

Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368

Phenyl acridine-9-carboxylate

Michał Wera, Damian Trzybiński, Karol Krzymiński and Jerzy Błażejowski*

Faculty of Chemistry, University of Gdańsk, J. Sobieskiego 18, 80-952 Gdańsk, Poland

Correspondence e-mail: bla@chem.univ.gda.pl

Received 18 January 2013; accepted 21 January 2013

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.004 Å; *R* factor = 0.073; *wR* factor = 0.203; data-to-parameter ratio = 12.7.

The acridine ring system and the benzene ring in the title compound, $C_{20}H_{13}NO_2$, are oriented at a dihedral angle of 6.4 (2)°. The carboxyl group is twisted at an angle of 83.6 (2)° relative to the acridine skeleton. The molecules in the crystal are arranged in stacks along the *b* axis, with two of the acridine rings involved in multiple π - π interactions [centroid-centroid distances in the range 3.536 (2)–3.894 (2) Å]. Stacks arranged parallel are linked *via* C–H··· π interactions, forming layers in the *ac* plane that are in contact with adjacent, inversely oriented layers. The inversely oriented double layers interact dispersively. The acridine units are parallel within the parallel-oriented stacks, but inclined at an angle of 79.6 (2)° in the inversely oriented stacks.

Related literature

For general background to the applications of the title compound, see: Krzymiński *et al.* (2011); Natrajan *et al.* (2012); Trzybiński *et al.* (2010). For related structures, see: Trzybiński *et al.* (2013). For intermolecular interactions, see: Hunter *et al.* (2001); Takahashi *et al.* (2001). For the synthesis, see: Sato (1996); Trzybiński *et al.* (2010).

Experimental

Crystal data $C_{20}H_{13}NO_2$ $M_r = 299.31$

Monoclinic, $P2_1/c$ a = 17.094 (2) Å

b = 5.4175 (7) Å	
c = 16.310 (2) Å	
$\beta = 95.545 \ (11)^{\circ}$	
V = 1503.3 (3) Å ³	
Z = 4	

Data collection

Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer Absorption correction: multi-scan (*CrysAlis RED*; Oxford Diffraction, 2008) $T_{min} = 0.354, T_{max} = 0.986$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.073 & 209 \text{ parameters} \\ wR(F^2) = 0.203 & H\text{-atom parameters constrained} \\ S = 1.04 & \Delta\rho_{\max} = 0.29 \text{ e } \text{\AA}^{-3} \\ 2651 \text{ reflections} & \Delta\rho_{\min} = -0.34 \text{ e } \text{\AA}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 and Cg4 denote the centroids of the C1–C4/C11/C12 and C18–C23 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C3-H3\cdots Cg2^{i}$ $C7-H7\cdots Cg4^{ii}$	0.93 0.93	2.98 2.84	3.712 (3) 3.646 (3)	137 145

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2008); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2008); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97* and *PLATON* (Spek, 2009).

This study was financed by the State Funds for Scientific Research through National Center for Science grant No. N N204 375 740 (contract No. 3757/B/H03/2011/40).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5671).

References

- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hunter, C. A., Lawson, K. R., Perkins, J. & Urch, C. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 651–669.
- Krzymiński, K., Ożóg, A., Malecha, P., Roshal, A. D., Wróblewska, A., Zadykowicz, B. & Blazejowski, J. (2011). J. Org. Chem. 76, 1072–1085.
- Natrajan, A., Sharpe, D. & Wen, D. (2012). Org. Biomol. Chem. 10, 3432–3447. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Sato, N. (1996). *Tetrahedron Lett.* **37**, 8519–8522.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155.
- Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomada, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
- Trzybiński, D., Krzymiński, K., Sikorski, A. & Błażejowski, J. (2010). Acta Cryst. E66, 0906–0907.
- Trzybiński, D., Wera, M., Krzymiński, K. & Błażejowski, J. (2013). Acta Cryst. E69, 0166.

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$

 $0.6 \times 0.2 \times 0.1 \text{ mm}$

9221 measured reflections

2651 independent reflections

1560 reflections with $I > 2\sigma(I)$

T = 295 K

 $R_{\rm int}=0.068$

supporting information

Acta Cryst. (2013). E69, o305 [doi:10.1107/S1600536813002055]

Phenyl acridine-9-carboxylate

Michał Wera, Damian Trzybiński, Karol Krzymiński and Jerzy Błażejowski

S1. Comment

Phenyl acridine-9-carboxylates are the precursors of 9-(phenoxycarbonyl)-10-methylacridinium salts, whose cations exhibit a chemiluminogenic ability that can be utilized analytically (Natrajan *et al.*, 2012). Here we present the structure of phenyl acridine-9-carboxylate, the precursor of a basic chemiluminogen in this group of compounds, whose structure (Trzybiński *et al.*, 2010) and chemiluminogenic features (Krzymiński *et al.*, 2011) have recently been investigated.

The bond lengths and angles characterizing the geometry of the acridine and phenyl moieties of the title compound (Fig. 1) are similar to those found in phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński *et al.*, 2013, and references cited therein). With respective average deviations from planarity of 0.0143 (3) Å and 0.0037 (3) Å, the acridine ring system and the benzene ring are oriented at a dihedral angle of 6.4 (2)° [this angle varies between $30.0 (2)^{\circ} - 37.7 (1)^{\circ}$, as indicated by the data for phenyl acridine-9-carboxylates alkyl-substituted at the benzene ring, investigated earlier (Trzybiński *et al.*, 2013, and the references cited therein)]. The carboxyl group is twisted at an angle of $83.6 (2)^{\circ}$ relative to the acridine skeleton [this angle varies between $58.0 (2)^{\circ} - 68.1 (2)^{\circ}$ as indicated by the data for phenyl acride at the benzene ring, investigated earlier (Trzybiński *et al.*, 2013, and the references cited therein)].

The search for intermolecular interactions in the crystal using PLATON (Spek, 2009) has shown that the parallel oriented molecules of the title compound (Fig. 2) are arranged in stacks along the *b* axis (Fig. 3) in which two of the acridine rings are involved in multiple π - π interactions (Table 2, Fig. 2) of an attractive nature (Hunter *et al.*, 2001). The stacks arranged parallel linked via C-H··· π interactions, of an attractive nature (Takahashi *et al.*, 2001), form layers in the *ac* plane that are in contact with adjacent, inversely-oriented such layers via other C-H··· π interactons giving rise to double layers (Table 1, Figs. 2 and 3). The inversely oriented double layers interact dispersively. The acridine moieties are parallel within the stacks oriented in parallel, but inclined at an angle of 79.6 (2)° in the inversely oriented stacks. This interesting crystal architecture to some extent resembles the crystal structure of 2,6-dimethylphenyl acridine-9-carboxylate (Trzybiński *et al.*, 2013).

S2. Experimental

Phenyl acridine-9-carboxylate was synthesized by the esterification of 9-(chlorocarbonyl)acridine (obtained in the reaction of acridine-9-carboxylic acid with a tenfold molar excess of thionyl chloride) with phenol in anhydrous dichloromethane in the presence of N,N-diethylethanamine and a catalytic amount of N,N-dimethyl-4-pyridinamine (room temperature, 15 h) (Sato, 1996; Trzybiński *et al.*, 2010). The product was purified chromatographically (SiO₂, cyclohexane/ethyl acetate, 3/2 v/v). Pale-yellow crystals suitable for X-ray investigations were grown from cyclohexane (m.p. 463–464 K).

S3. Refinement

H atoms were positioned geometrically, with C–H = 0.93 Å, and constrained to ride on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius. Cg1, Cg2, Cg3 and Cg4 denote the ring centroids.

Figure 2

The arrangement of the molecules in the crystal structure. The C–H··· π interactions are represented by dashed lines, the π – π contacts by dotted lines. H atoms not involved in the interactions have been omitted. [Symmetry codes: (i) –x, y – 1/2, –z + 1/2; (ii) x, –y + 3/2, z + 1/2; (iii) x, y + 1, z; (iv) x, y – 1, z.]

Figure 3

Molecular stacks in the crystal structure, viewed along the *b* axis. The C–H $\cdots\pi$ interactions are represented by dashed lines. H atoms not involved in the interactions have been omitted.

Phenyl acridine-9-carboxylate

Crystal data	
$C_{20}H_{13}NO_2$ $M_r = 299.31$ Monoclinic, $P2_1/c$	F(000) = 624 $D_x = 1.322 \text{ Mg m}^{-3}$ Mo <i>Ka</i> radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: -P 2ybc a = 17.094 (2) Å b = 5.4175 (7) Å c = 16.310 (2) Å $\beta = 95.545$ (11)° V = 1503.3 (3) Å ³ Z = 4	Cell parameters from 2651 reflections $\theta = 3.3-25.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 295 K Needle, pale-yellow $0.6 \times 0.2 \times 0.1 \text{ mm}$
Data collection	
Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer Radiation source: Enhanced (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4002 pixels mm ⁻¹ ω scans	Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2008) $T_{min} = 0.354, T_{max} = 0.986$ 9221 measured reflections 2651 independent reflections 1560 reflections with $I > 2\sigma(I)$ $R_{int} = 0.068$

$\theta_{\rm max} = 25.0^{\circ}, \ \theta_{\rm min} = 3.3^{\circ}$	$k = -5 \rightarrow 6$
$h = -17 \rightarrow 20$	$l = -16 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.073$	Hydrogen site location: inferred from
$wR(F^2) = 0.203$	neighbouring sites
S = 1.04	H-atom parameters constrained
2651 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1073P)^2]$
209 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.15883 (16)	-0.0807 (5)	0.28634 (16)	0.0564 (7)	
H1	0.2005	-0.0842	0.2537	0.068*	
C2	0.09977 (17)	-0.2461 (5)	0.27301 (17)	0.0602 (8)	
H2	0.1012	-0.3623	0.2312	0.072*	
C3	0.03597 (17)	-0.2442 (5)	0.32180 (18)	0.0622 (8)	
H3	-0.0042	-0.3592	0.3118	0.075*	
C4	0.03260 (16)	-0.0781 (5)	0.38254 (17)	0.0573 (7)	
H4	-0.0098	-0.0801	0.4142	0.069*	
C5	0.13817 (18)	0.5964 (5)	0.54258 (17)	0.0621 (8)	
H5	0.0945	0.5900	0.5724	0.075*	
C6	0.1938 (2)	0.7688 (5)	0.56161 (18)	0.0690 (8)	
H6	0.1877	0.8807	0.6038	0.083*	
C7	0.26132 (19)	0.7811 (5)	0.51795 (19)	0.0673 (8)	
H7	0.2996	0.9000	0.5318	0.081*	
C8	0.27029 (17)	0.6208 (5)	0.45642 (17)	0.0581 (7)	
H8	0.3149	0.6312	0.4281	0.070*	
C9	0.21784 (14)	0.2683 (4)	0.36980 (15)	0.0473 (7)	
N10	0.08713 (13)	0.2595 (4)	0.46103 (13)	0.0548 (6)	
C11	0.15783 (14)	0.0982 (4)	0.34973 (15)	0.0451 (6)	
C12	0.09280 (15)	0.1001 (4)	0.39897 (15)	0.0489 (7)	
C13	0.21349 (14)	0.4373 (4)	0.43382 (15)	0.0479 (7)	
C14	0.14481 (15)	0.4254 (4)	0.47830 (15)	0.0506 (7)	
C15	0.29032 (16)	0.2631 (5)	0.32487 (17)	0.0552 (7)	

016	0.28060 (10)	0.3857 (3)	0.25400 (11)	0.0581 (6)
017	0.34884 (13)	0.1610 (5)	0.34906 (14)	0.1104 (10)
C18	0.34637 (15)	0.3952 (5)	0.20676 (15)	0.0486 (7)
C19	0.39837 (17)	0.5859 (5)	0.21985 (17)	0.0603 (8)
H19	0.3919	0.7045	0.2599	0.072*
C20	0.46112 (17)	0.5984 (6)	0.1720 (2)	0.0695 (9)
H20	0.4975	0.7259	0.1801	0.083*
C21	0.46958 (17)	0.4238 (6)	0.11312 (19)	0.0695 (9)
H21	0.5119	0.4321	0.0814	0.083*
C22	0.41592 (19)	0.2364 (6)	0.10059 (19)	0.0699 (9)
H22	0.4216	0.1193	0.0599	0.084*
C23	0.35334 (17)	0.2201 (5)	0.14809 (18)	0.0613 (8)
H23	0.3169	0.0927	0.1401	0.074*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U ³³	<i>U</i> ¹²	<i>U</i> ¹³	U^{23}
C1	0.0505 (18)	0.0670 (17)	0.0530 (16)	0.0065 (13)	0.0117 (13)	0.0049 (14)
C2	0.060 (2)	0.0634 (17)	0.0577 (17)	0.0004 (14)	0.0095 (14)	-0.0044 (14)
C3	0.0557 (19)	0.0651 (17)	0.0657 (19)	-0.0119 (13)	0.0046 (15)	0.0053 (16)
C4	0.0440 (17)	0.0697 (17)	0.0600 (17)	-0.0022 (13)	0.0151 (13)	0.0072 (15)
C5	0.065 (2)	0.0662 (17)	0.0579 (17)	0.0055 (15)	0.0196 (14)	-0.0019 (15)
C6	0.083 (2)	0.0668 (18)	0.0567 (18)	0.0026 (16)	0.0038 (16)	-0.0074 (15)
C7	0.071 (2)	0.0649 (18)	0.0643 (19)	-0.0087 (15)	-0.0035 (16)	0.0059 (16)
C8	0.0508 (18)	0.0667 (17)	0.0565 (17)	-0.0039 (13)	0.0045 (13)	0.0079 (14)
C9	0.0397 (15)	0.0578 (15)	0.0460 (14)	0.0069 (11)	0.0123 (11)	0.0092 (12)
N10	0.0488 (15)	0.0625 (13)	0.0561 (14)	-0.0013 (11)	0.0202 (11)	0.0040 (11)
C11	0.0348 (14)	0.0565 (14)	0.0453 (14)	0.0046 (11)	0.0111 (11)	0.0059 (13)
C12	0.0427 (16)	0.0568 (15)	0.0479 (15)	0.0019 (12)	0.0081 (12)	0.0084 (13)
C13	0.0415 (16)	0.0553 (15)	0.0477 (15)	0.0028 (11)	0.0077 (12)	0.0083 (12)
C14	0.0478 (17)	0.0557 (15)	0.0496 (15)	0.0049 (12)	0.0108 (12)	0.0071 (13)
C15	0.0421 (17)	0.0687 (17)	0.0564 (17)	0.0071 (13)	0.0132 (13)	0.0141 (14)
O16	0.0396 (11)	0.0788 (12)	0.0590 (11)	0.0076 (8)	0.0204 (8)	0.0163 (10)
O17	0.0564 (16)	0.182 (2)	0.0990 (18)	0.0486 (15)	0.0378 (13)	0.0715 (17)
C18	0.0376 (15)	0.0609 (15)	0.0493 (15)	0.0022 (12)	0.0140 (11)	0.0099 (13)
C19	0.0558 (18)	0.0657 (17)	0.0615 (17)	-0.0029 (14)	0.0169 (14)	-0.0034 (14)
C20	0.051 (2)	0.0773 (19)	0.082 (2)	-0.0141 (14)	0.0167 (16)	0.0079 (18)
C21	0.0485 (19)	0.096 (2)	0.0667 (19)	0.0011 (16)	0.0220 (15)	0.0150 (18)
C22	0.071 (2)	0.080 (2)	0.0629 (19)	0.0036 (16)	0.0253 (16)	-0.0085 (16)
C23	0.0560 (19)	0.0645 (17)	0.0662 (18)	-0.0090 (13)	0.0193 (14)	-0.0021 (15)

Geometric parameters (Å, °)

C1—C2	1.352 (4)	C9—C15	1.500 (4)
C1C11	1.418 (3)	N10—C12	1.341 (3)
C1—H1	0.9300	N10—C14	1.344 (3)
C2—C3	1.411 (4)	C11—C12	1.433 (3)
С2—Н2	0.9300	C13—C14	1.440 (3)

C3—C4	1.343 (4)	C15—O17	1.177 (3)
С3—Н3	0.9300	C15—O16	1.329 (3)
C4—C12	1.418 (4)	O16—C18	1.424 (3)
C4—H4	0.9300	C18—C23	1.361 (4)
C5—C6	1.347 (4)	C18—C19	1.366 (4)
C5—C14	1.412 (3)	C19—C20	1.387 (4)
С5—Н5	0.9300	С19—Н19	0.9300
C6—C7	1.415 (4)	C20—C21	1.366 (4)
С6—Н6	0.9300	C20—H20	0.9300
C7—C8	1.347 (4)	$C_{21} - C_{22}$	1.370 (4)
С7—Н7	0.9300	$C_{21} = H_{21}$	0.9300
C8-C13	1.413 (4)	C_{22} C_{23}	1.383 (4)
C8—H8	0.9300	C22—H22	0.9300
C9—C11	1.394 (3)	C23—H23	0.9300
C9-C13	1 396 (3)	025 1125	0.9500
	1.590 (5)		
$C^{2}-C^{1}-C^{1}$	120.6 (3)	N10-C12-C4	118.5(2)
$C_2 = C_1 = H_1$	119.7	N10 - C12 - C11	110.9(2) 1230(2)
$C_1 - C_1 - H_1$	119.7	C4-C12-C11	125.0(2) 118.5(2)
C1 - C2 - C3	119.7 120.7(3)	C9-C13-C8	110.9(2) 124.9(2)
C1 - C2 - H2	119.6	C9-C13-C14	124.9(2) 1169(2)
$C_{1}^{-}C_{2}^{-}H_{2}^{-}$	119.6	$C_{2} = C_{13} = C_{14}$	110.9(2) 118.2(2)
$C_{3} - C_{2} - C_{12}$	120.8 (3)	N10-C14-C5	110.2(2) 1190(2)
C4 C3 H3	120.8 (5)	N10 - C14 - C13	117.0(2) 122.8(2)
$C_2 = C_3 = H_3$	119.0	$C_{5} C_{14} C_{13}$	122.0(2)
$C_2 = C_3 = H_3$	119.0	017 015 016	110.2(2) 123.8(2)
$C_3 = C_4 = C_{12}$	120.9 (5)	017 - 015 - 010	123.0(2) 124.1(2)
$C_{12} C_{4} H_{4}$	119.0	017 - 015 - 03	124.1(2) 1121(2)
$C_{12} - C_{4} - 114$	119.0 121.4(3)	$C_{15} = C_{15} = C_{3}$	112.1(2) 116.72(10)
C6 C5 H5	121.4 (3)	$C_{13}^{} C_{10}^{} C_{10}^{$	110.72(19) 122.5(2)
$C_{0} - C_{3} - H_{3}$	119.5	$C_{23} = C_{18} = C_{19}$	122.3(2)
C14—C5—H5	119.5	$C_{23} = C_{18} = O_{10}$	110.9(2)
$C_{5} = C_{6} = U_{6}$	120.3 (5)	C19 - C18 - C10	118.0(2)
	119.7	C18 - C19 - C20	110.4 (5)
$C^{2} = C^{2} = C^{2}$	119.7	C18—C19—H19	120.8
$C_{0} = C_{1} = C_{0}$	120.1 (5)	C20—C19—H19	120.8
C6_C7_H7	119.9	$C_{21} = C_{20} = C_{19}$	120.1 (3)
$C_{0} - C_{1} - H_{1}$	119.9	C21—C20—H20	119.9
C/-C8-C13	121.5 (3)	C19—C20—H20	119.9
C/-C8-H8	119.2	$C_{20} = C_{21} = C_{22}$	120.2 (3)
C13—C8—H8	119.2	C20—C21—H21	119.9
C11—C9—C13	121.2 (2)	C22—C21—H21	119.9
C11—C9—C15	119.8 (2)	C21—C22—C23	120.4 (3)
C13—C9—C15	118.9 (2)	C21—C22—H22	119.8
C12—N10—C14	118.9 (2)	C23—C22—H22	119.8
C9—C11—C1	124.2 (2)	C18—C23—C22	118.3 (3)
C9—C11—C12	117.2 (2)	C18—C23—H23	120.8
C1-C11-C12	118.6 (2)	C22—C23—H23	120.8

C11—C1—C2—C3	0.0 (4)	C7—C8—C13—C14	0.2 (4)
C1—C2—C3—C4	0.0 (4)	C12—N10—C14—C5	178.8 (2)
C2-C3-C4-C12	0.3 (4)	C12—N10—C14—C13	-1.1 (4)
C14—C5—C6—C7	-0.8 (4)	C6-C5-C14-N10	-179.0 (3)
C5—C6—C7—C8	0.4 (4)	C6—C5—C14—C13	0.8 (4)
C6—C7—C8—C13	-0.2 (4)	C9-C13-C14-N10	0.8 (4)
C13—C9—C11—C1	-179.1 (2)	C8-C13-C14-N10	179.3 (2)
C15—C9—C11—C1	-2.1 (4)	C9—C13—C14—C5	-179.1 (2)
C13—C9—C11—C12	-1.7 (3)	C8—C13—C14—C5	-0.5 (3)
C15—C9—C11—C12	175.4 (2)	C11—C9—C15—O17	-95.7 (4)
C2-C1-C11-C9	177.2 (2)	C13—C9—C15—O17	81.4 (4)
C2-C1-C11-C12	-0.2 (4)	C11—C9—C15—O16	83.7 (3)
C14—N10—C12—C4	178.5 (2)	C13—C9—C15—O16	-99.2 (3)
C14—N10—C12—C11	-0.1 (3)	O17—C15—O16—C18	-1.4 (4)
C3—C4—C12—N10	-179.1 (2)	C9-C15-O16-C18	179.2 (2)
C3—C4—C12—C11	-0.5 (4)	C15—O16—C18—C23	92.5 (3)
C9-C11-C12-N10	1.4 (4)	C15—O16—C18—C19	-90.1 (3)
C1-C11-C12-N10	179.0 (2)	C23—C18—C19—C20	-0.9 (4)
C9—C11—C12—C4	-177.1 (2)	O16-C18-C19-C20	-178.2 (2)
C1—C11—C12—C4	0.4 (3)	C18—C19—C20—C21	0.5 (4)
C11—C9—C13—C8	-177.8 (2)	C19—C20—C21—C22	0.4 (4)
C15—C9—C13—C8	5.1 (4)	C20—C21—C22—C23	-0.9 (5)
C11—C9—C13—C14	0.6 (3)	C19—C18—C23—C22	0.5 (4)
C15—C9—C13—C14	-176.4 (2)	O16—C18—C23—C22	177.7 (2)
C7—C8—C13—C9	178.6 (2)	C21—C22—C23—C18	0.4 (4)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 denote the centroids of the C1-C4/C11/C12 and C18-C23 rings, respectively.

D—H···A	D—H	H···A	D···A	D—H···A
C3—H3···Cg2 ⁱ	0.93	2.98	3.712 (3)	137
C7—H7···Cg4 ⁱⁱ	0.93	2.84	3.646 (3)	145

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) x, -y+3/2, z+1/2.