Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(*Z*)-*N*-[2-(*N*'-Hydroxycarbamimidoyl)phenyl]acetamide

Hoong-Kun Fun,^{a,b}*‡Chin Wei Ooi,^a§ Dinesha,^c S. Viveka^c and G.K. Nagaraja^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia, and ^cDepartment of Chemistry, Mangalore University, Karnataka, India Correspondence e-mail: hkíun@usm.my

Received 2 February 2013; accepted 2 February 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.116; data-to-parameter ratio = 16.3.

The asymmetric unit of the title compound, $C_9H_{11}N_3O_2$, contains two molecules (*A* and *B*), which exist in *Z* conformations with respect to their C—N double bond. The dihedral angles between the benzene ring and the pendant hydroxycarbamimidoyl and acetamide groups are 28.58 (7) and 1.30 (5)°, respectively, in molecule *A* and 25.04 (7) and 27.85 (9)°, respectively, in molecule *B*. An intramolecular N– H···N hydrogen bond generates an *S*(6) ring in both molecules. Molecule *A* also features an intramolecular C– H···O interaction, which closes an *S*(6) ring. In the crystal, the molecules are linked by N–H···O, N–H···N, O–H···O, O–H···N, C–H···O and C–H···N hydrogen bonds and C–H··· π interactions, generating a three-dimensional network.

Related literature

For background and applications of amidoximes, see: Clapp (1976, 1984); Jochims (1996); Fylaktakidou *et al.* (2008); Mansuy & Boucher (2004); Kontogiorgis & Hadjipavlou-Litina (2002); Wang *et al.* (2002). For hydrogen-bond motifs, see: Bernstein *et al.* (1995). For bond-length data, see: Allen *et al.* (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data $C_9H_{11}N_3O_2$ $M_r = 193.21$ Triclinic, $P\overline{1}$ a = 8.7813 (12) Å b = 9.5432 (13) Å c = 11.9770 (15) Å $\alpha = 80.722$ (2)° $\beta = 78.531$ (2)°

Data collection

Bruker APEX DUO CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) T_{min} = 0.965, T_{max} = 0.995

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.116$ S = 1.074680 reflections 287 parameters 12849 measured reflections

 $0.35 \times 0.20 \times 0.05 \text{ mm}$

 $\gamma = 70.181 \ (2)^{\circ}$

Z = 4

V = 920.6 (2) Å³

Mo $K\alpha$ radiation

 $\mu = 0.10 \text{ mm}^-$

T = 100 K

12849 measured reflections 4680 independent reflections 3815 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.34~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.26~e~{\rm \AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3A - H3NA \cdots N1A$	0.883 (19)	2.048 (19)	2.7463 (18)	135.2 (15)
$N3B - H3NB \cdot \cdot \cdot N1B$	0.86 (2)	1.963 (19)	2.6798 (17)	139.7 (17)
$N2B - H1NB \cdots O2B^{i}$	0.88 (2)	2.10 (2)	2.9725 (17)	173.0 (17)
$N2A - H2NA \cdots O2A^{ii}$	0.87 (3)	2.53 (2)	3.3004 (17)	149.0 (17)
$N2A - H2NA \cdots N2B^{iii}$	0.87 (3)	2.54 (2)	3.2522 (18)	139.6 (17)
$N2B - H2NB \cdots O2A^{iv}$	0.903 (19)	2.12 (2)	2.8900 (17)	142.1 (16)
$O1A - H1OA \cdots O1B$	0.933 (19)	1.844 (19)	2.7733 (15)	173.9 (18)
$O1B - H1OB \cdot \cdot \cdot N1A^{v}$	0.951 (18)	1.809 (18)	2.7597 (15)	177.0 (17)
$C2A - H2AA \cdots O2A$	0.95	2.22	2.8556 (17)	123
$C5A - H5AA \cdots O2B^{vi}$	0.95	2.55	3.2773 (17)	133
$C9A - H9AC \cdots N1B$	0.98	2.56	3.499 (2)	160
$C4A - H4AA \cdots Cg2^{ii}$	0.95	2.95	3.7524 (16)	143
$C3B - H3BA \cdots Cg1^{vii}$	0.95	2.88	3.6645 (17)	141

Symmetry codes: (i) -x + 2, -y, -z + 2; (ii) -x + 1, -y + 1, -z + 1; (iii) -x + 2, -y + 1, -z + 1; (iv) x + 1, y, z; (v) -x + 2, -y, -z + 1; (vi) x, y + 1, z - 1; (vii) x, y, z + 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Thomson Reuters ResearcherID: F-8809-2012.

to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

HKF and CWO thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/CIPPM813040). CWO also thanks the Malaysian Goverment and USM for the award of the post of Research Officer under Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7034).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clapp, L. B. (1976). In Advances in Heterocyclic Chemistry, Vol. 20, edited by A. R. Katritzky & A. J. Boulton, pp. 65–116. New York: Academic Press.
- Clapp, L. B. (1984). In Comprehensive Heterocyclic Chemistry, Vol. 6, edited by K. T. Potts, pp. 365–392. Oxford: Pergamon Press. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
- Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E., Varella, E. &
- Nicolaides, D. N. (2008). Curr. Pharm. Des. 14, 1001-1047.
- Jochims, J. C. (1996). In Comprehensive Heterocyclic Chemistry II, Vol. 52, edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, pp. 179–228. Oxford: Pergamon Press.
- Kontogiorgis, C. A. & Hadjipavlou-Litina, D. J. (2002). Arzneim. Forsch. Drug. Res. 52, 205–210.
- Mansuy, D. & Boucher, J. L. (2004). Free Radic. Biol. Med. 37, 1105-1121.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wang, P. G., Xian, M., Tang, X., Wu, X., Wen, Z., Cai, T. & Janczuk, A. J. (2002). Chem. Rev. 102, 1091–1134.

supporting information

Acta Cryst. (2013). E69, o370-o371 [doi:10.1107/S1600536813003371]

(Z)-N-[2-(N'-Hydroxycarbamimidoyl)phenyl]acetamide

Hoong-Kun Fun, Chin Wei Ooi, Dinesha, S. Viveka and G.K. Nagaraja

S1. Comment

Amidoximes are bi-functional molecules exhibiting a rich and diverse chemistry and provides the shortest way to reach certain heterocycles, such as 1,2,4-oxadiazoles (Clapp, 1976, 1984; Jochims, 1996). They are also considered interesting molecules in view of their biological applications (Fylaktakidou *et al.*, 2008). Their ability to release NO or nitrites *in vitro* and *in vivo* experiments has recently attracted attention (Mansuy *et al.*, 2004; Kontogiorgis *et al.*, 2002). The discovery that nitric oxide (NO) acts as an important mediator of smooth muscle relaxation has led us to the preparation and testing of a wide variety of compounds with the aim of finding suitable new NO-donors. In the process, the title compound, (*Z*)-*N*-(2-(*N'*-hydroxycarbamimidoyl) phenyl)acetamide (Wang *et al.*, 2002) was prepared.

The title compound consist of two crystallographically independent molecules (A and B) as shown in Fig. 1. The molecules exist in *Z* configuration with respect to the C7A =N1A and C7B =N1B double bonds. The intramolecular N3 —H3…N1 hydrogen bonds (Table 1) form S(6) ring motifs (Bernstein *et al.*, 1995) in both molecules. Molecule A is stabilized by an additional intramolecular C2A—H2AA…O2A hydrogen bond (Table 1) which also generates an S(6) ring motif (Bernstein *et al.*, 1995). The bond lengths (Allen *et al.*, 1987) and angles are within normal ranges.

In the crystal structure (Fig. 2), the molecules are linked *via* N2B—H1NB···O2B, N2A—H2NA···O2A, N2A— H2NA···N2B, N2B—H2NB···O2A, O1A—H1OA···O1B, O1B—H1OB···N1A, C5A—H5AA···O2B and C9A— H9AC···N1B hydrogen bonds (Table 1) into a three dimensional network The crystal is further consolidated by C4A— H4A···*Cg2* and C3B—H3BA···*Cg1* interactions (Table 1), where *Cg1* and *Cg2* are the centroids of benzene rings (C1A– C6A and C1B–C6B), respectively.

S2. Experimental

Equimolar amount of *N*-(2-cyanophenyl)acetamide (10 mmol) and NH₂OH.HCl (10 mmol) were dissolved in a minimum amount of methanol(10 ml)-water (5 ml) and followed by the addition of Na₂CO₃ (5 mmol). The solution was refluxed for 2 h. The solid product formed was collected through filtration and then evaporated to dryness. The product was redissolved in MeOH for recrystallization as colourless plates. *M. P.*: 145° C.

S3. Refinement

All N and O bound H atoms were located from the difference map and were refined freely [N-H = 0.857 (19)-0.90 (2) Å]and O-H = 0.93 (2) and 0.95 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$ (C–H = 0.9500 and 0.9800 Å). A rotating group model was applied to the methyl groups.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Dashed lines indicate the intramolecular hydrogen bonds.

Figure 2

The crystal packing of the title compound, viewed along the b axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

(Z)-N-[2-(N'-Hydroxycarbamimidoyl)phenyl]acetamide

Crystal data

C₉H₁₁N₃O₂ $M_r = 193.21$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.7813 (12) Å b = 9.5432 (13) Å c = 11.9770 (15) Å $a = 80.722 (2)^{\circ}$ $\beta = 78.531 (2)^{\circ}$ $\gamma = 70.181 (2)^{\circ}$ $V = 920.6 (2) \text{ Å}^{3}$

Data collection

Bruker APEX DUO CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.965, T_{\max} = 0.995$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.116$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
4680 reflections	and constrained refinement
287 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0538P)^2 + 0.261P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.26 \text{ e } \text{\AA}^{-3}$

Z = 4

F(000) = 408

 $\theta = 2.3 - 28.5^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$

Plate, colourless

 $0.35 \times 0.20 \times 0.05 \text{ mm}$

 $\theta_{\text{max}} = 28.6^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$

12849 measured reflections

4680 independent reflections

3815 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.031$

 $h = -11 \rightarrow 7$

 $k = -12 \rightarrow 12$

 $l = -16 \rightarrow 16$

 $D_{\rm x} = 1.394 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3493 reflections

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
01A	1.06478 (11)	0.25713 (11)	0.46170 (9)	0.0183 (2)

O2A	0.37005 (11)	0.17841 (12)	0.55131 (8)	0.0200(2)
N1A	0.91075 (13)	0.26562 (12)	0.43516 (9)	0.0136 (2)
N2A	0.91118 (15)	0.50889 (14)	0.36926 (11)	0.0188 (3)
N3A	0.59696 (13)	0.25477 (13)	0.50343 (9)	0.0132 (2)
C1A	0.55777 (15)	0.36511 (14)	0.41114 (11)	0.0125 (2)
C2A	0.40471 (16)	0.41035 (15)	0.37477 (11)	0.0149 (3)
H2AA	0.3247	0.3646	0.4118	0.018*
C3A	0.36921 (16)	0.52204 (15)	0.28463 (12)	0.0168 (3)
НЗАА	0 2645	0 5525	0.2613	0.020*
C4A	0.48421(17)	0.58940(15)	0.22839(11)	0.0167(3)
Н4АА	0.4596	0.6644	0.1661	0.020*
C5A	0.63585(16)	0.54578 (15)	0.26423(11)	0.020
Н544	0.7146	0 5924	0.2261	0.0148(3)
C6A	0.7140 0.67591 (15)	0.3324 0.43462(14)	0.35539(11)	0.013
	0.83924(15)	0.43402(14) 0.30070(14)	0.30030(11)	0.0121(2) 0.0125(2)
	0.03924(13)	0.33370(14) 0.16825(14)	0.59050 (11)	0.0123(2)
COA	0.50778(13)	0.10823(14) 0.05670(16)	0.50590(11)	0.0134(3)
	0.39173(17)	0.03070 (10)	0.03023 (12)	0.0183(3)
ПРАА	0.6019	-0.0440	0.0420	0.028*
НУАВ	0.52/1	0.0779	0./318	0.028*
HYAC	0.7010	0.0641	0.0537	0.028*
OIB	1.10383 (11)	0.00132 (11)	0.61515 (8)	0.0152 (2)
O2B	0.71673 (13)	-0.21124 (12)	1.05408 (8)	0.0231 (2)
NIB	0.97720 (13)	0.02967 (12)	0.71262 (9)	0.0141 (2)
N2B	1.14247 (14)	0.15404 (13)	0.75828 (11)	0.0161 (2)
N3B	0.79291 (14)	-0.06646 (13)	0.89487 (10)	0.0159 (2)
C1B	0.78846 (16)	0.06046 (15)	0.94314 (11)	0.0149 (3)
C2B	0.68093 (17)	0.10631 (16)	1.04286 (12)	0.0197 (3)
H2BA	0.6093	0.0513	1.0793	0.024*
C3B	0.67802 (19)	0.23181 (17)	1.08911 (13)	0.0234 (3)
H3BA	0.6063	0.2608	1.1580	0.028*
C4B	0.77935 (18)	0.31493 (17)	1.03513 (13)	0.0223 (3)
H4BA	0.7768	0.4011	1.0665	0.027*
C5B	0.88416 (17)	0.27147 (15)	0.93527 (12)	0.0180 (3)
H5BA	0.9524	0.3295	0.8983	0.022*
C6B	0.89229 (15)	0.14440 (14)	0.88740 (11)	0.0139 (3)
C7B	1.01102 (15)	0.10389 (14)	0.78082 (11)	0.0126 (2)
C8B	0.76306 (17)	-0.19266 (16)	0.95037 (12)	0.0179 (3)
C9B	0.7947 (2)	-0.31289 (18)	0.87350 (13)	0.0274 (3)
H9BA	0.7122	-0.3641	0.8981	0.041*
H9BB	0.9041	-0.3853	0.8780	0.041*
H9BC	0.7886	-0.2676	0.7944	0.041*
H3NA	0.696 (2)	0.235 (2)	0.5204 (15)	0.030 (5)*
H3NB	0.840(2)	-0.069(2)	0.8244 (17)	0.028 (5)*
HINA	0.998(2)	0.488 (2)	0.3996 (15)	$0.024(5)^{*}$
HINR	1 181 (2)	0.165(2)	0.8176 (18)	0.02(5)
H2NA	0.851(2)	0.602(3)	0.3617(17)	0.038 (5)*
H2NB	1 218 (2)	0.002(0)	0.6985(17)	0.030(5)*
HIOA	1.210(2) 1.085(2)	0.168(2)	0.5003(17)	0.038 (5)*
m	1.005 (2)	0.100 (2)	0.0101(1/)	0.000 (0)

H1OB	1.095 (2)) —0	0.089 (2)	0.5974 (17)	0.037 (5)	*
Atomic dis	splacement para	meters ($Å^2$)				
	U^{11}	U^{22}	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
O1A	0.0131 (5)	0.0187 (5)	0.0250 (5)	-0.0069 (4)	-0.0079 (4)	0.0030 (4)
O2A	0.0145 (5)	0.0259 (5)	0.0208 (5)	-0.0105 (4)	-0.0049(4)	0.0061 (4)
N1A	0.0104 (5)	0.0155 (5)	0.0161 (5)	-0.0054 (4)	-0.0037 (4)	-0.0003 (4)
N2A	0.0166 (6)	0.0137 (6)	0.0280 (7)	-0.0070 (5)	-0.0077 (5)	0.0023 (5)
N3A	0.0103 (5)	0.0165 (5)	0.0125 (5)	-0.0049 (4)	-0.0020 (4)	0.0010 (4)
C1A	0.0138 (6)	0.0125 (6)	0.0101 (6)	-0.0029 (5)	-0.0008(5)	-0.0017 (5)
C2A	0.0137 (6)	0.0172 (6)	0.0133 (6)	-0.0044 (5)	-0.0015 (5)	-0.0019 (5)
C3A	0.0141 (6)	0.0188 (7)	0.0164 (7)	-0.0019 (5)	-0.0056 (5)	-0.0023 (5)
C4A	0.0204 (7)	0.0149 (6)	0.0127 (6)	-0.0030 (5)	-0.0047 (5)	0.0011 (5)
C5A	0.0171 (6)	0.0141 (6)	0.0121 (6)	-0.0054 (5)	-0.0004(5)	-0.0011 (5)
C6A	0.0128 (6)	0.0105 (6)	0.0123 (6)	-0.0020 (5)	-0.0015 (5)	-0.0031 (5)
C7A	0.0135 (6)	0.0137 (6)	0.0104 (6)	-0.0051 (5)	0.0007 (5)	-0.0033 (5)
C8A	0.0125 (6)	0.0145 (6)	0.0123 (6)	-0.0043 (5)	-0.0002 (5)	-0.0013 (5)
C9A	0.0165 (6)	0.0201 (7)	0.0183 (7)	-0.0079 (5)	-0.0039 (5)	0.0057 (5)
O1B	0.0169 (5)	0.0158 (5)	0.0129 (5)	-0.0068 (4)	0.0026 (4)	-0.0036 (4)
O2B	0.0321 (6)	0.0288 (6)	0.0148 (5)	-0.0197 (5)	-0.0053 (4)	0.0044 (4)
N1B	0.0142 (5)	0.0161 (5)	0.0112 (5)	-0.0051 (4)	0.0010 (4)	-0.0019 (4)
N2B	0.0182 (6)	0.0189 (6)	0.0138 (6)	-0.0093 (5)	-0.0020 (5)	-0.0020 (5)
N3B	0.0194 (6)	0.0171 (6)	0.0122 (6)	-0.0087 (5)	-0.0010 (4)	0.0008 (4)
C1B	0.0162 (6)	0.0146 (6)	0.0126 (6)	-0.0029 (5)	-0.0047 (5)	0.0015 (5)
C2B	0.0181 (7)	0.0214 (7)	0.0164 (7)	-0.0045 (5)	-0.0007(5)	0.0013 (5)
C3B	0.0248 (7)	0.0228 (7)	0.0157 (7)	-0.0004 (6)	0.0016 (6)	-0.0039 (6)
C4B	0.0268 (7)	0.0184 (7)	0.0193 (7)	-0.0031 (6)	-0.0018 (6)	-0.0067 (6)
C5B	0.0199 (7)	0.0160 (6)	0.0175 (7)	-0.0047 (5)	-0.0034 (5)	-0.0012 (5)
C6B	0.0142 (6)	0.0139 (6)	0.0121 (6)	-0.0019 (5)	-0.0043 (5)	0.0001 (5)
C7B	0.0139 (6)	0.0102 (6)	0.0124 (6)	-0.0032 (5)	-0.0028 (5)	0.0020 (4)
C8B	0.0188 (6)	0.0210 (7)	0.0172 (7)	-0.0110 (5)	-0.0055 (5)	0.0030 (5)
C9B	0.0428 (9)	0.0228 (8)	0.0219 (8)	-0.0187 (7)	-0.0041 (7)	-0.0002 (6)

Geometric parameters (Å, °)

O1A—N1A	1.4232 (13)	O1B—N1B	1.4333 (14)
O1A—H1OA	0.93 (2)	O1B—H1OB	0.95 (2)
O2A—C8A	1.2257 (16)	O2B—C8B	1.2315 (17)
N1A—C7A	1.2992 (17)	N1B—C7B	1.2972 (17)
N2A—C7A	1.3590 (16)	N2B—C7B	1.3577 (16)
N2A—H1NA	0.857 (19)	N2B—H1NB	0.88 (2)
N2A—H2NA	0.87 (2)	N2B—H2NB	0.90 (2)
N3A—C8A	1.3644 (16)	N3B—C8B	1.3593 (17)
N3A—C1A	1.4069 (16)	N3B—C1B	1.4098 (17)
N3A—H3NA	0.885 (19)	N3B—H3NB	0.863 (19)
C1A—C2A	1.4005 (18)	C1B—C2B	1.3962 (19)
C1A—C6A	1.4179 (17)	C1B—C6B	1.4140 (18)

supporting information

C2A—C3A	1.3915 (18)	C2B—C3B	1.389 (2)
C2A—H2AA	0.9500	C2B—H2BA	0.9500
C3A—C4A	1.3845 (19)	C3B—C4B	1.387 (2)
СЗА—НЗАА	0.9500	СЗВ—НЗВА	0.9500
C4A—C5A	1.3873 (19)	C4B—C5B	1.383 (2)
C4A—H4AA	0.9500	C4B—H4BA	0.9500
C5A—C6A	1.4027 (17)	C5B—C6B	1.3977 (19)
С5А—Н5АА	0.9500	C5B—H5BA	0.9500
C6A—C7A	1.4874 (17)	C6B—C7B	1.4907 (18)
C8A—C9A	1.5031 (18)	C8B—C9B	1.505 (2)
С9А—Н9АА	0.9800	С9В—Н9ВА	0.9800
С9А—Н9АВ	0.9800	С9В—Н9ВВ	0.9800
С9А—Н9АС	0.9800	С9В—Н9ВС	0.9800
N1A—O1A—H1OA	99.4 (12)	N1B—O1B—H1OB	99.3 (12)
C7A—N1A—O1A	109.97 (10)	C7B—N1B—O1B	109.89 (10)
C7A—N2A—H1NA	114.6 (12)	C7B—N2B—H1NB	116.8 (13)
C7A—N2A—H2NA	119.9 (13)	C7B—N2B—H2NB	114.9 (12)
H1NA—N2A—H2NA	117.3 (18)	H1NB—N2B—H2NB	115.9 (17)
C8A—N3A—C1A	129.30 (11)	C8B—N3B—C1B	127.77 (12)
C8A—N3A—H3NA	115.5 (12)	C8B—N3B—H3NB	117.8 (12)
C1A—N3A—H3NA	115.1 (12)	C1B—N3B—H3NB	113.0 (12)
C2A—C1A—N3A	121.95 (11)	C2B—C1B—N3B	121.21 (12)
C2A—C1A—C6A	119.31 (12)	C2B—C1B—C6B	119.76 (12)
N3A—C1A—C6A	118.72 (11)	N3B-C1B-C6B	119.01 (12)
C3A—C2A—C1A	120.31 (12)	C3B—C2B—C1B	120.43 (13)
СЗА—С2А—Н2АА	119.8	C3B—C2B—H2BA	119.8
C1A—C2A—H2AA	119.8	C1B—C2B—H2BA	119.8
C4A—C3A—C2A	120.99 (12)	C4B—C3B—C2B	120.26 (13)
С4А—С3А—НЗАА	119.5	С4В—С3В—Н3ВА	119.9
С2А—С3А—НЗАА	119.5	С2В—С3В—Н3ВА	119.9
C3A—C4A—C5A	119.06 (12)	C5B—C4B—C3B	119.55 (13)
СЗА—С4А—Н4АА	120.5	C5B—C4B—H4BA	120.2
С5А—С4А—Н4АА	120.5	C3B—C4B—H4BA	120.2
C4A—C5A—C6A	121.70 (12)	C4B—C5B—C6B	121.71 (13)
С4А—С5А—Н5АА	119.1	C4B—C5B—H5BA	119.1
С6А—С5А—Н5АА	119.1	C6B—C5B—H5BA	119.1
C5A—C6A—C1A	118.61 (11)	C5B—C6B—C1B	118.27 (12)
C5A—C6A—C7A	117.69 (11)	C5B—C6B—C7B	118.22 (12)
C1A—C6A—C7A	123.68 (11)	C1B—C6B—C7B	123.51 (12)
N1A—C7A—N2A	122.40 (12)	N1B-C7B-N2B	124.22(12)
N1A—C7A—C6A	119.40 (11)	N1B-C7B-C6B	117.67 (11)
N2A—C7A—C6A	118.14 (12)	N2B—C7B—C6B	118.01 (11)
02A—C8A—N3A	123.82 (12)	O2B—C8B—N3B	124.54 (13)
02A—C8A—C9A	121.50 (11)	O2B—C8B—C9B	121.64 (13)
N3A—C8A—C9A	114.68 (11)	N3B-C8B-C9B	113.82(12)
С8А—С9А—Н9АА	109.5	C8B—C9B—H9BA	109.5
C8A—C9A—H9AB	109.5	C8B—C9B—H9BB	109.5

Н9АА—С9А—Н9АВ	109.5	Н9ВА—С9В—Н9ВВ	109.5
С8А—С9А—Н9АС	109.5	C8B—C9B—H9BC	109.5
Н9АА—С9А—Н9АС	109.5	Н9ВА—С9В—Н9ВС	109.5
Н9АВ—С9А—Н9АС	109.5	H9BB—C9B—H9BC	109.5
C8A—N3A—C1A—C2A	5.0 (2)	C8B—N3B—C1B—C2B	-31.7 (2)
C8A—N3A—C1A—C6A	-176.47 (12)	C8B—N3B—C1B—C6B	149.88 (14)
N3A—C1A—C2A—C3A	178.69 (12)	N3B—C1B—C2B—C3B	-179.89 (13)
C6A—C1A—C2A—C3A	0.20 (19)	C6B—C1B—C2B—C3B	-1.5 (2)
C1A—C2A—C3A—C4A	0.7 (2)	C1B—C2B—C3B—C4B	1.5 (2)
C2A—C3A—C4A—C5A	-1.0 (2)	C2B—C3B—C4B—C5B	-0.4 (2)
C3A—C4A—C5A—C6A	0.4 (2)	C3B—C4B—C5B—C6B	-0.7 (2)
C4A—C5A—C6A—C1A	0.45 (19)	C4B—C5B—C6B—C1B	0.7 (2)
C4A—C5A—C6A—C7A	-177.74 (12)	C4B—C5B—C6B—C7B	-178.83 (12)
C2A-C1A-C6A-C5A	-0.76 (18)	C2B—C1B—C6B—C5B	0.42 (19)
N3A—C1A—C6A—C5A	-179.30 (12)	N3B—C1B—C6B—C5B	178.85 (12)
C2A—C1A—C6A—C7A	177.32 (12)	C2B—C1B—C6B—C7B	179.89 (12)
N3A—C1A—C6A—C7A	-1.22 (18)	N3B—C1B—C6B—C7B	-1.69 (19)
O1A—N1A—C7A—N2A	2.73 (17)	O1B—N1B—C7B—N2B	3.63 (17)
O1A—N1A—C7A—C6A	179.87 (10)	O1B—N1B—C7B—C6B	179.80 (10)
C5A—C6A—C7A—N1A	-150.83 (12)	C5B—C6B—C7B—N1B	-152.96 (12)
C1A—C6A—C7A—N1A	31.08 (18)	C1B—C6B—C7B—N1B	27.57 (18)
C5A—C6A—C7A—N2A	26.43 (17)	C5B—C6B—C7B—N2B	23.45 (18)
C1A—C6A—C7A—N2A	-151.66 (13)	C1B—C6B—C7B—N2B	-156.02 (12)
C1A—N3A—C8A—O2A	-2.2 (2)	C1B—N3B—C8B—O2B	4.6 (2)
C1A—N3A—C8A—C9A	177.71 (13)	C1B—N3B—C8B—C9B	-174.30 (13)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H··· A
N3A—H3NA…N1A	0.883 (19)	2.048 (19)	2.7463 (18)	135.2 (15)
N3 <i>B</i> —H3 <i>NB</i> ···N1 <i>B</i>	0.86 (2)	1.963 (19)	2.6798 (17)	139.7 (17)
N2B—H1 NB ····O2B ⁱ	0.88 (2)	2.10(2)	2.9725 (17)	173.0 (17)
N2A—H2NA····O2A ⁱⁱ	0.87 (3)	2.53 (2)	3.3004 (17)	149.0 (17)
N2A— $H2NA$ ··· $N2B$ ⁱⁱⁱ	0.87 (3)	2.54 (2)	3.2522 (18)	139.6 (17)
N2B—H2NB····O2 A^{iv}	0.903 (19)	2.12 (2)	2.8900 (17)	142.1 (16)
O1 <i>A</i> —H1 <i>OA</i> ···O1 <i>B</i>	0.933 (19)	1.844 (19)	2.7733 (15)	173.9 (18)
$O1B$ — $H1OB$ ···· $N1A^{v}$	0.951 (18)	1.809 (18)	2.7597 (15)	177.0 (17)
C2 <i>A</i> —H2 <i>AA</i> ···O2 <i>A</i>	0.95	2.22	2.8556 (17)	123
$C5A$ — $H5AA$ ···O2 B^{vi}	0.95	2.55	3.2773 (17)	133
C9A—H9AC…N1B	0.98	2.56	3.499 (2)	160
$C4A$ — $H4AA$ ···· $Cg2^{ii}$	0.95	2.95	3.7524 (16)	143
$C3B$ — $H3BA$ ··· $Cg1^{vii}$	0.95	2.88	3.6645 (17)	141
-				

Symmetry codes: (i) -*x*+2, -*y*, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) -*x*+2, -*y*+1, -*z*+1; (iv) *x*+1, *y*, *z*; (v) -*x*+2, -*y*, -*z*+1; (vi) *x*, *y*+1, *z*-1; (vii) *x*, *y*, *z*+1.