organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(3-Nitrobenzyl)-4H-chromen-4-one

Kaalin Gopaul,^a Neil Anthony Koorbanally,^a* Mahidansha Shaikh,^a Hong Su^b and Deresh Ramjugernath^c

^aSchool of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa, ^bChemistry Department, University of Cape Town, Rondebosch 7701, South Africa, and ^cSchool of Chemical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa Correspondence e-mail: koorbanally@ukzn.ac.za

Received 31 January 2013; accepted 5 February 2013

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.138; data-to-parameter ratio = 22.3.

In the title compound, $C_{16}H_{11}NO_4$, the dihedral angle between the 10-membered coplanar chromone ring system and the benzene ring is 77.83 (3)°. In the crystal, weak $C-H\cdots O$ hydrogen bonds link the molecules into a three-dimensional network.

Related literature

For the preparation, see: Valkonen *et al.* (2012). For related structures, see: Sievänen *et al.* (2010); Gopaul *et al.* (2012); Valkonen *et al.* (2012). For general background to homoiso-flavoinoids, see: Shaikh *et al.* (2011); du Toit *et al.* (2010).

Experimental

Crystal data

$C_{16}H_{11}NO_4$
$M_r = 281.26$
Monoclinic, $P2_1/c$
a = 4.6082 (3) Å
b = 10.4219 (6) Å
c = 26.4468 (17) Å
$\beta = 90.428 \ (1)^{\circ}$

 $V = 1270.10 (14) \text{ Å}^3$ Z = 4Mo K α radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 173 K $0.42 \times 0.22 \times 0.04 \text{ mm}$

Data collection

Bruker Kappa DUO APEXII diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1997) $T_{\rm min} = 0.956, T_{\rm max} = 0.996$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	190 parameters
$wR(F^2) = 0.138$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
4246 reflections	$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

16973 measured reflections

 $R_{\rm int} = 0.030$

4246 independent reflections

3069 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

D_H4	<i>р_</i> н	H4	D4	D_H4
	<i>D</i> =11	11.021	D	D-II A
C2-H2··· $O2$	0.95	2.32	3.2663 (15)	171
$C7-H7\cdots O3^{i}$	0.95	2.65	3.5614 (19)	160
C8−H8···O3 ⁱⁱ	0.95	2.54	3.3071 (18)	138
C14−H14···O4 ⁱⁱⁱ	0.95	2.50	3.4380 (17)	172
$C15-H15\cdots O1^{iv}$	0.95	2.62	3.5569 (15)	170
$C16-H16\cdots O2^{v}$	0.95	2.46	3 3764 (15)	163

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x + 1, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 2, -z + 1; (iv) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (v) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2006); cell refinement: *SAINT* (Bruker, 2006); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 2012); software used to prepare material for publication: *SHELXL97*.

We thank the University of KwaZulu-Natal and the South Africa Research Chairs initiative of the Department of Science and Technology for financial support and the National Research Foundation of South Africa for a bursary for KG.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2097).

References

- Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Gopaul, K., Shaikh, M. M., Koorbanally, N. A., Ramjugernath, D. & Omondi, B. (2012). Acta Cryst. E68, 01972.
- Shaikh, M., Petzold, K., Kruger, H. & du Toit, K. (2011). *Struct. Chem.* 22, 161–166.
- Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sievänen, E., Toušek, J., Lunerová, K., Marek, J., Jankovská, D., Dvorská, M. & Marek, R. (2010). J. Mol. Struct. 979, 172–179.
- Toit, K. du, Drewes, S. E. & Bodenstein, J. (2010). *Nat. Prod. Res.* 24, 457–490.
 Valkonen, A., Laihia, K., Kolehmainen, E., Kauppinen, R. & Perjési, P. (2012).
 Struct. Chem. 23, 209–217.

supporting information

Acta Cryst. (2013). E69, o364 [doi:10.1107/S1600536813003589]

3-(3-Nitrobenzyl)-4H-chromen-4-one

Kaalin Gopaul, Neil Anthony Koorbanally, Mahidansha Shaikh, Hong Su and Deresh Ramjugernath

S1. Comment

The title compound, 3-(3-nitrobenzyl)-2-chromen-4-one, belongs to a class of compounds called homoisoflavonoids, which are C-16, α , β unsaturated carbonyl compounds containing two aromatic rings. Homoisoflavonoids may be categorized into four groups depending on the type of structural backbone present. The four groups are 3-benzyl-4-chromanones, of which the title compound belongs to as well as the, 3-benzylidene-4-chromanones, 3-benzyl-3-hy-droxy-4-chromanones and scillascillins (du Toit *et al.*, 2010). The most commonly used procedure for the synthesis of homoisoflavoinoids involves the condensation of chroman-4-one with an aromatic aldehyde in the presence of either an acidic or basic catalyst (Shaikh *et al.*, 2011).

The molecular structure of the title compound is shown in Fig.1. The dihedral angle between the 10-membered coplanar ring O1—C1—C9—C8—C7—C6—C5—C4—C3—C2 and the benzene ring C11—C12—C13—C14—C15— C16 is 77.83 (3)°. In the crystal packing, a number of weak intermolecular C—H…O hydrogen bonds are noted and are listed in Table 1.

S2. Experimental

A mixture of chroman-4-one (1.00 g, 6.75 mmol), 3-nitrobenzaldehyde (1.25 g, 8.10 mmol) and 10–15 drops of piperidine was heated at 80°C for 10 hrs. The reaction mixture was monitored for completion by thin layer chromatography. Upon completion, the reaction mixture was cooled, diluted with water and neutralized using 10% HCl. To the viscous reaction mixture, 15 ml of ethyl acetate was added. The homoisoflavonoid precipitated out upon the addition of hexane to the reaction mixture. The powdered product was filtered, washed with hexane and dried under vacuum. Upon slow evaporation of chloroform, the crystals of the homoisoflavonoid were obtained with a m.p. of 129–130 °C.

S3. Refinement

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed in idealized positions and refined with geometrical constraints, and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

A view of the molecule with displacement ellipsoids drawn at the 50% probability level and H atoms drawn as circles of arbitary size.

3-(3-Nitrobenzyl)-4H-chromen-4-one

Crystal data

C₁₆H₁₁NO₄ $M_r = 281.26$ Monoclinic, $P2_1/c$ a = 4.6082 (3) Å b = 10.4219 (6) Å c = 26.4468 (17) Å $\beta = 90.428$ (1)° V = 1270.10 (14) Å³ Z = 4

Data collection

Bruker Kappa DUO APEXII
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
$0.5^{\circ} \varphi$ scans and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
$T_{\min} = 0.956, \ T_{\max} = 0.996$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.138$ S = 1.044246 reflections 190 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 584 $D_x = 1.471 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 16973 reflections $\theta = 1.5-31.6^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 173 KPlate, colourless $0.42 \times 0.22 \times 0.04 \text{ mm}$

16973 measured reflections 4246 independent reflections 3069 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 31.6^{\circ}, \theta_{min} = 1.5^{\circ}$ $h = -3 \rightarrow 6$ $k = -12 \rightarrow 15$ $l = -38 \rightarrow 36$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0728P)^2 + 0.2299P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.44 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.19 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.74839 (19)	0.65066 (9)	0.16340 (3)	0.0297 (2)
O2	0.12234 (19)	0.86867 (9)	0.23054 (3)	0.0307 (2)
O3	0.0611 (3)	0.69688 (13)	0.46889 (4)	0.0563 (4)
O4	0.2296 (3)	0.87629 (13)	0.49596 (4)	0.0569 (3)
N1	0.2075 (3)	0.79369 (12)	0.46362 (4)	0.0364 (3)
C1	0.6196 (2)	0.74864 (12)	0.13678 (4)	0.0254 (2)
C2	0.6533 (3)	0.62632 (12)	0.21073 (5)	0.0281 (2)
H2	0.7393	0.5562	0.2282	0.034*
C3	0.4471 (3)	0.69311 (11)	0.23514 (4)	0.0243 (2)
C4	0.3094 (2)	0.80163 (11)	0.21004 (4)	0.0229 (2)
C5	0.4068 (2)	0.82546 (11)	0.15828 (4)	0.0228 (2)
C6	0.2875 (3)	0.92474 (12)	0.12884 (5)	0.0304 (3)
H6	0.1413	0.9783	0.1426	0.037*
C7	0.3805 (3)	0.94494 (15)	0.08021 (5)	0.0380 (3)
H7	0.2999	1.0127	0.0606	0.046*
C8	0.5929 (3)	0.86601 (16)	0.05974 (5)	0.0392 (3)
H8	0.6559	0.8806	0.0261	0.047*
C9	0.7132 (3)	0.76728 (14)	0.08729 (5)	0.0343 (3)
Н9	0.8565	0.7131	0.0730	0.041*
C10	0.3523 (3)	0.65438 (12)	0.28725 (5)	0.0303 (3)
H10A	0.4365	0.5691	0.2949	0.036*
H10B	0.1386	0.6446	0.2868	0.036*
C11	0.4334 (2)	0.74495 (11)	0.32985 (4)	0.0238 (2)
C12	0.2953 (3)	0.72947 (12)	0.37618 (4)	0.0265 (2)
H12	0.1554	0.6635	0.3805	0.032*
C13	0.3633 (3)	0.81075 (12)	0.41575 (4)	0.0261 (2)
C14	0.5657 (3)	0.90853 (12)	0.41192 (5)	0.0292 (3)
H14	0.6065	0.9640	0.4396	0.035*
C15	0.7057 (3)	0.92194 (12)	0.36619 (5)	0.0305 (3)
H15	0.8482	0.9871	0.3624	0.037*
C16	0.6411 (3)	0.84133 (12)	0.32557 (5)	0.0265 (2)
H16	0.7402	0.8523	0.2945	0.032*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0335 (4)	0.0285 (4)	0.0271 (4)	0.0059 (3)	0.0036 (3)	-0.0029 (3)
O2	0.0348 (5)	0.0295 (5)	0.0280 (5)	0.0034 (4)	0.0080 (3)	-0.0026 (4)
O3	0.0700 (8)	0.0657 (8)	0.0335 (6)	-0.0301 (6)	0.0160 (5)	-0.0001 (5)
O4	0.0765 (8)	0.0620 (8)	0.0325 (6)	-0.0123 (6)	0.0152 (5)	-0.0182 (5)
N1	0.0398 (6)	0.0462 (7)	0.0233 (5)	-0.0044(5)	0.0039 (4)	-0.0002 (5)
C1	0.0279 (5)	0.0265 (5)	0.0218 (5)	-0.0018 (4)	0.0010 (4)	-0.0024 (4)
C2	0.0361 (6)	0.0226 (5)	0.0256 (6)	0.0018 (5)	-0.0035 (4)	-0.0009 (4)
C3	0.0329 (6)	0.0202 (5)	0.0198 (5)	-0.0043 (4)	-0.0007(4)	-0.0008 (4)
C4	0.0267 (5)	0.0210 (5)	0.0212 (5)	-0.0042 (4)	0.0020 (4)	-0.0018 (4)
C5	0.0264 (5)	0.0227 (5)	0.0194 (5)	-0.0023 (4)	0.0010 (4)	-0.0003 (4)
C6	0.0347 (6)	0.0291 (6)	0.0275 (6)	0.0014 (5)	0.0007 (5)	0.0044 (5)
C7	0.0466 (8)	0.0399 (7)	0.0274 (7)	-0.0025 (6)	-0.0010 (5)	0.0105 (6)
C8	0.0419 (7)	0.0533 (9)	0.0224 (6)	-0.0078 (6)	0.0056 (5)	0.0041 (6)
С9	0.0349 (6)	0.0434 (7)	0.0247 (6)	-0.0021 (6)	0.0073 (5)	-0.0057 (5)
C10	0.0455 (7)	0.0238 (5)	0.0215 (6)	-0.0092 (5)	0.0003 (5)	0.0012 (4)
C11	0.0289 (5)	0.0220 (5)	0.0206 (5)	-0.0007 (4)	-0.0010 (4)	0.0018 (4)
C12	0.0298 (5)	0.0269 (5)	0.0230 (6)	-0.0058(4)	0.0002 (4)	0.0028 (4)
C13	0.0296 (5)	0.0297 (6)	0.0191 (5)	0.0006 (4)	0.0012 (4)	0.0014 (4)
C14	0.0333 (6)	0.0275 (6)	0.0269 (6)	-0.0015 (5)	-0.0029 (5)	-0.0036 (5)
C15	0.0317 (6)	0.0286 (6)	0.0312 (6)	-0.0080 (5)	-0.0001 (5)	-0.0004 (5)
C16	0.0287 (5)	0.0265 (5)	0.0243 (6)	-0.0029 (4)	0.0021 (4)	0.0010 (4)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

O1—C2	1.3533 (15)	С7—Н7	0.9500
O1—C1	1.3727 (15)	C8—C9	1.375 (2)
O2—C4	1.2377 (14)	C8—H8	0.9500
O3—N1	1.2222 (17)	С9—Н9	0.9500
O4—N1	1.2172 (16)	C10-C11	1.5145 (16)
N1-C13	1.4709 (16)	C10—H10A	0.9900
C1—C5	1.3905 (16)	C10—H10B	0.9900
С1—С9	1.3949 (17)	C11—C16	1.3926 (16)
С2—С3	1.3467 (17)	C11—C12	1.3942 (16)
С2—Н2	0.9500	C12—C13	1.3804 (17)
С3—С4	1.4546 (16)	C12—H12	0.9500
C3—C10	1.5042 (16)	C13—C14	1.3858 (18)
C4—C5	1.4650 (15)	C14—C15	1.3823 (18)
С5—С6	1.4047 (17)	C14—H14	0.9500
С6—С7	1.3748 (18)	C15—C16	1.3941 (17)
С6—Н6	0.9500	C15—H15	0.9500
С7—С8	1.391 (2)	C16—H16	0.9500
C2C1	118.16 (9)	C8—C9—C1	118.37 (12)
O4—N1—O3	123.17 (12)	С8—С9—Н9	120.8
O4—N1—C13	118.71 (12)	С1—С9—Н9	120.8

02 NI C12	118 12 (12)	C2 C10 C11	11(0,0,7,(1,0))
03—N1—C13	118.12 (12)		116.27 (10)
01 - C1 - C5	121.47 (10)	C3—C10—H10A	108.2
O1—C1—C9	116.69 (11)	C11—C10—H10A	108.2
C5—C1—C9	121.83 (12)	C3—C10—H10B	108.2
C3—C2—O1	125.53 (11)	C11-C10-H10B	108.2
C3—C2—H2	117.2	H10A—C10—H10B	107.4
O1—C2—H2	117.2	C16—C11—C12	118.25 (11)
C2-C3-C4	119 35 (11)	C16-C11-C10	123 71 (11)
$C_2 C_3 C_{10}$	120.76 (11)	C_{12} C_{11} C_{10}	123.71(11) 118.03(10)
$C_2 = C_3 = C_{10}$	120.70(11) 110.87(10)	C_{12} C_{12} C_{11}	110.05(10)
$C_{4} = C_{3} = C_{10}$	119.07(10)	$C_{12} = C_{12} = C_{11}$	119.51 (11)
02-04-05	122.81 (10)		120.2
02	122.20 (11)	СП—С12—Н12	120.2
C3—C4—C5	114.98 (10)	C12—C13—C14	123.03 (11)
C1—C5—C6	118.15 (11)	C12—C13—N1	117.96 (11)
C1—C5—C4	120.43 (10)	C14—C13—N1	119.00 (11)
C6—C5—C4	121.42 (11)	C15—C14—C13	117.20 (11)
C7—C6—C5	120.52 (12)	C15—C14—H14	121.4
С7—С6—Н6	119.7	C13—C14—H14	121.4
С5—С6—Н6	119.7	C14—C15—C16	120.98 (11)
C6-C7-C8	119 91 (13)	C14—C15—H15	119.5
C6-C7-H7	120.0	C_{16} C_{15} H_{15}	119.5
C_{8} C_{7} H_{7}	120.0		121.00(11)
$C_0 = C_1 = C_1$	120.0 121.22(12)	C_{11} C_{16} U_{16}	121.00 (11)
C_{2}	121.22 (12)		119.5
C9—C8—H8	119.4	C15—C16—H16	119.5
С/—С8—Н8	119.4		
C2	3.07 (16)	C7—C8—C9—C1	-0.7 (2)
C2—O1—C1—C9	-177.07 (11)	O1—C1—C9—C8	-178.84(12)
C1—O1—C2—C3	-2.33(18)	C5—C1—C9—C8	1.02 (19)
Q1—C2—C3—C4	-0.18(19)	C2—C3—C10—C11	111.41 (14)
$01-C^2-C^3-C^{10}$	178.04 (11)	C4-C3-C10-C11	-70.37(15)
$C_2 - C_3 - C_4 - O_2$	-178.62(11)	C_{3} C_{10} C_{11} C_{16}	-15.66(18)
$C_2 = C_3 = C_4 = O_2$	1/0.02(11)	$C_3 = C_{10} = C_{11} = C_{10}$	15.00(10) 165.30(11)
$C_{10} = C_{3} = C_{4} = C_{2}$	3.14(17)	$C_{16} = C_{10} = C_{11} = C_{12}$	103.39(11)
$C_2 - C_3 - C_4 - C_5$	1.65 (10)	C10-C11-C12-C13	1.20(17)
C10 - C3 - C4 - C5	-1/6.41(10)	C10-C11-C12-C13	-1/9./3(11)
01	179.30 (11)	C11—C12—C13—C14	-0.19 (19)
C9—C1—C5—C6	-0.55 (18)	C11—C12—C13—N1	178.39 (11)
O1—C1—C5—C4	-1.39 (17)	O4—N1—C13—C12	-168.33 (13)
C9—C1—C5—C4	178.76 (11)	O3—N1—C13—C12	11.53 (19)
O2—C4—C5—C1	179.38 (11)	O4—N1—C13—C14	10.31 (19)
C3—C4—C5—C1	-1.07 (15)	O3—N1—C13—C14	-169.83 (13)
O2—C4—C5—C6	-1.33(18)	C12—C13—C14—C15	-0.96 (19)
C3—C4—C5—C6	178.22 (11)	N1—C13—C14—C15	-179.52 (12)
C1C5C7	-0.23 (19)	C13—C14—C15—C16	1.02 (19)
C4-C5-C6-C7	-179 53 (12)	C_{12} C_{11} C_{16} C_{15}	-1.20(18)
C_{1} C_{2} C_{3} C_{4} C_{7} C_{8}	0.5(2)	C10 C11 C16 C15	170 86 (12)
$C_{1} = C_{1} = C_{2}$	0.5(2)	$C_{10} - C_{11} - C_{10} - C_{13}$	1/9.00(12)
UU-U/-U8-U9	0.0 (2)	U14-UI3-UI0-UII	0.0 (2)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
С2—Н2…О2	0.95	2.32	3.2663 (15)	171	
C7—H7···O3 ⁱ	0.95	2.65	3.5614 (19)	160	
C8—H8…O3 ⁱⁱ	0.95	2.54	3.3071 (18)	138	
C14—H14…O4 ⁱⁱⁱ	0.95	2.50	3.4380 (17)	172	
C15—H15…O1 ^{iv}	0.95	2.62	3.5569 (15)	170	
C16—H16…O2 ^v	0.95	2.46	3.3764 (15)	163	

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) *x*+1, -*y*+3/2, *z*-1/2; (iii) -*x*+1, -*y*+2, -*z*+1; (iv) -*x*+2, *y*+1/2, -*z*+1/2; (v) *x*+1, *y*, *z*.