Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2,2-Dibenzylhydrazin-1-ium chloride

Shahedeh Tayamon, ${ }^{\text {a }}$ Thahira Begum S. A. Ravoof, ${ }^{\text {a }}$ Mohamed Ibrahim Mohamed Tahir, ${ }^{\text {a }}$ Karen A. Crouse ${ }^{\mathrm{a}} \ddagger$ and Edward R. T. Tiekink ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Universiti Putra Malaysia, 43400 Serdang, Malaysia, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 4 February 2013; accepted 8 February 2013
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.047 ; w R$ factor $=0.129$; data-to-parameter ratio $=14.5$.

In the title salt, $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2}^{+} \cdot \mathrm{Cl}^{-}$, the central N atom is pyramidal (sum of bond angles $=330.9^{\circ}$) and there is a near orthogonal relationship between the benzene rings [dihedral angle $\left.=89.95(10)^{\circ}\right]$. The crystal packing features $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, which lead to a supramolecular undulating ribbon along the a axis comprising edge-shared eightmembered $\{\cdots \mathrm{HNH} \cdots \mathrm{Cl}\}_{2}$ synthons. The chains are connected into layers in the $a b$ plane by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Related literature

For background to the synthesis of S-substituted dithiocarbazates and their metal complexes, see: Ravoof et al. (2010); Tayamon et al. (2012). For the synthesis, see: Tarafder et al. (2000). For the structure of the diphenyl analogue of the cation, see: Stender et al. (2003).

Cl^{-}

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Cl}^{-} \\
& M_{r}=248.75 \\
& \text { Triclinicc, } P \overline{1} \\
& a=5.6155(4) \AA \\
& b=9.9804(7) \AA \\
& c=11.7302(9) \AA \\
& \alpha=79.532(6)^{\circ} \\
& \beta=7.508(6)^{\circ}
\end{aligned}
$$

$$
\gamma=83.550(6)^{\circ}
$$

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.72, T_{\text {max }}=0.95$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.129$
$S=1.07$
2407 reflections
166 parameters

6961 measured reflections 2407 independent reflections 2076 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.034$

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 9-\mathrm{C} 14$ phenyl ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{Cl} 1$	$0.94(3)$	$2.30(3)$	$3.2130(18)$	$163(2)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.97(2)$	$2.21(2)$	$3.1287(19)$	$158(2)$
$\mathrm{N} 2-\mathrm{H} 3 \mathrm{~N} \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.93(3)$	$2.20(3)$	$3.1235(18)$	$172(2)$
$\mathrm{C} 8-\mathrm{H} 8 A \cdots C g 1^{\mathrm{iii}}$	0.99	2.64	$3.542(2)$	152
Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x-1, y, z ;$ (iii) $-x+1,-y+1,-z+1$				

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Support for the project came from Universiti Putra Malaysia (UPM) through the purchase of the diffractometer and under their Research University Grant Scheme (RUGS No. 9174000), the Malaysian Ministry of Science, Technology and Innovation (grant No. 09-02-04-0752-EA001) and the Malaysian Fundamental Research Grant Scheme (FRGS No. 01-13-11-986FR). We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/ 12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7036).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Ravoof, T. B. S. A., Crouse, K. A., Tahir, M. I. M., How, F. N. F., Rosli, R. \& Watkin, D. J. (2010). Transition Met. Chem. 35, 871-876.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stender, M., Olmstead, M. M., Balch, A. L., Rios, D. \& Attar, S. (2003). Dalton Trans. pp. 4282-4287.
Tarafder, M. T. A., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. \& Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.

Tayamon, S., Ravoof, T. B. S. A., Tahir, M. I. M., Crouse, K. A. \& Tiekink, E. R. T. (2012). Acta Cryst. E68, o1640-o1641.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

[^0]
supporting information

Acta Cryst. (2013). E69, o382 [doi:10.1107/S1600536813003966]

2,2-Dibenzylhydrazin-1-ium chloride

Shahedeh Tayamon, Thahira Begum S. A. Ravoof, Mohamed Ibrahim Mohamed Tahir, Karen A. Crouse and Edward R. T. Tiekink

S1. Comment

In continuation of efforts to explore the structure-activity relationships of new S-substituted dithiocarbazates and their metal complexes (Ravoof et al., 2010; Tayamon et al., 2012), the title salt (I) was obtained during an attempt to prepare the benzylhydrazine analogue of S-benzyldithiocarbazate.
The asymmetric unit of salt (I) comprises a 2,2-dibenzylhydrazinium cation and a chloride anion, Fig. 1. The sum of the angles about the N 1 atom approximates 331° confirming its pyramidal nature. The dihedral angle between the phenyl rings is $89.95(10)^{\circ}$, thereby displaying an orthogonal relationship. Hydrazinium cations are comparatively rare in the crystallographic literature with the most closely related structure being that of the diphenyl analogue, isolated as its $\left[\mathrm{Au}(\mathrm{CN})_{2}{ }^{-}\right]$salt monohydrate (Stender et al., 2003). The $\mathrm{N}-\mathrm{N}$ distance in this structure of 1.453 (5) \AA is indistinguishable from that in (I) of 1.453 (2) \AA.
The crystal packing is dominated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, Table 1. Each ammonium- H atom forms a hydrogen atom with a chloride to generate an undulating ribbon along the a axis comprising edge-shared eight-membered $\left\{\cdots \mathrm{HNH} \cdots \mathrm{Cl}_{2}\right.$ synthons, Fig. 2. These are connected into layers in the $a b$ plane by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, Fig. 3 and Table 2. Layers stack along the c axis with no specific interactions between them.

S2. Experimental

The title compound was isolated as a side-product during the synthesis of a benzylhydrazine analogue of S-benzyldithiocarbazate using a procedure adapted from Tarafder et al. (2000). Potassium hydroxide ($0.02 \mathrm{~mol}, 1.12 \mathrm{~g}$) and benzylhydrazine ($0.02 \mathrm{~mol}, 3.9 \mathrm{~g}$) were each completely dissolved in chloroform $(20 \mathrm{ml})$. The benzylhydrazine solution was added to the cooled mixture of potassium hydroxide. The combined solution was kept in an ice-salt bath while carbon disulfide ($0.02 \mathrm{~mol}, 1.52 \mathrm{~g}$) was added with constant stirring over one hour. Benzylchloride ($0.02 \mathrm{~mol}, 2.3 \mathrm{ml}$) was added drop-wise to the above mixture with vigorous stirring. The initial precipitate was removed by filtration and then diethyl ether was added to the solution. A precipitate $(0.63 \mathrm{~g})$ was filtered from the solution after one day. Pale-yellow crystals of the title salt ($M . \mathrm{pt}>583 \mathrm{~K}$) were harvested from the filtrate on the second day $(0.30 \mathrm{~g})$.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.95$ to $0.99 \AA$) and were included in the refinement in the riding model approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {equiv }}(\mathrm{C})$. The nitrogen-bound H -atoms were refined freely.

Figure 1
The molecular structure of salt (I) showing displacement ellipsoids at the 50% probability level.

Figure 2
A view of the undulating supramolecular chain in (I) mediated by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (blue dashed lines) along the a axis.

Figure 3

A view of the crystal packing in projection down the a axis. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are shown as blue and purple dashed lines, respectively.

2,2-Dibenzylhydrazin-1-ium chloride

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{Cl}^{-}$
$M_{r}=248.75$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.6155$ (4) \AA
$b=9.9804$ (7) \AA
$c=11.7302(9) \AA$
$\alpha=79.532(6)^{\circ}$
$\beta=78.508(6)^{\circ}$
$\gamma=83.550(6)^{\circ}$
$V=631.54$ (8) \AA^{3}

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 16.1952 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.72, T_{\text {max }}=0.95$
$Z=2$
$F(000)=264$
$D_{\mathrm{x}}=1.308 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation, $\lambda=1.54180 \AA$
Cell parameters from 3230 reflections
$\theta=4-71^{\circ}$
$\mu=2.49 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.14 \times 0.09 \times 0.02 \mathrm{~mm}$

6961 measured reflections
2407 independent reflections
2076 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=71.5^{\circ}, \theta_{\text {min }}=3.9^{\circ}$
$h=-6 \rightarrow 6$
$k=-12 \rightarrow 11$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.129$
$S=1.07$
2407 reflections
166 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> Secondary atom site location: difference Fourier map
> Hydrogen site location: inferred from \quad neighbouring sites
> H atoms treated by a mixture of independent \quad and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.079 P)^{2}+0.1383 P\right]$
> where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.45$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\mathrm{iso}}{ }^{*} / U_{\mathrm{eq}}$
Cl1	$0.84514(8)$	$0.01710(5)$	$0.33994(4)$	$0.02664(19)$
N1	$0.2435(3)$	$0.28342(17)$	$0.37150(14)$	$0.0250(4)$
N2	$0.2870(3)$	$0.13600(18)$	$0.40100(16)$	$0.0248(4)$
H1n	$0.444(5)$	$0.104(3)$	$0.367(2)$	$0.033(6)^{*}$
H2n	$0.264(4)$	$0.109(3)$	$0.486(2)$	$0.034(6)^{*}$
H3n	$0.167(5)$	$0.095(3)$	$0.379(2)$	$0.041(7)^{*}$
C1	$0.2203(4)$	$0.3190(2)$	$0.24543(18)$	$0.0279(5)$
H1A	0.1843	0.4191	0.2271	0.033^{*}
H1B	0.0782	0.2754	0.2346	0.033^{*}
C2	$0.4393(4)$	$0.2781(2)$	$0.15639(17)$	$0.0250(4)$
C3	$0.6219(4)$	$0.3662(2)$	$0.10779(19)$	$0.0309(5)$
H3	0.6066	0.4551	0.1280	0.037^{*}
C4	$0.8266(4)$	$0.3253(2)$	$0.02986(19)$	$0.0340(5)$
H4	0.9500	0.3863	-0.0029	0.041^{*}
C5	$0.8508(4)$	$0.1958(2)$	$0.00005(19)$	$0.0313(5)$
H5	0.9908	0.1676	-0.0529	0.038^{*}
C6	$0.6703(4)$	$0.1077(2)$	$0.04771(18)$	$0.0301(5)$
H6	0.6871	0.0185	0.0279	0.036^{*}
C7	$0.4638(4)$	$0.1489(2)$	$0.12462(18)$	$0.0281(5)$
H7	0.3389	0.0884	0.1556	0.034^{*}
C8	$0.4435(4)$	$0.3486(2)$	$0.40018(18)$	$0.0269(5)$
H8A	0.4279	0.4481	0.3709	0.032^{*}
H8B	0.6021	0.3107	0.3601	0.032^{*}
C9	$0.4366(4)$	$0.3245(2)$	$0.53131(18)$	$0.0244(4)$

C10	$0.6359(4)$	$0.2601(2)$	$0.57891(19)$	$0.0282(5)$
H10	0.7779	0.2302	0.5281	0.034^{*}
C11	$0.6301(4)$	$0.2389(2)$	$0.70000(19)$	$0.0285(5)$
H11	0.7673	0.1944	0.7313	0.034^{*}
C12	$0.4247(4)$	$0.2827(2)$	$0.77478(18)$	$0.0269(5)$
H12	0.4207	0.2693	0.8574	0.032^{*}
C13	$0.2239(4)$	$0.3465(2)$	$0.72795(18)$	$0.0275(5)$
H13	0.0817	0.3759	0.7790	0.033^{*}
C14	$0.2303(4)$	$0.3675(2)$	$0.60783(18)$	$0.0259(4)$
H14	0.0925	0.4117	0.5769	0.031^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	$0.0242(3)$	$0.0312(3)$	$0.0251(3)$	$-0.00283(19)$	$-0.00452(19)$	$-0.0057(2)$
N1	$0.0277(9)$	$0.0256(9)$	$0.0217(9)$	$-0.0021(7)$	$-0.0038(7)$	$-0.0047(7)$
N2	$0.0237(10)$	$0.0277(10)$	$0.0233(9)$	$-0.0037(7)$	$-0.0040(7)$	$-0.0041(7)$
C1	$0.0296(11)$	$0.0293(11)$	$0.0236(10)$	$0.0006(9)$	$-0.0047(8)$	$-0.0032(8)$
C2	$0.0274(11)$	$0.0294(11)$	$0.0186(9)$	$-0.0006(8)$	$-0.0065(8)$	$-0.0035(8)$
C3	$0.0404(13)$	$0.0289(11)$	$0.0240(10)$	$-0.0048(9)$	$-0.0060(9)$	$-0.0048(9)$
C4	$0.0356(12)$	$0.0416(14)$	$0.0242(11)$	$-0.0113(10)$	$-0.0013(9)$	$-0.0035(9)$
C5	$0.0276(11)$	$0.0420(13)$	$0.0237(10)$	$0.0012(9)$	$-0.0037(8)$	$-0.0072(9)$
C6	$0.0356(12)$	$0.0308(12)$	$0.0247(10)$	$0.0016(9)$	$-0.0072(9)$	$-0.0073(9)$
C7	$0.0299(11)$	$0.0313(11)$	$0.0236(10)$	$-0.0043(9)$	$-0.0058(8)$	$-0.0037(9)$
C8	$0.0278(11)$	$0.0293(11)$	$0.0234(10)$	$-0.0066(8)$	$-0.0010(8)$	$-0.0054(8)$
C9	$0.0249(10)$	$0.0247(10)$	$0.0243(10)$	$-0.0071(8)$	$-0.0016(8)$	$-0.0057(8)$
C10	$0.0245(11)$	$0.0316(11)$	$0.0279(11)$	$-0.0033(8)$	$0.0013(8)$	$-0.0092(9)$
C11	$0.0266(11)$	$0.0279(11)$	$0.0320(11)$	$-0.0023(8)$	$-0.0076(9)$	$-0.0052(9)$
C12	$0.0310(11)$	$0.0291(11)$	$0.0215(10)$	$-0.0068(9)$	$-0.0045(8)$	$-0.0039(8)$
C13	$0.0268(11)$	$0.0280(11)$	$0.0264(11)$	$-0.0020(8)$	$-0.0001(8)$	$-0.0062(8)$
C14	$0.0250(10)$	$0.0256(11)$	$0.0268(10)$	$-0.0017(8)$	$-0.0047(8)$	$-0.0039(8)$

Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{N} 1-\mathrm{N} 2$	$1.453(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.392(3)$
$\mathrm{N} 1-\mathrm{C} 8$	$1.481(3)$	$\mathrm{C} 6-\mathrm{H} 6$	0.9500
$\mathrm{~N} 1-\mathrm{C} 1$	$1.485(3)$	$\mathrm{C} 7-\mathrm{H} 7$	0.9500
$\mathrm{~N} 2-\mathrm{H} 1 \mathrm{n}$	$0.94(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.506(3)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{n}$	$0.97(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~A}$	0.9900
$\mathrm{~N} 2-\mathrm{H} 3 \mathrm{n}$	$0.93(3)$	$\mathrm{C} 8-\mathrm{H} 8 \mathrm{~B}$	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	$1.516(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.391(3)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9900	$\mathrm{C} 9-\mathrm{C} 14$	$1.395(3)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	0.9900	$\mathrm{C} 10-\mathrm{C} 11$	$1.392(3)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.391(3)$	$\mathrm{C} 10-\mathrm{H} 10$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.391(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.383(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.391(3)$	$\mathrm{C} 11-\mathrm{H} 11$	0.9500
$\mathrm{C} 3-\mathrm{H} 3$	0.9500	$\mathrm{C} 12-\mathrm{C} 13$	$1.392(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.385(3)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9500

C4-H4	0.9500
C5-C6	1.381 (3)
C5-H5	0.9500
N2-N1-C8	108.71 (15)
N2-N1-C1	108.85 (15)
C8-N1-C1	113.32 (16)
N1-N2-H1n	112.5 (16)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{n}$	110.1 (14)
$\mathrm{H} 1 \mathrm{n}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{n}$	109 (2)
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 3 \mathrm{n}$	108.9 (16)
$\mathrm{H} 1 \mathrm{n}-\mathrm{N} 2-\mathrm{H} 3 \mathrm{n}$	112 (2)
$\mathrm{H} 2 \mathrm{n}-\mathrm{N} 2-\mathrm{H} 3 \mathrm{n}$	104 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	116.42 (16)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.2
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	108.2
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	107.3
C7-C2-C3	118.77 (19)
C7-C2-C1	119.93 (19)
C3-C2-C1	121.27 (18)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	120.7 (2)
C4-C3-H3	119.7
C2-C3-H3	119.7
C5-C4-C3	120.1 (2)
C5-C4-H4	119.9
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.9
C6-C5-C4	119.7 (2)
C6-C5-H5	120.2
C4-C5-H5	120.2
C5-C6-C7	120.4 (2)
C5-C6-H6	119.8
N2- $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-60.2 (2)
C8-N1-C1-C2	60.9 (2)
N1-C1-C2-C7	87.6 (2)
N1-C1-C2-C3	-90.4 (2)
C7-C2-C3-C4	-0.7 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	177.35 (19)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-0.2 (3)
C3-C4-C5-C6	0.2 (3)
C4-C5-C6-C7	0.5 (3)
C3-C2-C7-C6	1.5 (3)
C1-C2-C7-C6	-176.61 (18)
C5-C6-C7-C2	-1.4 (3)

$\mathrm{C} 13-\mathrm{C} 14$	$1.380(3)$
$\mathrm{C} 13-\mathrm{H} 13$	0.9500
$\mathrm{C} 14-\mathrm{H} 14$	0.9500

119.8
120.4 (2)
119.8
119.8
110.82 (17)
109.5
109.5
109.5
109.5
108.1
118.43 (19)
120.94 (18)
120.63 (18)
120.91 (19)
119.5
119.5
120.03 (19)
120.0
120.0
119.43 (19)
120.3
120.3
120.40 (18)
119.8
119.8
120.80 (19)
119.6
119.6
-66.5 (2)
172.31 (16)
122.1 (2)
-58.4 (3)
0.0 (3)
179.45 (19)
-0.3 (3)
0.7 (3)
-0.7 (3)
0.4 (3)
0.0 (3)
-179.51 (19)

supporting information

Hydrogen-bond geometry (A, ${ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 9-\mathrm{C} 14$ phenyl ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{Cl1}$	$0.94(3)$	$2.30(3)$	$3.2130(18)$	$163(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~N} \cdots \mathrm{Cl1}{ }^{\mathrm{i}}$	$0.97(2)$	$2.21(2)$	$3.1287(19)$	$158(2)$
$\mathrm{N} 2 — \mathrm{H} 3 \mathrm{~N} \cdots \mathrm{Cl1} 1^{\mathrm{ii}}$	$0.93(3)$	$2.20(3)$	$3.1235(18)$	$172(2)$
$\mathrm{C} 8 — \mathrm{H} 8 A \cdots \mathrm{C} 1^{\mathrm{iii}}$	0.99	2.64	$3.542(2)$	152

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $x-1, y, z$; (iii) $-x+1,-y+1,-z+1$.

[^0]: \ddagger Additional correspondence author, e-mail: crouse@pc.jaring.my.

