.0547 (14)	-0.0004 (12)	-0.0087 (12)	0.0062 (12)
C13	0.126 (3)	0.052 (2)	0.146 (4)	0.020 (2)	-0.003 (3)	0.012 (2)
C11	0.074 (3)	0.058 (3)	0.119 (4)	0.006 (2)	-0.031 (3)	0.006 (2)
C12	0.090 (4)	0.069 (3)	0.171 (5)	0.019 (3)	-0.033 (4)	0.010 (3)
C14	0.103 (4)	0.048 (2)	0.113 (4)	-0.020 (2)	0.004 (3)	0.008 (2)
C15	0.067 (2)	0.057 (2)	0.074 (2)	-0.0103 (18)	0.0015 (19)	0.0105 (19)
C11′	0.090 (7)	0.056 (6)	0.063 (6)	0.011 (6)	-0.009 (5)	0.004 (5)
C12′	0.115 (8)	0.057 (7)	0.088 (7)	0.024 (6)	-0.009 (7)	-0.010 (6)
C14′	0.134 (9)	0.063 (7)	0.100 (8)	0.044 (7)	-0.006 (8)	0.017 (7)
C15′	0.111 (8)	0.059 (6)	0.064 (6)	0.026 (6)	-0.013 (6)	-0.002 (5)
C16	0.0518 (14)	0.0464 (14)	0.0426 (12)	0.0003 (11)	-0.0083 (10)	-0.0047 (11)
C17	0.0626 (15)	0.0428 (14)	0.0424 (12)	-0.0087 (12)	-0.0154 (11)	0.0064 (10)
C18	0.0791 (19)	0.0544 (17)	0.0624 (16)	-0.0110 (15)	-0.0067 (14)	-0.0093 (14)
C19	0.112 (3)	0.0500 (18)	0.0719 (19)	-0.0144 (18)	-0.0137 (19)	-0.0088 (15)
C20	0.119 (3)	0.061 (2)	0.082 (2)	-0.042 (2)	-0.013 (2)	0.0001 (18)
C21	0.085 (2)	0.073 (2)	0.079 (2)	-0.0352 (18)	-0.0042 (17)	0.0125 (18)
C22	0.0669 (17)	0.0539 (16)	0.0519 (14)	-0.0160 (13)	-0.0095 (12)	0.0121 (12)
C23	0.162 (4)	0.125 (3)	0.0452 (16)	-0.055 (3)	-0.026 (2)	0.0146 (18)
C24	0.128 (3)	0.189 (5)	0.0480 (18)	-0.047 (3)	-0.0108 (19)	-0.017 (2)
C25	0.078 (2)	0.090 (3)	0.108 (3)	-0.030 (2)	-0.012 (2)	0.015 (2)
C26	0.060 (2)	0.158 (5)	0.175 (5)	-0.002 (3)	-0.018 (3)	-0.027 (4)
Cl1	0.0734 (5)	0.0785 (6)	0.0892 (5)	-0.0131 (4)	0.0136 (4)	-0.0062 (4)
N1	0.0513 (11)	0.0467 (12)	0.0410 (10)	0.0031 (9)	-0.0103 (8)	-0.0026 (9)
N2	0.0524 (12)	0.0497 (12)	0.0442 (10)	0.0010 (10)	-0.0106 (9)	0.0028 (9)

supporting information

N3	0.0511 (12)	0.0482 (12)	0.0604 (12)	-0.0072 (10)	-0.0047 (9)	-0.0126 (10)
01	0.0819 (13)	0.0511 (11)	0.0597 (11)	0.0016 (9)	-0.0099 (9)	0.0017 (9)
O2	0.0740 (12)	0.0688 (12)	0.0420 (9)	-0.0130 (10)	-0.0130 (8)	-0.0015 (8)
O3	0.0575 (11)	0.0711 (13)	0.0722 (12)	-0.0085 (9)	-0.0037 (9)	-0.0109 (10)
P1	0.0539 (4)	0.0516 (4)	0.0433 (3)	-0.0042 (3)	-0.0092 (3)	-0.0033 (3)

Geometric parameters (Å, °)

C1—N2	1.330 (3)	C14′—C15′	1.382 (17)	
C1—C2	1.416 (3)	C14'—H14'	0.9300	
C1-C10	1.474 (3)	С15'—Н15'	0.9300	
С2—С3	1.362 (3)	C16—N3	1.452 (3)	
C2—C16	1.509 (3)	C16—P1	1.825 (2)	
C3—N1	1.350 (3)	C16—H16	0.9800	
С3—Н3	0.9300	C17—N3	1.383 (3)	
C4—C5	1.370 (4)	C17—C22	1.389 (4)	
С4—С9	1.377 (3)	C17—C18	1.400 (4)	
C4—N1	1.424 (3)	C18—C19	1.376 (4)	
С5—С6	1.370 (4)	C18—H18	0.9300	
С5—Н5	0.9300	C19—C20	1.363 (5)	
С6—С7	1.374 (4)	C19—H19	0.9300	
С6—Н6	0.9300	C20—C21	1.372 (5)	
С7—С8	1.364 (4)	C20—H20	0.9300	
С7—Н7	0.9300	C21—C22	1.389 (4)	
С8—С9	1.383 (4)	C21—H21	0.9300	
С8—Н8	0.9300	C22—Cl1	1.733 (3)	
С9—Н9	0.9300	C23—C24	1.421 (5)	
C10-C11	1.363 (5)	C23—O2	1.439 (3)	
C10—C15′	1.377 (12)	C23—H23A	0.9700	
C10—C11′	1.401 (12)	C23—H23B	0.9700	
C10—C15	1.406 (4)	C24—H24A	0.9600	
C13—C12′	1.306 (15)	C24—H24B	0.9600	
C13—C12	1.331 (7)	C24—H24C	0.9600	
C13—C14′	1.396 (17)	C25—C26	1.430 (5)	
C13—C14	1.422 (6)	C25—O3	1.450 (4)	
С13—Н13	0.9300	C25—H25A	0.9700	
C11—C12	1.382 (6)	C25—H25B	0.9700	
C11—H11	0.9300	C26—H26A	0.9600	
C12—H12	0.9300	C26—H26B	0.9600	
C14—C15	1.377 (6)	C26—H26C	0.9600	
C14—H14	0.9300	N1—N2	1.361 (3)	
C15—H15	0.9300	N3—H3A	0.8600	
C11′—C12′	1.388 (17)	O1—P1	1.454 (2)	
С11'—Н11'	0.9300	O2—P1	1.5664 (17)	
С12'—Н12'	0.9300	O3—P1	1.573 (2)	
N2—C1—C2	111.1 (2)	C13—C14'—H14'	120.6	
N2-C1-C10	119.8 (2)	C10-C15'-C14'	121.7 (12)	

C2-C1-C10	129.0 (2)	C10—C15′—H15′	119.1
C3—C2—C1	104.7 (2)	C14′—C15′—H15′	119.1
C3—C2—C16	126.6 (2)	N3—C16—C2	112.74 (19)
C1—C2—C16	128.6 (2)	N3—C16—P1	113.08 (16)
N1—C3—C2	107.7 (2)	C2-C16-P1	108.14 (16)
N1—C3—H3	126.1	N3—C16—H16	107.5
С2—С3—Н3	126.1	С2—С16—Н16	107.5
C5—C4—C9	119.9 (2)	P1—C16—H16	107.5
C5—C4—N1	120.6 (2)	N3—C17—C22	120.7 (2)
C9-C4-N1	119.5 (2)	N3-C17-C18	122.7 (2)
C4 - C5 - C6	1200(3)	C^{22} C^{17} C^{18}	1165(2)
C4—C5—H5	120.0	C19 - C18 - C17	1213(3)
С6—С5—Н5	120.0	C19 - C18 - H18	119.4
C_{5} C_{6} C_{7}	120.0 120.8(3)	C17 - C18 - H18	119.4
C5-C6-H6	119.6	$C_{10} - C_{10} - C_{18}$	120.8 (3)
C7 C6 H6	119.6	$C_{20} = C_{10} = C_{10}$	110.6
C^{8} C^{7} C^{6}	119.0	$C_{20} = C_{10} = H_{10}$	119.0
C°	110.0 (5)	C10 C20 C21	119.0
C_{0}	120.0	C19 - C20 - C21	119.8 (5)
$C_0 - C_1 - H_1$	120.0	C19 - C20 - H20	120.1
$C_{}C_{8}C_{9}$	121.2 (3)	$C_2 I = C_2 0 = H_2 0$	120.1
C/-C8-H8	119.4	$C_{20} = C_{21} = C_{22}$	119.6 (3)
C9-C8-H8	119.4	C20—C21—H21	120.2
C4—C9—C8	119.0 (3)	C22—C21—H21	120.2
С4—С9—Н9	120.5	C21—C22—C17	122.0 (3)
С8—С9—Н9	120.5	C21—C22—Cl1	118.9 (2)
C11—C10—C15′	65.7 (5)	C17—C22—Cl1	119.2 (2)
C11—C10—C11′	80.5 (4)	C24—C23—O2	112.6 (3)
C15'—C10—C11'	116.3 (7)	C24—C23—H23A	109.1
C11—C10—C15	118.9 (3)	O2—C23—H23A	109.1
C15'—C10—C15	83.8 (5)	C24—C23—H23B	109.1
C11′—C10—C15	67.3 (4)	O2—C23—H23B	109.1
C11—C10—C1	121.6 (3)	H23A—C23—H23B	107.8
C15′—C10—C1	120.9 (6)	C23—C24—H24A	109.5
C11′—C10—C1	122.8 (5)	C23—C24—H24B	109.5
C15—C10—C1	119.5 (3)	H24A—C24—H24B	109.5
C12′—C13—C12	82.7 (5)	C23—C24—H24C	109.5
C12'—C13—C14'	121.6 (8)	H24A—C24—H24C	109.5
C12—C13—C14′	66.3 (6)	H24B—C24—H24C	109.5
C12′—C13—C14	68.9 (5)	C26—C25—O3	111.8 (3)
C12—C13—C14	119.4 (4)	C26—C25—H25A	109.3
C14′—C13—C14	84.6 (5)	O3—C25—H25A	109.3
C12′—C13—H13	118.8	C26—C25—H25B	109.3
C12—C13—H13	120.3	O3—C25—H25B	109.3
C14′—C13—H13	119.5	H25A—C25—H25B	107.9
C14—C13—H13	120.3	C25—C26—H26A	109.5
C10-C11-C12	121.2 (4)	$C_{25} - C_{26} - H_{26B}$	109.5
C10-C11-H11	119.4	H_{26A} C_{26} H_{26B}	109.5
C12—C11—H11	119.4	C_{25} C_{26} H_{26C}	109.5
	/		107.0

C13—C12—C11	121.2 (5)	H26A—C26—H26C	109.5
C13—C12—H12	119.4	H26B—C26—H26C	109.5
C11—C12—H12	119.4	C3—N1—N2	111.57 (19)
C15—C14—C13	119.8 (4)	C3—N1—C4	127.9 (2)
C15—C14—H14	120.1	N2—N1—C4	120.33 (18)
C13—C14—H14	120.1	C1—N2—N1	104.91 (18)
C14—C15—C10	119.5 (4)	C17—N3—C16	123.2 (2)
C14—C15—H15	120.2	C17—N3—H3A	118.4
C10—C15—H15	120.2	C16—N3—H3A	118.4
C12'—C11'—C10	122.0 (11)	C23—O2—P1	120.6 (2)
C12'—C11'—H11'	119.0	C25—O3—P1	124.9 (2)
C10—C11′—H11′	119.0	O1—P1—O2	115.68 (11)
C13—C12′—C11′	119.7 (12)	O1—P1—O3	115.58 (12)
C13—C12'—H12'	120.2	O2—P1—O3	102.56 (11)
C11′—C12′—H12′	120.2	O1—P1—C16	115.40 (11)
C15'—C14'—C13	118.7 (12)	O2—P1—C16	101.83 (10)
C15'—C14'—H14'	120.6	O3—P1—C16	103.89 (11)
N2—C1—C2—C3	-0.4 (3)	C11—C10—C15′—C14′	-65.7 (6)
C10-C1-C2-C3	-178.4(2)	C11'—C10—C15'—C14'	-0.9 (6)
N2—C1—C2—C16	176.0 (2)	C15—C10—C15′—C14′	59.9 (6)
C10-C1-C2-C16	-2.0(4)	C1—C10—C15′—C14′	-179.3(5)
C1—C2—C3—N1	0.1 (3)	C13—C14′—C15′—C10	-0.9(9)
C16—C2—C3—N1	-176.4(2)	C3—C2—C16—N3	-74.9(3)
C9—C4—C5—C6	3.0 (5)	C1—C2—C16—N3	109.4 (3)
N1—C4—C5—C6	-176.8(3)	C3—C2—C16—P1	50.8 (3)
C4—C5—C6—C7	0.7 (5)	C1—C2—C16—P1	-124.8(2)
C5-C6-C7-C8	-3.2(5)	N3-C17-C18-C19	-179.3(3)
C6-C7-C8-C9	2.0(5)	C22-C17-C18-C19	-0.4(4)
C5-C4-C9-C8	-4.1(5)	C_{17} C_{18} C_{19} C_{20}	0.7(5)
N1 - C4 - C9 - C8	175 7 (3)	C18 - C19 - C20 - C21	-0.4(5)
C7-C8-C9-C4	16(5)	C19-C20-C21-C22	-0.2(5)
N_{2} C1 - C10 - C11	-381(4)	C_{20} C_{21} C_{22} C_{21} C_{22} C_{17}	0.2(0)
$C_2 - C_1 - C_{10} - C_{11}$	1397(4)	$C_{20} = C_{21} = C_{22} = C_{11}$	-1789(3)
$N_2 - C_1 - C_{10} - C_{15}'$	40.6 (5)	N3-C17-C22-C21	178.7(2)
$C_2 - C_1 - C_{10} - C_{15}'$	-141.6(5)	$C_{18} - C_{17} - C_{22} - C_{21}$	-0.2(4)
N_{2} C_{1} C_{10} C_{11}	-137.6(4)	N_{3} C_{17} C_{22} C_{21}	-1.9(3)
C_{2} C_{1} C_{10} C_{11}'	40.2(5)	$C_{18} - C_{17} - C_{22} - C_{11}$	179 18 (19)
N_{2} C1 C10 C11	141.8(3)	$C_{2} = C_{3} = N_{1} = N_{2}^{2}$	0.3(3)
$C_2 - C_1 - C_{10} - C_{15}$	-40.4(4)	$C_2 = C_3 = N_1 = C_4$	1744(2)
$C_{15'}$ C_{10} C_{11} C_{12}	68 1 (8)	$C_2 = C_3 = N_1 = C_4$	-10.9(4)
$C_{11}^{-11} = C_{10}^{-11} = C_{11}^{-12} = C_{11}^{-12} = C_{11}^{-12} = C_{11}^{-12} = C_{12}^{-12} = C_{11}^{-12} = C_{12}^{-12} = C_{1$	-56.6.(7)	C9 C4 N1 C3	160.3 (3)
$C_{11} = C_{10} = C_{11} = C_{12}$	0.7(7)	$C_{2} = C_{4} = N_{1} = C_{2}$	162.8(3)
C1 - C10 - C11 - C12	-179 A (5)	$C_{2} = C_{4} = 101 = 102$	-170(3)
$C_{12}^{-12} = C_{12}^{-12} = C_{1$	1/2.7(3)	$C_{2} = C_{1} = 1 \times 1$	17.0(4)
$C_{12} = C_{13} = C_{12} = C_{11}$	-680(8)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$178 \times (2)$
$C_{14} = C_{13} = C_{12} = C_{11}$	0.0(0)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.6(2)
$C_{14} = C_{13} = C_{12} = C_{11}$	-0.5(10)	$C_{J} = N_{1} = N_{2} = C_{1}$	-175.2(2)
010 - 011 - 012 - 013	0.5 (10)	-101 - 102 - 01	1/3.2(2)

C12′—C13—C14—C15	-68.8 (8)	C22—C17—N3—C16	167.5 (2)
C12—C13—C14—C15	-0.7 (8)	C18—C17—N3—C16	-13.7 (4)
C14′—C13—C14—C15	58.1 (7)	C2-C16-N3-C17	-137.3 (2)
C13—C14—C15—C10	0.9 (7)	P1—C16—N3—C17	99.7 (2)
C11—C10—C15—C14	-0.9 (6)	C24—C23—O2—P1	179.2 (3)
C15'—C10—C15—C14	-58.7 (6)	C26—C25—O3—P1	131.2 (3)
C11′—C10—C15—C14	63.2 (6)	C23—O2—P1—O1	50.1 (3)
C1—C10—C15—C14	179.2 (3)	C23—O2—P1—O3	-76.7 (3)
C11—C10—C11′—C12′	57.5 (3)	C23—O2—P1—C16	176.0 (3)
C15'—C10—C11'—C12'	0.8 (3)	C25—O3—P1—O1	26.1 (3)
C15—C10—C11′—C12′	-69.5 (4)	C25—O3—P1—O2	152.9 (2)
C1—C10—C11′—C12′	179.1 (3)	C25—O3—P1—C16	-101.3 (2)
C12—C13—C12′—C11′	-59.7 (4)	N3-C16-P1-O1	65.96 (19)
C14′—C13—C12′—C11′	-3.4 (6)	C2-C16-P1-O1	-59.6 (2)
C14—C13—C12′—C11′	65.7 (4)	N3—C16—P1—O2	-60.18 (19)
C10—C11′—C12′—C13	1.4 (3)	C2-C16-P1-O2	174.24 (16)
C12'—C13—C14'—C15'	3.2 (9)	N3—C16—P1—O3	-166.47 (16)
C12—C13—C14′—C15′	67.5 (6)	C2-C16-P1-O3	67.95 (18)
C14—C13—C14′—C15′	-57.9 (6)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N3—H3A····O1 ⁱ	0.86	2.37	3.199 (3)	163

Symmetry code: (i) -x, -y+1, -z.