organic compounds

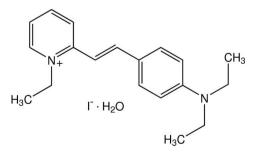
Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-2-[4-(Diethylamino)styryl]-1-ethylpyridinium iodide monohydrate

Suchada Chantrapromma,^a* + Nawong Boonnak,^b Narissara Kaewmanee,^a Ching Kheng Quah^c and Hoong-Kun Fun^{d,c}§

^aDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^bFaculty of Traditional Thai Medicine, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^dDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia Correspondence e-mail: suchada.c@psu.ac.th


Received 14 January 2013; accepted 24 February 2013

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.025; wR factor = 0.055; data-to-parameter ratio = 34.1.

In the title hydrated salt, $C_{19}H_{25}N_2^+ \cdot I^- \cdot H_2O$, the 4-(diethylamino)phenyl unit of the cation is disordered over two positions in a 0.847 (3):0.153 (3) ratio. The cation is twisted, with dihedral angles between the pyridinium and benzene rings of 11.25 (13) and 10.7 (8) $^{\circ}$ for the major and minor components, respectively. In the crystal, the three components are linked into a centrosymmetric 2:2:2 unit by $O-H \cdots I$ and C-H···O hydrogen bonds. π - π interactions with centroidcentroid distances of 3.5065 (7)-3.790 (9) Å are also present.

Related literature

For background to and applications of aminostyrylpyridinium compounds, see: Chanawanno et al. (2010); Larnbert et al. (1996). For related structures, see: Fun et al. (2011a,b); Kaewmanee et al. (2010). For bond-length data, see: Allen et al. (1987).

[‡] Thomson Reuters ResearcherID: A-5085-2009.

Experimental

Crystal data

$C_{19}H_{25}N_2^+ \cdot I^- \cdot H_2O$	$\gamma = 105.060 \ (1)^{\circ}$
$M_r = 426.33$	$\gamma = 105.060 \ (1)^{\circ}$ V = 986.05 (2) Å ³
Triclinic, P1	Z = 2
a = 7.9969 (1) Å	Mo $K\alpha$ radiation
b = 9.1336 (1) Å	$\mu = 1.63 \text{ mm}^{-1}$
c = 14.7740 (2) Å	$T = 100 { m K}$
$\alpha = 96.220 \ (1)^{\circ}$	$0.26 \times 0.23 \times 0.13 \text{ mm}$
$\beta = 105.430 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS: Bruker, 2009) $T_{\min} = 0.677, T_{\max} = 0.816$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.025$ $wR(F^2) = 0.055$ S = 1.088664 reflections 254 parameters 20 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.78 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.99 \text{ e } \text{\AA}^{-3}$

32289 measured reflections

 $R_{\rm int} = 0.025$

8664 independent reflections

7821 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1W-H1W\cdots I1^{i} \\ O1W-H2W\cdots I1^{ii} \end{array}$	0.85 (3) 0.86 (3)	2.71 (2) 2.75 (3)	3.5498 (12) 3.6055 (13)	176 (2) 171 (2)
$C3-H3A\cdots O1W^{iii}$	0.95	2.35	3.2072 (19)	150

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z; (iii) x, y + 1, z.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

SC, NB and NK thank Prince of Songkla University for a research grant. The authors also thank the Malaysian Government and Universiti Sains Malaysia for APEX DE2012 grant No. 1002/PFIZIK/910323.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5238).

References

doi:10.1107/S160053681300528X

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
- Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199-4208.
- Fun, H.-K., Kaewmanee, N., Chanawanno, K. & Chantrapromma, S. (2011a). Acta Cryst. E67, 0593-0594.
- Fun, H.-K., Kaewmanee, N., Chanawanno, K., Karalai, C. & Chantrapromma, S. (2011b). Acta Cryst. E67, o2488-o2489.
- Kaewmanee, N., Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2010). Acta Crvst. E66, 02639-02640.

[§] Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Larnbert, C., Mease, R. C., Amen, L., Le, T., Sabet, H. & McAfee, J. G. (1996). Nucl. Med. Biol., 23, 417-427. Sheldrick, G. M. (2008). Acta Cryst. A**64**, 112–122. Spek, A. L. (2009). Acta Cryst. D**65**, 148–155.

supporting information

Acta Cryst. (2013). E69, o458-o459 [doi:10.1107/S160053681300528X]

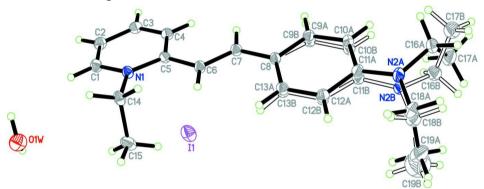
(E)-2-[4-(Diethylamino)styryl]-1-ethylpyridinium iodide monohydrate

Suchada Chantrapromma, Nawong Boonnak, Narissara Kaewmanee, Ching Kheng Quah and Hoong-Kun Fun

S1. Comment

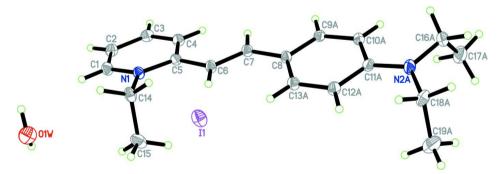
Aminostyryl pyridinium (ASP) salts have been widely synthesized and used as fluorescence dyes for lymphocytes labeling and preliminary diagnostic imaging studies on dogs having a sodium-urate-induced inflammation in their stifle joints (Larnbert *et al.*, 1996). Moreover, ASP salts have been reported to possess antibacterial activity (Chanawanno *et al.*, 2010). During the course of our research on synthesis and antibacterial activity of quaternary ammonium compounds (Chanawanno *et al.*, 2010; Kaewmanee *et al.*, 2010), the title aminostyryl pyridinium derivative (I) was synthesized and tested for antibacterial activity. Our antibacterial assay showed that (I) exhibit moderate activity against *Pseudomonas aeruginosa*. Herein its crystal structure is reported.

The asymmetric unit of the title compound (I) (Fig. 1) consists of the $C_{19}H_{25}N_2^+$ cation, I⁻ anion and one H_2O molecule. The 4-diethylaminophenyl unit of the cation is disordered over two positions; the major component *A* and the minor component *B* (Fig. 1), with the refined site-occupancy ratio of 0.847 (3)/0.153 (3). The cation exists in the *trans* configuration with respect to the C6=C7 double bond [1.3548 (16) Å] and the torsion angle C5—C6—C7—C8 = -176.54 (12)°. The cation is twisted as indicated by the dihedral angle between the C1–C5/N1 pyridinium and the C8–C13 benzene rings being 11.25 (13) and 10.7 (8)° for the major and minor components, respectively. It is interesting that the two ethyl groups of diethylamino moiety of both major and minor component *A* point towards the same direction (Fig. 2), whereas they pointed opposite to each other for the minor component *B* (Fig. 3). These orientations of the diethylamino group can be indicated by the torsion angles C11A—N2A—C16A—C17A = -81.12 (19)° and C11A—N2A—C18A—C19A = 81.4 (2)° for the major component *A* and C11B—N2B—C16B—C17B = 87.0 (11)° and C11B—N2B—C18B—C19B = 93.0 (19)° for the minor component *B*. The other ethyl unit attached to atom N1 also deviated from its bound pyridinium ring with the torsion angle C5—N1—C14—C15 = -86.95 (14)° for the major component *A* and -81 (7)° for the minor component *B*. The other ethyl unit aranges (Allen *et al.*, 1987) and comparable with related structures (Fun *et al.*, 2011*a,b*; Kaewmanee *et al.*, 2010).

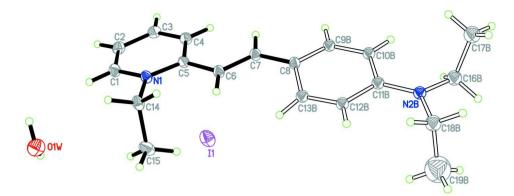

In the crystal packing, the cations, anions and water molecules are linked into a centrosymmetric 2:2:2 unit of the three components by O—H…I hydrogen bonds and a weak C—H…O interaction (Fig. 4 and Table 1). π – π interactions with the centroid distances of Cg1… $Cg1^v = 3.5065$ (7) Å [symmetry code (v) = 1 - x, 2 - y, 1 - z], Cg1… $Cg2^{ii} = 3.5796$ (16) Å and Cg1… $Cg3^{ii} = 3.790$ (9) Å were observed; Cg1, Cg2 and Cg3 are the centroids of N1/C1–C5, C8/C9A–C13A and C8/C9B–C13B rings, respectively.

S2. Experimental

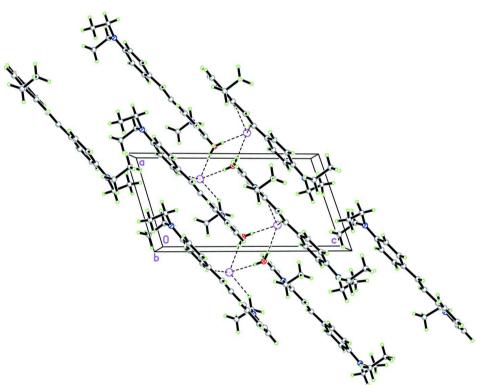
The title compound (I) was prepared by mixing 1:1:1 molar ratio solutions of 1-ethyl-2-methylpyridinium iodide (1 g, 4 mmol), 4-diethylaminobenzaldehyde (0.7 g, 4 mmol) and piperidine (0.4 ml, 4 mmol) in methanol (40 ml). The resulting solution was stirred for 4 h under a nitrogen atmosphere. The orange solid which formed was filtered and washed with diethylether. Orange block-shaped single crystals of (I) suitable for *x*-ray structure determination were recrystallized from methanol by slow evaporation at room temperature over a few weeks, M.p. 446–448 K.


S3. Refinement

Water H atoms were located in a difference Fourier map and the positions were refined freely, with $U_{iso}(H) = 1.5U_{eq}(O)$. The remaining H atoms were fixed geometrically and all hydrogen atoms were allowed to ride on their parent atoms, with d(C-H) = 0.95 for aromatic and CH, 0.99 for CH₂ and 0.98 Å for CH₃ atoms. Their U_{iso} values were constrained to be $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for the remaining H atoms. A rotating group model was used for the methyl groups. The 4-diethylaminophenyl unit is disordered over two sites with refined site occupancies of 0.847 (3) and 0.153 (3). The non-hydrogen atoms of the minor component were refined isotropically with the U_{iso} values of N2B, C9B, C10B, C11B, C12B and C13B being fixed at 0.01583 Å².


Figure 1

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.


Figure 2

The molecular structure of the major component *A*, showing the orientation of the two ethyl groups of the diethylamino pointing towards the same direction.

Figure 3

The molecular structure of the minor component B, showing the orientation of the two ethyl groups of the diethylamino pointing in opposite direction.

Figure 4

The crystal packing of the major component viewed along the *b* axis. Hydrogen bonds are drawn as dashed lines.

(E)-2-[4-(Diethylamino)styryl]-1-ethylpyridinium iodide monohydrate

Crystal data	
$C_{19}H_{25}N_2^+ \cdot I^- \cdot H_2O$	$\alpha = 96.220 (1)^{\circ}$
$M_r = 426.33$	$\beta = 105.430 \ (1)^{\circ}$
Triclinic, P1	$\gamma = 105.060 \ (1)^{\circ}$
Hall symbol: -P 1	$V = 986.05 (2) \text{ Å}^3$
<i>a</i> = 7.9969 (1) Å	Z = 2
a = 7.9969 (1) A	E = 2
b = 9.1336 (1) Å	F(000) = 432
c = 14.7740 (2) Å	$D_{\rm x} = 1.436 {\rm ~Mg} {\rm ~m}^{-3}$

Melting point = 466–468 K Mo *Ka* radiation, λ = 0.71073 Å Cell parameters from 8664 reflections θ = 1.5–35.2°

Data collection

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.025$	Hydrogen site location: inferred from
$wR(F^2) = 0.055$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
8664 reflections	and constrained refinement
254 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0222P)^2 + 0.355P]$
20 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.78 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.99 \ {\rm e} \ {\rm \AA}^{-3}$

 $\mu = 1.63 \text{ mm}^{-1}$

Block, orange

 $0.26 \times 0.23 \times 0.13$ mm

 $\theta_{\text{max}} = 35.2^{\circ}, \ \theta_{\text{min}} = 1.5^{\circ}$

32289 measured reflections 8664 independent reflections 7821 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.025$

 $h = -12 \rightarrow 12$ $k = -14 \rightarrow 14$ $l = -23 \rightarrow 23$

Special details

Experimental. The data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)	Fractional atomic coordinates and	isotropic or equiv	alent isotropic displac	ement parameters (Ų)
---	-----------------------------------	--------------------	-------------------------	----------------------

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
I1	0.748096 (12)	0.409068 (8)	0.331067 (6)	0.02160 (3)	
O1W	0.11907 (16)	0.28996 (13)	0.46705 (9)	0.0284 (2)	
H1W	0.155 (3)	0.359 (3)	0.5168 (17)	0.043*	
H2W	0.029 (3)	0.310 (3)	0.4293 (17)	0.043*	
N1	0.35581 (14)	0.74599 (11)	0.39233 (7)	0.01566 (17)	
C1	0.22228 (17)	0.76646 (14)	0.42876 (9)	0.0186 (2)	
H1A	0.1520	0.6823	0.4484	0.022*	
C2	0.18657 (17)	0.90514 (14)	0.43787 (9)	0.0197 (2)	
H2A	0.0926	0.9176	0.4632	0.024*	
C3	0.29171 (17)	1.02765 (14)	0.40898 (9)	0.0191 (2)	

	0.2722	1 12(0	0.4160	0.022*	
H3A	0.2723	1.1260	0.4160	0.023*	
C4	0.42409 (17)	1.00497 (13)	0.37018 (9)	0.0175 (2)	
H4A	0.4942	1.0884	0.3498	0.021*	
C5	0.45769 (16)	0.86130 (12)	0.36008 (8)	0.01505 (19)	
C6	0.59165 (16)	0.83175 (13)	0.31664 (9)	0.0161 (2)	
H6A	0.5979	0.7292	0.3053	0.019*	
C7	0.70797 (16)	0.94503 (13)	0.29176 (8)	0.01576 (19)	
H7A	0.7022	1.0469	0.3076	0.019*	
C8	0.83991 (16)	0.92867 (12)	0.24387 (8)	0.01542 (19)	
C14	0.38311 (18)	0.59060 (13)	0.38875 (10)	0.0191 (2)	
H14A	0.3470	0.5438	0.4407	0.023*	
H14B	0.5137	0.6016	0.3994	0.023*	
C15	0.2723 (2)	0.48452 (15)	0.29321 (11)	0.0260 (3)	
H15A	0.2873	0.3816	0.2947	0.039*	
H15B	0.3145	0.5264	0.2421	0.039*	
H15C	0.1435	0.4771	0.2812	0.039*	
N2A	1.2553 (2)	0.91163 (15)	0.11947 (12)	0.0199 (3)	0.847 (3)
C9A	0.9548 (3)	1.0628 (4)	0.22893 (14)	0.0158 (4)	0.847 (3)
H9A	0.9404	1.1600	0.2487	0.019*	0.847 (3)
C10A	1.0880 (2)	1.0578 (2)	0.18638 (12)	0.0167 (3)	0.847 (3)
H10A	1.1620	1.1511	0.1770	0.020*	0.847 (3)
C11A	1.1162 (2)	0.9159 (2)	0.15659 (11)	0.0162 (3)	0.847 (3)
C12A	0.9984 (7)	0.7803 (5)	0.1698 (5)	0.0183 (9)	0.847 (3)
H12A	1.0092	0.6826	0.1477	0.022*	0.847 (3)
C13A	0.8679 (6)	0.7869 (6)	0.2142 (4)	0.0168 (7)	0.847 (3)
H13A	0.7954	0.6941	0.2249	0.020*	0.847 (3)
C16A	1.3859 (2)	1.05464 (18)	0.11576 (11)	0.0219 (3)	0.847 (3)
H16A	1.4992	1.0323	0.1127	0.026*	0.847 (3)
H16B	1.4162	1.1291	0.1759	0.026*	0.847 (3)
C17A	1.3210 (3)	1.1305 (2)	0.03204 (13)	0.0289 (4)	0.847 (3)
H17A	1.4122	1.2292	0.0378	0.043*	0.847 (3)
H17B	1.2056	1.1488	0.0324	0.043*	0.847 (3)
H17C	1.3031	1.0625	-0.0280	0.043*	0.847 (3)
C18A	1.2781 (3)	0.7663 (2)	0.08186 (18)	0.0221 (4)	0.847 (3)
H18A	1.2523	0.6923	0.1243	0.027*	0.847 (3)
H18B	1.4067	0.7846	0.0838	0.027*	0.847 (3)
C19A	1.1561 (5)	0.6927 (4)	-0.02058 (19)	0.0335 (5)	0.847 (3)
H19A	1.1788	0.5957	-0.0405	0.050*	0.847 (3)
H19B	1.1832	0.7635	-0.0637	0.050*	0.847 (3)
H19C	1.0282	0.6718	-0.0231	0.050*	0.847 (3)
N2B	1.1981 (11)	0.9042 (8)	0.0815 (6)	0.016*	0.153 (3)
C9B	0.932 (2)	1.059 (2)	0.2133 (12)	0.016*	0.153 (3)
H9B	0.9092	1.1547	0.2278	0.019*	0.153 (3)
C10B	1.0539 (16)	1.0528 (13)	0.1633 (8)	0.016*	0.153 (3)
H10B	1.1190	1.1446	0.1479	0.019*	0.153 (3)
C11B	1.0830 (16)	0.9109 (13)	0.1347 (8)	0.016*	0.153 (3)
C12B	0.982 (5)	0.779 (3)	0.161 (3)	0.016*	0.153 (3)
H12B	1.0049	0.6830	0.1481	0.019*	0.153 (3)
11120	1.0012	0.0000		0.017	0.125 (5)

C13B	0.851 (4)	0.788 (4)	0.204 (2)	0.016*	0.153 (3)
H13B	0.7665	0.6950	0.2076	0.019*	0.153 (3)
C16B	1.2738 (12)	1.0334 (9)	0.0393 (6)	0.0224 (18)*	0.153 (3)
H16C	1.1818	1.0880	0.0200	0.027*	0.153 (3)
H16D	1.2972	0.9918	-0.0192	0.027*	0.153 (3)
C17B	1.4473 (13)	1.1485 (11)	0.1044 (7)	0.028 (2)*	0.153 (3)
H37D	1.4800	1.2380	0.0745	0.042*	0.153 (3)
H37E	1.5451	1.1002	0.1156	0.042*	0.153 (3)
H37F	1.4297	1.1822	0.1656	0.042*	0.153 (3)
C18B	1.246 (2)	0.7623 (14)	0.0573 (9)	0.024 (3)*	0.153 (3)
H18C	1.2383	0.7014	0.1084	0.029*	0.153 (3)
H18D	1.3733	0.7919	0.0565	0.029*	0.153 (3)
C19B	1.129 (4)	0.662 (3)	-0.0358 (16)	0.068 (9)*	0.153 (3)
H39D	1.1699	0.5718	-0.0466	0.102*	0.153 (3)
H39E	1.1363	0.7206	-0.0873	0.102*	0.153 (3)
H39F	1.0023	0.6287	-0.0351	0.102*	0.153 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
I1	0.02157 (4)	0.01510 (3)	0.03178 (5)	0.00740 (3)	0.01155 (3)	0.00642 (3)
O1W	0.0277 (5)	0.0287 (5)	0.0332 (6)	0.0139 (4)	0.0125 (5)	0.0033 (4)
N1	0.0139 (4)	0.0150 (4)	0.0190 (4)	0.0045 (3)	0.0065 (4)	0.0034 (3)
C1	0.0151 (5)	0.0207 (5)	0.0214 (5)	0.0051 (4)	0.0082 (4)	0.0039 (4)
C2	0.0163 (5)	0.0230 (5)	0.0211 (5)	0.0078 (4)	0.0072 (4)	0.0016 (4)
C3	0.0195 (5)	0.0194 (5)	0.0196 (5)	0.0093 (4)	0.0055 (4)	0.0019 (4)
C4	0.0189 (5)	0.0148 (4)	0.0200 (5)	0.0061 (4)	0.0070 (4)	0.0030 (4)
C5	0.0144 (5)	0.0140 (4)	0.0170 (5)	0.0039 (3)	0.0056 (4)	0.0028 (3)
C6	0.0165 (5)	0.0146 (4)	0.0193 (5)	0.0050 (4)	0.0084 (4)	0.0035 (4)
C7	0.0161 (5)	0.0146 (4)	0.0179 (5)	0.0049 (4)	0.0069 (4)	0.0035 (4)
C8	0.0165 (5)	0.0141 (4)	0.0168 (5)	0.0044 (4)	0.0070 (4)	0.0036 (4)
C14	0.0192 (5)	0.0148 (4)	0.0275 (6)	0.0064 (4)	0.0114 (5)	0.0077 (4)
C15	0.0231 (6)	0.0165 (5)	0.0362 (7)	0.0032 (4)	0.0100 (6)	0.0000 (5)
N2A	0.0189 (6)	0.0213 (5)	0.0225 (7)	0.0066 (5)	0.0114 (6)	0.0030 (5)
C9A	0.0178 (10)	0.0138 (5)	0.0158 (10)	0.0042 (7)	0.0062 (8)	0.0022 (8)
C10A	0.0172 (8)	0.0160 (5)	0.0169 (8)	0.0030 (5)	0.0071 (6)	0.0025 (6)
C11A	0.0161 (8)	0.0184 (5)	0.0150 (7)	0.0057 (6)	0.0061 (6)	0.0026 (6)
C12A	0.0204 (17)	0.0155 (5)	0.021 (2)	0.0068 (7)	0.0088 (17)	0.0031 (7)
C13A	0.0179 (13)	0.0137 (5)	0.0203 (17)	0.0051 (7)	0.0076 (13)	0.0045 (8)
C16A	0.0166 (7)	0.0262 (7)	0.0224 (7)	0.0040 (5)	0.0082 (5)	0.0035 (5)
C17A	0.0342 (9)	0.0323 (8)	0.0247 (8)	0.0097 (7)	0.0151 (7)	0.0087 (6)
C18A	0.0256 (10)	0.0258 (8)	0.0205 (10)	0.0122 (7)	0.0120 (9)	0.0036 (7)
C19A	0.0454 (14)	0.0327 (10)	0.0234 (9)	0.0128 (10)	0.0124 (9)	0.0023 (8)

Geometric parameters (Å, °)

O1W—H1W	0.84 (2)	C12A—H12A	0.9500
O1W—H2W	0.86 (3)	С13А—Н13А	0.9500

N1—C1	1.3611 (15)	C16A—C17A	1.520 (3)
N1—C5	1.3672 (15)	C16A—H16A	0.9900
N1—C14	1.4886 (15)	C16A—H16B	0.9900
C1—C2	1.3695 (17)	C17A—H17A	0.9800
C1—H1A	0.9500	C17A—H17B	0.9800
C2—C3	1.3953 (18)	C17A—H17C	0.9800
C2—H2A	0.9500	C18A—C19A	1.532 (4)
C3—C4	1.3796 (17)	C18A—H18A	0.9900
С3—НЗА	0.9500	C18A—H18B	0.9900
C4—C5	1.4066 (16)	C19A—H19A	0.9800
C4—H4A	0.9500	C19A—H19B	0.9800
C5—C6	1.4529 (16)	C19A—H19C	0.9800
C6—C7	1.3548 (16)	N2B—C11B	1.369 (11)
С6—Н6А	0.9500	N2B—C16B	1.462 (10)
С7—С8	1.4465 (16)	N2B—C18B	1.477 (12)
C7—H7A	0.9500	C9B—C10B	1.379 (15)
C8—C13B	1.39 (3)	C9B—H9B	0.9500
C8—C9A	1.405 (3)	C10B—C11B	1.415 (12)
C8—C13A	1.414 (5)	C10B—H10B	0.9500
C8—C9B	1.42 (2)	C11B—C12B	1.419 (15)
C14—C15	1.5193 (19)	C12B—C13B	1.383 (17)
C14—H14A	0.9900	C12B—H12B	0.9500
C14—H14B	0.9900	C13B—H13B	0.9500
C15—H15A	0.9800	C16B—C17B	1.506 (11)
C15—H15B	0.9800	C16B—H16C	0.9900
C15—H15C	0.9800	C16B—H16D	0.9900
N2A—C11A	1.372 (2)	C17B—H37D	0.9800
N2A—C18A	1.457 (2)	C17B—H37E	0.9800
N2A—C16A	1.462 (2)	C17B—H37F	0.9800
C9A—C10A	1.381 (3)	C18B—C19B	1.484 (16)
С9А—Н9А	0.9500	C18B—H18C	0.9900
C10A—C11A	1.416 (2)	C18B—H18D	0.9900
C10A—H10A	0.9500	C19B—H39D	0.9800
C11A—C12A	1.416 (3)	C19B—H39E	0.9800
C12A—C13A	1.382 (3)	C19B—H39F	0.9800
H1W—O1W—H2W	105 (2)	C11A—C12A—H12A	119.3
C1—N1—C5	121.81 (10)	C12A—C13A—C8	121.4 (4)
C1—N1—C14	116.17 (10)	C12A—C13A—H13A	119.3
C5—N1—C14	122.02 (10)	C8—C13A—H13A	119.3
N1—C1—C2	121.79 (12)	N2A—C16A—C17A	114.86 (15)
N1—C1—H1A	119.1	N2A—C16A—H16A	108.6
C2—C1—H1A	119.1	C17A—C16A—H16A	108.6
C1—C2—C3	118.30 (11)	N2A—C16A—H16B	108.6
C1—C2—H2A	120.9	C17A—C16A—H16B	108.6
C3—C2—H2A	120.9	H16A—C16A—H16B	107.5
C4—C3—C2	119.53 (11)	N2A—C18A—C19A	114.4 (2)
C4—C3—H3A	120.2	N2A—C18A—H18A	108.7

С2—С3—НЗА	120.2	C19A—C18A—H18A	108.7
C3—C4—C5	121.55 (11)	N2A—C18A—H18B	108.7
C3—C4—H4A	119.2	C19A—C18A—H18B	108.7
C5—C4—H4A	119.2	H18A—C18A—H18B	107.6
N1—C5—C4	116.96 (10)	C11B—N2B—C16B	122.6 (7)
N1—C5—C6	119.97 (10)	C11B—N2B—C18B	122.3 (9)
C4—C5—C6	123.06 (11)	C16B—N2B—C18B	115.0 (8)
C7—C6—C5	122.42 (10)	C10B—C9B—C8	122.4 (15)
С7—С6—Н6А	118.8	C10B—C9B—H9B	118.8
С5—С6—Н6А	118.8	C8—C9B—H9B	118.8
C6—C7—C8	127.43 (10)	C9B—C10B—C11B	120.6 (13)
С6—С7—Н7А	116.3	C9B—C10B—H10B	119.7
С8—С7—Н7А	116.3	C11B—C10B—H10B	119.7
C13B—C8—C9A	117.3 (10)	N2B-C11B-C10B	120.3 (10)
C9A—C8—C13A	116.9 (2)	N2B—C11B—C12B	123.1 (14)
C13B—C8—C9B	115.7 (12)	C10B—C11B—C12B	116.6 (14)
C13A—C8—C9B	116.6 (7)	C13B—C12B—C11B	121 (2)
C13B—C8—C7	124.1 (10)	C13B—C12B—H12B	119.4
C9A—C8—C7	118.43 (13)	C11B—C12B—H12B	119.4
C13A—C8—C7	124.64 (19)	C12B—C13B—C8	122 (2)
C9B—C8—C7	118.3 (7)	C12B—C13B—H13B	119.2
N1—C14—C15	111.56 (11)	C8—C13B—H13B	119.2
N1—C14—H14A	109.3	N2B—C16B—C17B	114.5 (8)
C15—C14—H14A	109.3	N2B—C16B—H16C	108.6
N1—C14—H14B	109.3	C17B—C16B—H16C	108.6
C15—C14—H14B	109.3	N2B—C16B—H16D	108.6
H14A—C14—H14B	108.0	C17B—C16B—H16D	108.6
C14—C15—H15A	109.5	H16C—C16B—H16D	107.6
C14—C15—H15B	109.5	C16B—C17B—H37D	109.5
H15A—C15—H15B	109.5	C16B—C17B—H37E	109.5
C14—C15—H15C	109.5	H37D—C17B—H37E	109.5
H15A—C15—H15C	109.5	C16B—C17B—H37F	109.5
H15B—C15—H15C	109.5	H37D—C17B—H37F	109.5
C11A—N2A—C18A	121.83 (15)	H37E—C17B—H37F	109.5
C11A—N2A—C16A	120.56 (13)	N2B—C18B—C19B	114.7 (14)
C18A—N2A—C16A	117.61 (13)	N2B—C18B—H18C	108.6
C10A—C9A—C8	122.1 (2)	C19B—C18B—H18C	108.6
C10A—C9A—C8 C10A—C9A—H9A	118.9	N2B—C18B—H18D	108.6
	118.9		
C8—C9A—H9A C9A—C10A—C11A		C19B—C18B—H18D	108.6
	121.06 (19)	H18C—C18B—H18D	107.6
C9A—C10A—H10A	119.5	C18B—C19B—H39D	109.5
C11A—C10A—H10A	119.5	C18B—C19B—H39E	109.5
N2A—C11A—C12A	121.9 (2)	H39D—C19B—H39E	109.5
N2A—C11A—C10A	121.11 (16)	C18B—C19B—H39F	109.5
C12A—C11A—C10A	116.9 (2)	H39D—C19B—H39F	109.5
C13A—C12A—C11A	121.5 (4)	H39E—C19B—H39F	109.5
C13A—C12A—H12A	119.3		

C5—N1—C1—C2	-2.09 (19)	C10A—C11A—C12A—C13A	-3.2 (7)
C14—N1—C1—C2	178.50 (12)	C11A—C12A—C13A—C8	3.3 (8)
N1—C1—C2—C3	-0.24 (19)	C13B—C8—C13A—C12A	93 (10)
C1—C2—C3—C4	1.65 (19)	C9A—C8—C13A—C12A	-2.0 (6)
C2—C3—C4—C5	-0.85 (19)	C9B—C8—C13A—C12A	9.2 (10)
C1—N1—C5—C4	2.81 (17)	C7—C8—C13A—C12A	-179.1 (4)
C14—N1—C5—C4	-177.81 (11)	C11A—N2A—C16A—C17A	-81.12 (19)
C1—N1—C5—C6	-176.43 (11)	C18A—N2A—C16A—C17A	98.4 (2)
C14—N1—C5—C6	2.94 (17)	C11A—N2A—C18A—C19A	81.4 (2)
C3—C4—C5—N1	-1.35 (18)	C16A—N2A—C18A—C19A	-98.1 (2)
C3—C4—C5—C6	177.87 (12)	C13B—C8—C9B—C10B	-12 (2)
N1—C5—C6—C7	-173.61 (12)	C9A—C8—C9B—C10B	89 (5)
C4—C5—C6—C7	7.19 (19)	C13A—C8—C9B—C10B	-4.8 (18)
C5—C6—C7—C8	-176.54 (12)	C7—C8—C9B—C10B	-177.0 (11)
C6—C7—C8—C13B	8.8 (18)	C8—C9B—C10B—C11B	4 (2)
C6—C7—C8—C9A	-176.71 (14)	C16B-N2B-C11B-C10B	-9.6 (15)
C6—C7—C8—C13A	0.4 (3)	C18B-N2B-C11B-C10B	174.4 (10)
C6—C7—C8—C9B	172.0 (8)	C16B—N2B—C11B—C12B	168 (2)
C1—N1—C14—C15	92.46 (13)	C18B—N2B—C11B—C12B	-8 (3)
C5—N1—C14—C15	-86.95 (14)	C9B—C10B—C11B—N2B	177.1 (12)
C13B—C8—C9A—C10A	-7.1 (16)	C9B-C10B-C11B-C12B	0 (3)
C13A—C8—C9A—C10A	0.7 (3)	N2B-C11B-C12B-C13B	-172 (3)
C9B-C8-C9A-C10A	-90 (4)	C10B—C11B—C12B—C13B	5 (5)
C7—C8—C9A—C10A	178.03 (14)	C11B—C12B—C13B—C8	-15 (6)
C8—C9A—C10A—C11A	-0.7 (2)	C9A—C8—C13B—C12B	6 (4)
C18A—N2A—C11A—C12A	6.8 (4)	C13A—C8—C13B—C12B	-82 (10)
C16A—N2A—C11A—C12A	-173.7 (4)	C9B—C8—C13B—C12B	17 (4)
C18A—N2A—C11A—C10A	-175.31 (17)	C7—C8—C13B—C12B	-179 (3)
C16A—N2A—C11A—C10A	4.2 (2)	C11B-N2B-C16B-C17B	87.0 (11)
C9A—C10A—C11A—N2A	-176.13 (15)	C18B—N2B—C16B—C17B	-96.8 (10)
C9A—C10A—C11A—C12A	1.9 (4)	C11B—N2B—C18B—C19B	93.0 (19)
N2A—C11A—C12A—C13A	174.8 (4)	C16B—N2B—C18B—C19B	-83.3 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A
$O1W$ — $H1W$ ···· $I1^{i}$	0.85 (3)	2.71 (2)	3.5498 (12)	176 (2)
$O1W - H2W - I1^{ii}$	0.86 (3)	2.75 (3)	3.6055 (13)	171 (2)
C3—H3A…O1 <i>W</i> ⁱⁱⁱ	0.95	2.35	3.2072 (19)	150

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*-1, *y*, *z*; (iii) *x*, *y*+1, *z*.