organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-[2-Cyclopropyl-1-(2-fluorophenyl)-2oxoethvl]-5-(4-methvlsulfanvlbenzvlidene)-1,3-thiazolidine-2,4-dione

J. Suresh,^a M. Venkateshan,^a S. Ponnuchamy,^b R. Ranjith Kumar^c and P. L. Nilantha Lakshman^d*

^aDepartment of Physics, The Madura College, Madurai 625 011, India, ^bOrchid Chemicals & Pharmaceuticals Ltd, R&D Center, Chennai 600 119, India, ^cDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and ^dDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka Correspondence e-mail: plakshmannilantha@ymail.com

Received 26 December 2012; accepted 28 December 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.047; wR factor = 0.149; data-to-parameter ratio = 14.6.

In the title compound, $C_{22}H_{18}FNO_3S_2$, the five-membered thiazolidine ring is planar (r.m.s. deviation = 0.003 Å) and forms dihedral angles of 70.2 (3), 73.16 (17) and 10.32 $(14)^{\circ}$ with the cyclopropane, fluorobenzene and methylthiobenzene rings, respectively. The sum of the bond angles around the thiazolidine ring N atom (359.6°) indicates sp^2 hybridization. The molecular structure features intramolecular $C-H\cdots S$, $C-H\cdots F$ and $C-H\cdots O$ interactions. In the crystal, no significant intermolecular contacts were apparent.

Related literature

For general properties of thiazolidines, see: Botti et al. (1996); Spiegelman (1998); Day (1999); Barreca et al. (2002).

Experimental

Crystal data C22H18FNO3S2

 $M_r = 427.49$

Monoclinic, $P2_1/c$	Z = 4
a = 7.657 (3) Å	Mo $K\alpha$ radiation
b = 15.799 (5) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 17.425 (6) Å	T = 293 K
$\beta = 95.641 \ (5)^{\circ}$	$0.23 \times 0.21 \times 0.19 \text{ mm}$
V = 2097.7 (13) Å ³	

Data collection ...

Bruker Kanna APEXII	19651 measured reflections
diffractometer	3838 independent reflections
Absorption correction: multi-scan	2429 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.033$
$T_{\min} = 0.967, \ T_{\max} = 0.974$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	262 parameters
$wR(F^2) = 0.149$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
3838 reflections	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C4–H4···F	0.98	2.35	2.740 (4)	103
$C4 - H4 \cdots O2$	0.98	2.33	2.792 (4)	108
C15-H15···O2	0.93	2.53	2.884 (4)	103
$C17-H17\cdots S1$	0.93	2.55	3.238 (3)	131

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

SP thanks the management, Orchid Chemicals & Pharmaceuticals Ltd, Chennai, for providing laboratory facilities. JS thanks the UGC for the FIST support. JS and MV thank the management of The Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (No·SR/FT/CS-073/2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK5185).

References

Barreca, M. L., Balzarini, J., Chimirri, A., De Clercq, E., De Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem. 45, 5410-5413.

Botti, P., Pallin, T. D. & Tam, J. P. (1996). J. Am. Chem. Soc. 118, 10018-10024. Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Day, C. (1999). Diabet. Med. 16, 179-192.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Spiegelman, B. M. (1998). Diabetes, 47, 507-514.

supporting information

Acta Cryst. (2013). E69, o188 [doi:10.1107/S1600536812051987]

3-[2-Cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-5-(4-methylsulfanylbenzylidene)-1,3-thiazolidine-2,4-dione

J. Suresh, M. Venkateshan, S. Ponnuchamy, R. Ranjith Kumar and P. L. Nilantha Lakshman

S1. Comment

Thiazolidines are an important class of heteroaromatic compounds and have widespread applications from ranging from pharmaceuticals (Barreca *et al.*, 2002) to materials (Botti *et al.*, 1996). Thiazolidinediones (TZDs), which are known to sensitize tissues to insulin, have been developed and clinically used as anti-diabetic agents. They have been shown to reduce plasma glucose, lipid, and insulin levels, and are used for the treatment of type 2 diabetes (Day, 1999; Spiegelman, 1998). In view of this we have synthesized the title compound to study its crystal structure.

In the title compound, Fig. 1, the five-membered thiazolidine is nearly planar with a r.m.s. deviation of 0.003 Å. The 4methyl sulfonyl benzylidine ring is nearly coplanar with the central thiazolidine ring as indicated by the dihedral angle of 8.35 (1)°. The 2-fluorobenzene and cyclopropyl rings make dihedral angles of 73.16 (17) and 70.2 (3)° with the thiazolidine ring, respectively. The sum of bond angles around N is 359.6° which confirms sp^2 hybridization. In the cyclopropyl ring the mean C—C bond length is 1.504 (3) Å and the mean C—C—C bond angle is 60.0 (2)°; these are unexceptional. The molecular structure features intramolecular C—H…S, C—H…F C—H…O interactions (Table 1).

S2. Experimental

A mixture of 5-(4-methylsulfanyl-benzylidenethiazolidine-2,4-dione (1 mmol), 2-bromo-1-cyclopropyl-2-(2-fluorophenyl)ethanone (1 mmol) and sodium bicarbonate (3 mmol) were taken in DMF and stirred for 6 h at 25–35 °C. After completion of the reaction as evident by TLC, (eluent: 7:3 / hexane:ethyl acetate) the mixture was poured into water and extracted with ethyl acetate. The organic layer was washed with brine (20 ml) twice and then with water. The solvent was distilled off to obtain a viscous paste to which diisopropyl ether (5 volumes) was added. The resultant solid was filtered and washed with diisopropyl ether. The product was recrystallized from its methanol solution. Melting point: 414.5– 415.9 Yield: 83.5%

S3. Refinement

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å. U_{iso} = 1.2 U_{eq} (C) for CH₂ and CH groups and U_{iso} = 1.5 U_{eq} (C) for the CH₃ group. The (0 1 1) reflection was probably affected by the beam-stop and was omitted from the refinement.

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

3-[2-Cyclopropyl-1-(2-fluorophenyl)-2-oxoethyl]-5-(4- methylsulfanylbenzylidene)-1,3-thiazolidine-2,4-dione

Crystal data	
$C_{22}H_{18}FNO_{3}S_{2}$ $M_{r} = 427.49$ Monoclinic, $P2_{1}/c$ Hall symbol: -P 2ybc $a = 7.657$ (3) Å $b = 15.799$ (5) Å $c = 17.425$ (6) Å $\beta = 95.641$ (5)° $V = 2097.7$ (13) Å ³ $Z = 4$	F(000) = 888 $D_x = 1.354 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2000 reflections $\theta = 2-25^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.23 \times 0.21 \times 0.19 \text{ mm}$
Data collection	
Bruker Kappa APEXII diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0 pixels mm ⁻¹ ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.967, T_{\max} = 0.974$	19651 measured reflections 3838 independent reflections 2429 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -5 \rightarrow 9$ $k = -18 \rightarrow 19$ $l = -21 \rightarrow 20$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.149$ S = 1.02 3838 reflections 262 parameters 0 restraints	 Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0683P)^{2} + 0.8976P] \qquad \Delta \rho_{max} = 0.32 \text{ e } \text{\AA}^{-3}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$ $(\Delta / \sigma)_{max} < 0.001$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic of	or equivalent isotro	pic displacement	parameters	$(Å^2)$	ļ
-------------------------------	------------------	----------------------	------------------	------------	---------	---

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	-0.0768 (4)	0.07851 (19)	0.35525 (16)	0.0603 (7)	
C2	0.2318 (3)	0.02818 (18)	0.34213 (15)	0.0539 (7)	
C3	0.1614 (4)	0.08537 (18)	0.28013 (16)	0.0589 (7)	
C4	-0.1107 (4)	0.16162 (18)	0.23261 (15)	0.0575 (7)	
H4	-0.0273	0.1811	0.1972	0.069*	
C5	-0.2414 (4)	0.1066 (2)	0.18456 (17)	0.0648 (8)	
C6	-0.3427 (4)	0.1473 (2)	0.11919 (18)	0.0769 (9)	
H6	-0.3314	0.2089	0.1151	0.092*	
C7	-0.5155 (5)	0.1103 (3)	0.0911 (2)	0.1003 (13)	
H7A	-0.5547	0.0611	0.1181	0.120*	
H7B	-0.6082	0.1489	0.0719	0.120*	
C8	-0.3702 (6)	0.0993 (3)	0.0454 (2)	0.1102 (14)	
H8A	-0.3720	0.1311	-0.0023	0.132*	
H8B	-0.3185	0.0433	0.0439	0.132*	
C9	-0.1842 (4)	0.24062 (19)	0.26535 (16)	0.0640 (8)	
C10	-0.3536 (5)	0.2472 (2)	0.28457 (19)	0.0892 (11)	
H10	-0.4307	0.2019	0.2766	0.107*	
C11	-0.4098 (8)	0.3236 (4)	0.3166 (2)	0.1203 (18)	
H11	-0.5241	0.3296	0.3295	0.144*	
C12	-0.2909 (11)	0.3889 (3)	0.3283 (3)	0.137 (3)	
H12	-0.3257	0.4385	0.3511	0.164*	
C13	-0.1253 (10)	0.3835 (3)	0.3079 (3)	0.131 (2)	
H13	-0.0495	0.4295	0.3144	0.157*	
C14	-0.0726 (6)	0.3109 (2)	0.27810 (19)	0.0832 (10)	
C15	0.3898 (3)	-0.00777 (18)	0.34052 (16)	0.0566 (7)	
H15	0.4507	0.0093	0.2996	0.068*	
C16	0.4815 (3)	-0.06842 (17)	0.39142 (15)	0.0523 (6)	
C17	0.4287 (4)	-0.09486 (18)	0.46215 (16)	0.0589 (7)	
H17	0.3247	-0.0741	0.4782	0.071*	
C18	0.5269 (4)	-0.15058 (19)	0.50819 (16)	0.0605 (7)	
H18	0.4890	-0.1671	0.5550	0.073*	
C19	0.6831 (4)	-0.18290 (19)	0.48574 (16)	0.0611 (7)	

G2 0		0.1505 (0)	0.41500.(17)	
C20	0.7347 (4)	-0.1587(2)	0.41522 (17)	0.0677 (8)
H20	0.8375	-0.1804	0.3987	0.081*
C21	0.6358 (3)	-0.10303 (19)	0.36966 (16)	0.0609 (7)
H21	0.6730	-0.0877	0.3224	0.073*
C22	0.9974 (6)	-0.2703 (4)	0.5069 (3)	0.142 (2)
H22A	1.0729	-0.3067	0.5394	0.212*
H22B	1.0571	-0.2180	0.4990	0.212*
H22C	0.9670	-0.2974	0.4581	0.212*
Ν	-0.0076 (3)	0.11071 (14)	0.29086 (12)	0.0543 (6)
01	-0.2202 (3)	0.09354 (14)	0.37424 (13)	0.0807 (7)
O2	0.2345 (3)	0.10769 (15)	0.22512 (13)	0.0868 (7)
O3	-0.2558 (4)	0.03221 (15)	0.19915 (15)	0.0952 (8)
F	0.0895 (4)	0.30462 (16)	0.25692 (14)	0.1184 (8)
S1	0.07690 (9)	0.01156 (5)	0.40749 (4)	0.0652 (3)
S2	0.80371 (12)	-0.24929 (6)	0.55177 (5)	0.0834 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0589 (16)	0.0646 (18)	0.0587 (18)	0.0013 (14)	0.0130 (14)	0.0060 (15)
C2	0.0573 (15)	0.0623 (17)	0.0433 (15)	-0.0036 (13)	0.0116 (12)	-0.0021 (13)
C3	0.0620 (16)	0.0637 (18)	0.0523 (17)	0.0018 (14)	0.0132 (14)	0.0010 (14)
C4	0.0649 (16)	0.0608 (18)	0.0476 (16)	0.0013 (14)	0.0102 (13)	0.0069 (14)
C5	0.0770 (19)	0.062 (2)	0.0559 (18)	0.0030 (16)	0.0072 (15)	0.0013 (15)
C6	0.094 (2)	0.079 (2)	0.0565 (19)	-0.0150 (18)	-0.0036 (17)	0.0109 (17)
C7	0.086 (2)	0.123 (3)	0.089 (3)	-0.018 (2)	-0.004 (2)	0.033 (2)
C8	0.122 (3)	0.153 (4)	0.054 (2)	-0.023 (3)	0.002 (2)	-0.007 (2)
C9	0.091 (2)	0.0552 (19)	0.0455 (16)	0.0119 (17)	0.0063 (15)	0.0055 (14)
C10	0.113 (3)	0.092 (3)	0.065 (2)	0.044 (2)	0.022 (2)	0.0144 (19)
C11	0.163 (4)	0.132 (4)	0.071 (3)	0.078 (4)	0.034 (3)	0.033 (3)
C12	0.263 (8)	0.078 (3)	0.070 (3)	0.063 (5)	0.022 (4)	0.011 (3)
C13	0.257 (7)	0.064 (3)	0.068 (3)	-0.001 (4)	-0.005 (4)	0.008 (2)
C14	0.134 (3)	0.063 (2)	0.0523 (19)	0.007 (2)	0.007 (2)	0.0114 (17)
C15	0.0565 (15)	0.0679 (18)	0.0470 (16)	-0.0024 (14)	0.0129 (12)	-0.0016 (14)
C16	0.0510 (14)	0.0604 (17)	0.0456 (15)	-0.0017 (13)	0.0055 (12)	-0.0055 (13)
C17	0.0545 (15)	0.0688 (19)	0.0547 (17)	0.0030 (14)	0.0121 (13)	-0.0046 (14)
C18	0.0659 (17)	0.0689 (19)	0.0475 (16)	0.0000 (15)	0.0087 (14)	-0.0011 (14)
C19	0.0616 (16)	0.0678 (19)	0.0524 (18)	0.0053 (14)	-0.0018 (14)	-0.0051 (14)
C20	0.0572 (16)	0.088 (2)	0.0592 (18)	0.0125 (16)	0.0126 (14)	-0.0009 (17)
C21	0.0596 (16)	0.077 (2)	0.0477 (16)	0.0033 (15)	0.0133 (13)	0.0007 (15)
C22	0.106 (3)	0.218 (6)	0.103 (3)	0.088 (3)	0.020 (3)	0.042 (3)
Ν	0.0560 (12)	0.0618 (14)	0.0459 (13)	0.0031 (11)	0.0089 (10)	0.0055 (11)
01	0.0627 (12)	0.0963 (17)	0.0874 (16)	0.0178 (11)	0.0300 (11)	0.0260 (13)
O2	0.0850 (14)	0.1093 (18)	0.0723 (14)	0.0220 (13)	0.0382 (12)	0.0331 (13)
O3	0.127 (2)	0.0603 (15)	0.0921 (18)	-0.0026 (14)	-0.0193 (15)	0.0020 (13)
F	0.134 (2)	0.1123 (19)	0.1068 (18)	-0.0420 (16)	0.0020 (15)	0.0186 (14)
S 1	0.0581 (4)	0.0814 (6)	0.0582 (5)	0.0072 (4)	0.0169 (3)	0.0164 (4)
S2	0.0848 (6)	0.1018 (7)	0.0621 (5)	0.0229 (5)	-0.0005 (4)	0.0087 (5)

Geometric parameters (Å, °)

C1—01	1.201 (3)	C10—H10	0.9300
C1—N	1.384 (3)	C11—C12	1.378 (8)
C1—S1	1.767 (3)	C11—H11	0.9300
C2—C15	1.340 (4)	C12—C13	1.353 (8)
C2—C3	1.470 (4)	C12—H12	0.9300
C2—S1	1.743 (3)	C13—C14	1.337 (6)
C3—O2	1.209 (3)	C13—H13	0.9300
C3—N	1.385 (3)	C14—F	1.333 (4)
C4—N	1.464 (3)	C15—C16	1.441 (4)
C4—C9	1.504 (4)	C15—H15	0.9300
C4—C5	1.515 (4)	C16—C21	1.388 (4)
C4—H4	0.9800	C16—C17	1.398 (4)
C5—O3	1.209 (4)	C17—C18	1.366 (4)
C5—C6	1.463 (4)	C17—H17	0.9300
C6—C7	1.486 (5)	C18—C19	1.391 (4)
C6—C8	1.490 (5)	C18—H18	0.9300
С6—Н6	0.9800	C19—C20	1.381 (4)
С7—С8	1.441 (5)	C19—S2	1.752 (3)
С7—Н7А	0.9700	C20—C21	1.363 (4)
С7—Н7В	0.9700	C20—H20	0.9300
C8—H8A	0.9700	C21—H21	0.9300
C8—H8B	0.9700	C22—S2	1.774 (4)
C9—C10	1.375 (5)	C22—H22A	0.9600
C9—C14	1.406 (5)	C22—H22B	0.9600
C10—C11	1.413 (6)	C22—H22C	0.9600
01—C1—N	125.7 (3)	C12—C11—H11	120.8
O1—C1—S1	123.8 (2)	C10-C11-H11	120.8
N-C1-S1	110.43 (19)	C13—C12—C11	122.5 (5)
C15—C2—C3	120.8 (2)	C13—C12—H12	118.8
C15—C2—S1	128.6 (2)	C11—C12—H12	118.8
C3—C2—S1	110.44 (19)	C14—C13—C12	118.9 (6)
O2—C3—N	122.3 (3)	C14—C13—H13	120.6
O2—C3—C2	126.7 (3)	C12—C13—H13	120.6
N—C3—C2	111.0 (2)	F—C14—C13	119.7 (5)
N—C4—C9	112.9 (2)	F—C14—C9	117.8 (3)
N—C4—C5	110.5 (2)	C13—C14—C9	122.5 (5)
C9—C4—C5	115.8 (2)	C2-C15-C16	131.0 (3)
N	105.6	C2—C15—H15	114.5
C9—C4—H4	105.6	C16—C15—H15	114.5
C5—C4—H4	105.6	C21—C16—C17	116.8 (3)
O3—C5—C6	122.6 (3)	C21—C16—C15	118.1 (2)
O3—C5—C4	120.7 (3)	C17—C16—C15	125.2 (2)
C6—C5—C4	116.6 (3)	C18—C17—C16	121.4 (3)
C5—C6—C7	118.0 (3)	C18—C17—H17	119.3
C5—C6—C8	117.8 (3)	C16—C17—H17	119.3

C7—C6—C8	57.9 (2)	C17—C18—C19	120.7 (3)
С5—С6—Н6	116.7	C17—C18—H18	119.7
С7—С6—Н6	116.7	C19—C18—H18	119.7
С8—С6—Н6	116.7	C20—C19—C18	118.5 (3)
C8—C7—C6	61.2 (2)	C20—C19—S2	124.9 (2)
С8—С7—Н7А	117.6	C18—C19—S2	116.6 (2)
C6—C7—H7A	117.6	C21—C20—C19	120.4(3)
C8—C7—H7B	117.6	C21—C20—H20	119.8
C6—C7—H7B	117.6	C19—C20—H20	119.8
H7A - C7 - H7B	114.8	C_{20} C_{21} C_{16}	122.3 (3)
C7-C8-C6	60.9(2)	C20—C21—H21	118.9
C7-C8-H8A	117 7	C_{16} C_{21} H_{21}	118.9
C6-C8-H8A	117.7	S2-C22-H22A	109.5
C7-C8-H8B	117.7	S2—C22—H22B	109.5
C6-C8-H8B	117.7	$H_{22}A = C_{22} = H_{22}B$	109.5
H8A - C8 - H8B	114.8	S_{2} C_{22} H_{22} C_{22}	109.5
C10 - C9 - C14	118.4 (3)	$H_{22} = C_{22} = H_{22} = H$	109.5
$C_{10} - C_{9} - C_{4}$	110.4(3) 123.5(3)	$H_{22}R_{-C_{22}}H_{22}C$	109.5
$C_{10} = C_{10} = C_{10}$	123.3(3) 118.1(3)	1122D - C22 - 1122C	109.3
$C_{1} - C_{1} - C_{1}$	110.1(3) 1195(4)	C1 - N - C3	110.1(2) 122.7(2)
C_{9} C_{10} H_{10}	120.3	$C_1 = N = C_4$	122.7(2) 120.8(2)
C_{11} C_{10} H_{10}	120.3	$C_2 = S_1 = C_1$	91.99(13)
C_{12} C_{11} C_{10} C_{10}	118 4 (5)	$C_2 = S_1 = C_1$	103 42 (18)
	110.4 (3)	017 52 022	105.42 (10)
$C_{15} - C_{2} - C_{3} - O_{2}$	-24(5)	C_{2} C_{15} C_{16} C_{21}	1717(3)
C15-C2-C3-O2 S1-C2-C3-O2	-2.4(5) -1781(3)	C2—C15—C16—C21 C2—C15—C16—C17	171.7(3) -9.2(5)
C15—C2—C3—O2 S1—C2—C3—O2 C15—C2—C3—N	-2.4 (5) -178.1 (3) 176.1 (2)	C2—C15—C16—C21 C2—C15—C16—C17 C21—C16—C17—C18	171.7 (3) -9.2 (5) 1 5 (4)
C15—C2—C3—O2 S1—C2—C3—O2 C15—C2—C3—N S1—C2—C3—N	-2.4 (5) -178.1 (3) 176.1 (2) 0.4 (3)	C2—C15—C16—C21 C2—C15—C16—C17 C21—C16—C17—C18 C15—C16—C17—C18	171.7 (3) -9.2 (5) 1.5 (4) -177 7 (3)
C15—C2—C3—O2 S1—C2—C3—O2 C15—C2—C3—N S1—C2—C3—N N—C4—C5—O3	-2.4 (5) -178.1 (3) 176.1 (2) 0.4 (3) 3 6 (4)	C2-C15-C16-C21 C2-C15-C16-C17 C21-C16-C17-C18 C15-C16-C17-C18 C16-C17-C18-C19	171.7 (3) -9.2 (5) 1.5 (4) -177.7 (3) -0 1 (4)
C15—C2—C3—O2 S1—C2—C3—O2 C15—C2—C3—N S1—C2—C3—N N—C4—C5—O3 C9—C4—C5—O3	-2.4 (5) -178.1 (3) 176.1 (2) 0.4 (3) 3.6 (4) -126.4 (3)	C2-C15-C16-C21 C2-C15-C16-C17 C21-C16-C17-C18 C15-C16-C17-C18 C16-C17-C18-C19 C17-C18-C19-C20	171.7 (3) -9.2 (5) 1.5 (4) -177.7 (3) -0.1 (4) -1.2 (4)
C15—C2—C3—O2 S1—C2—C3—O2 C15—C2—C3—N S1—C2—C3—N N—C4—C5—O3 C9—C4—C5—O3 N—C4—C5—C6	-2.4 (5) -178.1 (3) 176.1 (2) 0.4 (3) 3.6 (4) -126.4 (3) -174.5 (2)	C2-C15-C16-C21 C2-C15-C16-C17 C21-C16-C17-C18 C15-C16-C17-C18 C16-C17-C18-C19 C17-C18-C19-C20 C17-C18-C19-S2	171.7 (3) -9.2 (5) 1.5 (4) -177.7 (3) -0.1 (4) -1.2 (4) 176.6 (2)
C15—C2—C3—O2 S1—C2—C3—O2 C15—C2—C3—N S1—C2—C3—N N—C4—C5—O3 C9—C4—C5—O3 N—C4—C5—C6 C9—C4—C5—C6	-2.4 (5) -178.1 (3) 176.1 (2) 0.4 (3) 3.6 (4) -126.4 (3) -174.5 (2) 55.6 (4)	C2-C15-C16-C21 C2-C15-C16-C17 C21-C16-C17-C18 C15-C16-C17-C18 C16-C17-C18-C19 C17-C18-C19-C20 C17-C18-C19-S2 C18-C19-C20-C21	171.7 (3) -9.2 (5) 1.5 (4) -177.7 (3) -0.1 (4) -1.2 (4) 176.6 (2) 1.2 (5)
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $O3-C5-C6-C7$	-2.4 (5) -178.1 (3) 176.1 (2) 0.4 (3) 3.6 (4) -126.4 (3) -174.5 (2) 55.6 (4) 26.8 (5)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171.7 (3) -9.2 (5) 1.5 (4) -177.7 (3) -0.1 (4) -1.2 (4) 176.6 (2) 1.2 (5) -176.4 (2)
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $O3-C5-C6-C7$ $C4-C5-C6-C7$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171.7 (3) -9.2 (5) 1.5 (4) -177.7 (3) -0.1 (4) -1.2 (4) 176.6 (2) 1.2 (5) -176.4 (2) 0.2 (5)
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $O3-C5-C6-C7$ $C4-C5-C6-C7$ $O3-C5-C6-C7$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \\ -39.7 (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \end{array}$
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $O3-C5-C6-C7$ $C4-C5-C6-C7$ $O3-C5-C6-C7$ $O3-C5-C6-C8$ $C4-C5-C6-C8$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \\ -39.7 (5) \\ 138.3 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2.4 (5) -178.1 (3) 176.1 (2) 0.4 (3) 3.6 (4) -126.4 (3) -174.5 (2) 55.6 (4) 26.8 (5) -155.3 (3) -39.7 (5) 138.3 (3) -106.9 (4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \end{array}$
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $C3-C5-C6-C7$ $C4-C5-C6-C7$ $C4-C5-C6-C8$ $C4-C5-C6-C8$ $C4-C5-C6-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C8-C7$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \\ -39.7 (5) \\ 138.3 (3) \\ -106.9 (4) \\ 107.2 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \end{array}$
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $O3-C5-C6-C7$ $C4-C5-C6-C7$ $O3-C5-C6-C7$ $O3-C5-C6-C8$ $C4-C5-C6-C8$ $C4-C5-C6-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C8-C7$ $N-C4-C9-C10$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \\ -39.7 (5) \\ 138.3 (3) \\ -106.9 (4) \\ 107.2 (4) \\ -98.6 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \\ -6.4 (5) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \\ -39.7 (5) \\ 138.3 (3) \\ -106.9 (4) \\ 107.2 (4) \\ -98.6 (3) \\ 30.1 (4) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \\ -6.4 (5) \\ 174.0 (2) \end{array}$
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $C3-C5-C6-C7$ $C4-C5-C6-C7$ $C4-C5-C6-C8$ $C4-C5-C6-C8$ $C5-C6-C8$ $C5-C6-C8-C7$ $N-C4-C9-C10$ $C5-C4-C9-C10$ $N-C4-C9-C14$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \\ -39.7 (5) \\ 138.3 (3) \\ -106.9 (4) \\ 107.2 (4) \\ -98.6 (3) \\ 30.1 (4) \\ 80.3 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \\ -6.4 (5) \\ 174.0 (2) \\ 178.3 (3) \end{array}$
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $C3-C5-C6-C7$ $C4-C5-C6-C7$ $C4-C5-C6-C8$ $C4-C5-C6-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C8-C7$ $N-C4-C9-C10$ $C5-C4-C9-C10$ $N-C4-C9-C14$ $C5-C4-C9-C14$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \\ -39.7 (5) \\ 138.3 (3) \\ -106.9 (4) \\ 107.2 (4) \\ -98.6 (3) \\ 30.1 (4) \\ 80.3 (3) \\ -151.0 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \\ -6.4 (5) \\ 174.0 (2) \\ 178.3 (3) \\ -0.3 (3) \end{array}$
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $C3-C5-C6-C7$ $C4-C5-C6-C7$ $C4-C5-C6-C8$ $C4-C5-C6-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C8-C7$ $N-C4-C9-C10$ $C5-C4-C9-C10$ $N-C4-C9-C14$ $C5-C4-C9-C14$ $C14-C9-C10-C11$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \\ -39.7 (5) \\ 138.3 (3) \\ -106.9 (4) \\ 107.2 (4) \\ -98.6 (3) \\ 30.1 (4) \\ 80.3 (3) \\ -151.0 (3) \\ -0 3 (5) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \\ -6.4 (5) \\ 174.0 (2) \\ 178.3 (3) \\ -0.3 (3) \\ 4 2 (4) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -2.4 (5) \\ -178.1 (3) \\ 176.1 (2) \\ 0.4 (3) \\ 3.6 (4) \\ -126.4 (3) \\ -174.5 (2) \\ 55.6 (4) \\ 26.8 (5) \\ -155.3 (3) \\ -39.7 (5) \\ 138.3 (3) \\ -106.9 (4) \\ 107.2 (4) \\ -98.6 (3) \\ 30.1 (4) \\ 80.3 (3) \\ -151.0 (3) \\ -0.3 (5) \\ 178.6 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \\ -6.4 (5) \\ 174.0 (2) \\ 178.3 (3) \\ -0.3 (3) \\ 4.2 (4) \\ -174.3 (2) \end{array}$
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $N-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6-C7$ $C4-C5-C6-C7$ $C4-C5-C6-C8$ $C5-C6-C7-C8$ $C5-C6-C8-C7$ $N-C4-C9-C10$ $C5-C4-C9-C10$ $N-C4-C9-C10$ $N-C4-C9-C14$ $C5-C4-C9-C14$ $C5-C4-C9-C14$ $C5-C4-C9-C10$ $N-C4-C9-C10$ $C14-C9-C10-C11$ $C4-C9-C10-C11$ $C4-C9-C10-C11$ $C9-C10-C11$	$\begin{array}{c} -2.4 \ (5) \\ -178.1 \ (3) \\ 176.1 \ (2) \\ 0.4 \ (3) \\ 3.6 \ (4) \\ -126.4 \ (3) \\ -174.5 \ (2) \\ 55.6 \ (4) \\ 26.8 \ (5) \\ -155.3 \ (3) \\ -39.7 \ (5) \\ 138.3 \ (3) \\ -106.9 \ (4) \\ 107.2 \ (4) \\ -98.6 \ (3) \\ 30.1 \ (4) \\ 80.3 \ (3) \\ -151.0 \ (3) \\ -0.3 \ (5) \\ 178.6 \ (3) \\ -0.7 \ (6) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \\ -6.4 (5) \\ 174.0 (2) \\ 178.3 (3) \\ -0.3 (3) \\ 4.2 (4) \\ -174.3 (2) \\ 58.9 (3) \end{array}$
C15-C2-C3-O2 $S1-C2-C3-O2$ $C15-C2-C3-N$ $S1-C2-C3-N$ $N-C4-C5-O3$ $C9-C4-C5-O3$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $C9-C4-C5-C6$ $C3-C5-C6-C7$ $C4-C5-C6-C7$ $O3-C5-C6-C8$ $C4-C5-C6-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C7-C8$ $C5-C6-C8-C7$ $N-C4-C9-C10$ $C5-C4-C9-C10$ $N-C4-C9-C14$ $C5-C4-C9-C14$ $C14-C9-C10-C11$ $C4-C9-C10-C11$ $C4-C9-C10-C11$ $C4-C9-C10-C11$ $C4-C9-C10-C11$ $C4-C9-C10-C11$ $C4-C9-C10-C11$ $C4-C9-C10-C11$ $C12-C13$	$\begin{array}{c} -2.4 \ (5) \\ -178.1 \ (3) \\ 176.1 \ (2) \\ 0.4 \ (3) \\ 3.6 \ (4) \\ -126.4 \ (3) \\ -174.5 \ (2) \\ 55.6 \ (4) \\ 26.8 \ (5) \\ -155.3 \ (3) \\ -39.7 \ (5) \\ 138.3 \ (3) \\ -106.9 \ (4) \\ 107.2 \ (4) \\ -98.6 \ (3) \\ 30.1 \ (4) \\ 80.3 \ (3) \\ -151.0 \ (3) \\ -0.3 \ (5) \\ 178.6 \ (3) \\ -0.7 \ (6) \\ 2.3 \ (7) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \\ -6.4 (5) \\ 174.0 (2) \\ 178.3 (3) \\ -0.3 (3) \\ 4.2 (4) \\ -174.3 (2) \\ 58.9 (3) \\ -72.5 (3) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -2.4 \ (5) \\ -178.1 \ (3) \\ 176.1 \ (2) \\ 0.4 \ (3) \\ 3.6 \ (4) \\ -126.4 \ (3) \\ -174.5 \ (2) \\ 55.6 \ (4) \\ 26.8 \ (5) \\ -155.3 \ (3) \\ -39.7 \ (5) \\ 138.3 \ (3) \\ -106.9 \ (4) \\ 107.2 \ (4) \\ -98.6 \ (3) \\ 30.1 \ (4) \\ 80.3 \ (3) \\ -151.0 \ (3) \\ -0.3 \ (5) \\ 178.6 \ (3) \\ -0.7 \ (6) \\ 2.3 \ (7) \\ -2.8 \ (8) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 171.7 (3) \\ -9.2 (5) \\ 1.5 (4) \\ -177.7 (3) \\ -0.1 (4) \\ -1.2 (4) \\ 176.6 (2) \\ 1.2 (5) \\ -176.4 (2) \\ 0.2 (5) \\ -1.5 (4) \\ 177.7 (3) \\ 179.6 (3) \\ 0.0 (3) \\ -6.4 (5) \\ 174.0 (2) \\ 178.3 (3) \\ -0.3 (3) \\ 4.2 (4) \\ -174.3 (2) \\ 58.9 (3) \\ -72.5 (3) \\ -127.4 (3) \end{array}$

supporting information

C12—C13—C14—C9	1.7 (6)	C15—C2—S1—C1	-175.6 (3)
C10-C9-C14-F	-177.9 (3)	C3—C2—S1—C1	-0.3 (2)
C4—C9—C14—F	3.1 (4)	O1—C1—S1—C2	-179.4 (3)
C10-C9-C14-C13	-0.2 (5)	N—C1—S1—C2	0.2 (2)
C4—C9—C14—C13	-179.2 (3)	C20—C19—S2—C22	2.2 (4)
C3—C2—C15—C16	-176.3 (3)	C18—C19—S2—C22	-175.6 (3)
S1-C2-C15-C16	-1.4 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···· A	D—H···A
C4—H4…F	0.98	2.35	2.740 (4)	103
C4—H4…O2	0.98	2.33	2.792 (4)	108
C15—H15…O2	0.93	2.53	2.884 (4)	103
C17—H17…S1	0.93	2.55	3.238 (3)	131