

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1β , 15a-Dihydroxy-16a, 17-epoxypregn-4ene-3,20-dione

Yan-Bing Shen, Yi-Bo Wang, Jian-Mei Luo and Min Wang*

Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China Correspondence e-mail: minw@tust.edu.cn

Received 18 January 2013; accepted 20 February 2013

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.043; wR factor = 0.077; data-to-parameter ratio = 17.2.

The title molecule, C₂₁H₂₈O₅, is composed of three sixmembered rings (A/B/C) and a five-membered ring (D). Ring A adopts a 1 α -sofa conformation, while rings B and C adopt chair conformations. Cyclopentane ring D adopts a 14α envelope conformation. In the crystal, $O-H \cdots O$ hydrogen bonds lead to the formation of ribbons running along the a axis. The structure is further consolidated by $C-H \cdots O$ interactions, which link the molecules head-to-tail into ribbons along the *a* axis.

Related literature

For background to 16α , 17α -epoxyprogesterone, see: Breskvar et al. (1995); Zhou et al. (2009). For the crystal structure of a related compound, see: Nie et al. (2005).

Experimental

Crystal data C21H28O5

 $M_r = 360.43$

Orthorhombic, $P2_12_12_1$ a = 7.6372 (10) Åb = 13.7067 (16) Åc = 17.083 (2) Å V = 1788.3 (4) Å³

Data collection

Rigaku Saturn 724CCD	18889 measured reflections
diffractometer	4237 independent reflections
Absorption correction: multi-scan	3529 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku, 2005)	$R_{\rm int} = 0.062$
$T_{\min} = 0.980, \ T_{\max} = 0.987$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	H atoms treated by a mixture of
$wR(F^2) = 0.077$	independent and constrained
S = 0.94	refinement
4237 reflections	$\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$
246 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1-H1···O4 ⁱ	0.88 (2)	2.06 (2)	2.929 (2)	168
O3−H3···O5 ⁱⁱ	0.86(2)	1.95 (2)	2.767 (2)	159
$C1 - H1A \cdots O3^{i}$	1.00	2.59	3.527 (2)	157
$C6-H6A\cdotsO1^{ii}$	0.99	2.59	3.527 (2)	158
$C12 - H12B \cdots O3^{iii}$	0.99	2.52	3.468 (2)	161
$C21 - H21B \cdots O2^{iv}$	0.98	2.53	3.501 (2)	170

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (ii) x - 1, y, z; (iii) x + 1, y, z; (iv) x, y - 1, z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the National High Technology Research and Development of China (2011AA02A211) and the National Natural Science Foundation of China (Nos. 21076158 and 21276196).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2620).

References

Breskvar, K., Ferencak, Z. & Hudnik-Plevnik, T. (1995). J. Steroid Biochem. Mol. Biol. 52, 271-275.

Nie, Q., Wang, J.-K., Wang, S. & Zhang, M.-J. (2005). Acta Cryst. E61, 0912-0913

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Zhou, H., Lu, W., Wen, J. & Ma, L. (2009). J. Mol. Catal. B Enzym. 56, 136-141.

Mo $K\alpha$ radiation

 $0.22 \times 0.18 \times 0.14 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 113 K

Z = 4

supporting information

Acta Cryst. (2013). E69, o447 [doi:10.1107/S1600536813005023]

1β , 15α -Dihydroxy- 16α , 17-epoxypregn-4-ene-3, 20-dione

Yan-Bing Shen, Yi-Bo Wang, Jian-Mei Luo and Min Wang

S1. Comment

 16α , 17α -Epoxyprogesterone (EP) is an important intermediate for many hormone based pharmaceuticals, such as hydrocortisone and megestrol, produced through 11α -hydroxylation by microorganisms in the industry (Zhou *et al.*, 2009; Breskvar *et al.*, 1995).

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in a closely related compound (Nie *et al.*, 2005). The title compound has three six-membered rings (A/B/C) and one five-membered rings (D). Ring A has a 1 α -sofa conformation. Rings B and C adopt chair conformations, while the cyclopentane ring D adopts a 14 α -envelope conformation. The 1-hydroxy is in β and 15-hydroxy in α configuration. In the crystal packing (Fig. 2 & Tab 1), there are intermolecular hydrogen bonds O3—H3···O5 and O1—H1···O4 which stabilize the structure and contribute to the formation of one-dimensional ribbons running along the *a*-axis. The structure is further consolidated by intermolecular hydrogen bonding interactions of the type C—H···O (Tab. 1).

S2. Experimental

Colletotrichum lini AS3. 4486 was obtained from Institute of Microbiology, Chinese Academy of Sciences. The strain was cultivated in shake flasks in two stages. Firstly, mycelium was grown on seed medium (glucose 30 g/L, corn steep liquor 10 g/L, pH 7.0) for 72 h on a rotary shaker (200 r/min) at 298 K. At the second stage, 10% (ν/ν) of the first mycelium obtained were added to the growing medium containing (g/l): glucose 30, corn steep liquor 10, soy meal 10, NaNO₃ 2, KH₂PO₄ 1, K₂HPO₄ 2, MgSO₄.7H₂O 0.5, KCl 0.5, FeSO₄.7H₂O 0.02 (pH 7.0) and incubated for 24 h at the same conditions. Thereafter 50 mg of the 16 α ,17 α -epoxyprogesterone dissolved in 1 ml of ethanol was added to the culture after 24 h for growth and the reaction was allowed to proceed for 72 h. The mycelium was then removed by filteration. The biomass and the broth were extracted separately with EtOAc. All extracts were combined and dried (anhydr. Na₂SO₄). The solvents after filtration were evaporated under reduced pressure. The crude extracts were purified by Si gel column using dichloromethane/ether/methanol (25:2:1, $\nu/\nu/\nu$). The white powder was diffused with n-hexane/acetone at room temperature. Colourless prismatic crystals suitable for X-ray analysis were obtained.

S3. Refinement

The hydroxyl H atoms were located from difference Fourier maps and refined freely. The H atoms bonded to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.95, 0.98, 0.99, 1.00 Å, for aryl, methyl, methylene and methyne H-atoms, respectively. The U_{iso} (H) were allowed at $1.5U_{eq}$ (C methyl) or $1.2U_{eq}$ (C non-methyl). In the absence of sufficient anomalous dispersion effects in diffraction measurements, an absolute structure was not determined 1815 Friedel pairs were not merged.

Perspective view of the title compound with 18% probability ellipsoids

Figure 2

A view of the unit cell packing of the title compound showing intermolecular O—H \cdots O hydrogen bonds forming ribbons of molecules running along the *a*-axis.

1β,15α-Dihydroxy-16α,17-epoxypregn-4-ene-3,20-dione

Crystal data	
$C_{21}H_{28}O_5$	<i>b</i> = 13.7067 (16) Å
$M_r = 360.43$	c = 17.083 (2) Å
Orthorhombic, $P2_12_12_1$	$V = 1788.3 (4) \text{ Å}^3$
Hall symbol: P 2ac 2ab	Z = 4
a = 7.6372 (10) Å	F(000) = 776

 $D_x = 1.339 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4859 reflections $\theta = 1.9-27.9^{\circ}$

Data collection

Refinement on F^2

 $wR(F^2) = 0.077$

4237 reflections 246 parameters

direct methods

S = 0.94

0 restraints

Least-squares matrix: full

Primary atom site location: structure-invariant

 $R[F^2 > 2\sigma(F^2)] = 0.043$

Data concenton	
Rigaku Saturn 724CCD	18889 measured reflections
diffractometer	4237 independent reflections
Radiation source: rotating anode	3529 reflections with $I > 2\sigma(I)$
Multilayer monochromator	$R_{\rm int} = 0.062$
Detector resolution: 14.22 pixels mm ⁻¹	$\theta_{\rm max} = 27.9^{\circ}, \ \theta_{\rm min} = 1.9^{\circ}$
ω scans	$h = -9 \longrightarrow 9$
Absorption correction: multi-scan	$k = -18 \rightarrow 18$
(CrystalClear; Rigaku, 2005)	$l = -22 \rightarrow 22$
$T_{\min} = 0.980, \ T_{\max} = 0.987$	
Refinement	

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.032P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.20 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.23 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\mu = 0.09 \text{ mm}^{-1}$

Prism, colorless

 $0.22 \times 0.18 \times 0.14 \text{ mm}$

T = 113 K

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.49950 (15)	0.92527 (9)	0.12185 (7)	0.0224 (3)	
H1	0.551 (3)	0.9592 (16)	0.0847 (13)	0.057 (8)*	
O2	0.03424 (16)	1.15599 (9)	0.13838 (7)	0.0277 (3)	
03	-0.19159 (16)	0.52524 (9)	0.08958 (7)	0.0229 (3)	
H3	-0.255 (3)	0.4733 (15)	0.0906 (13)	0.045 (7)*	
O4	0.12518 (14)	0.44448 (8)	0.00189 (6)	0.0185 (3)	
05	0.54475 (15)	0.38806 (9)	0.07485 (7)	0.0263 (3)	
C1	0.3139 (2)	0.94276 (12)	0.11529 (10)	0.0166 (4)	
H1A	0.2810	0.9395	0.0587	0.020*	
C2	0.2779 (2)	1.04568 (12)	0.14471 (11)	0.0206 (4)	
H2A	0.3232	1.0520	0.1988	0.025*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H2B	0.3420	1.0928	0.1114	0.025*
C3	0.0870 (2)	1.07134 (13)	0.14422 (9)	0.0199 (4)
C4	-0.0321 (2)	0.98930 (13)	0.15609 (9)	0.0193 (4)
H4	-0.1544	1.0019	0.1549	0.023*
C5	0.0208 (2)	0.89693 (12)	0.16862 (9)	0.0160 (4)
C6	-0.1108 (2)	0.82234 (12)	0.19573 (10)	0.0190 (4)
H6A	-0.2299	0.8501	0.1903	0.023*
H6B	-0.0909	0.8088	0.2520	0.023*
C7	-0.1019 (2)	0.72628 (12)	0.15031 (10)	0.0172 (4)
H7A	-0.1793	0.6776	0.1755	0.021*
H7B	-0.1440	0.7368	0.0962	0.021*
C8	0.0854 (2)	0.68738 (12)	0.14825 (9)	0.0143 (3)
H8	0.1243	0.6739	0.2031	0.017*
C9	0.2095 (2)	0.76441 (12)	0.11175 (9)	0.0140 (4)
Н9	0.1575	0.7811	0.0597	0.017*
C10	0.2117 (2)	0.86252 (12)	0.15956 (9)	0.0152 (4)
C11	0.3945 (2)	0.72402 (12)	0.09401 (10)	0.0171 (4)
H11A	0.4567	0.7714	0.0603	0.020*
H11B	0.4601	0.7192	0.1438	0.020*
C12	0.3979 (2)	0.62358 (12)	0.05362 (9)	0.0161 (4)
H12A	0.3527	0.6297	-0.0005	0.019*
H12B	0.5199	0.5994	0.0508	0.019*
C13	0.2860 (2)	0.55152 (12)	0.09924 (9)	0.0141 (4)
C14	0.0983 (2)	0.59318 (11)	0.10095 (9)	0.0145 (4)
H14	0.0705	0.6116	0.0457	0.017*
C15	-0.0208 (2)	0.50721 (12)	0.12027 (10)	0.0164 (4)
H15	-0.0263	0.4967	0.1781	0.020*
C16	0.0699 (2)	0.42251 (12)	0.08075 (9)	0.0171 (4)
H16	0.0394	0.3540	0.0956	0.020*
C17	0.2552 (2)	0.44928 (12)	0.06428 (9)	0.0154 (4)
C18	0.3623 (2)	0.53329 (13)	0.18182 (9)	0.0185 (4)
H18A	0.2983	0.4798	0.2070	0.028*
H18B	0.3505	0.5926	0.2134	0.028*
H18C	0.4863	0.5158	0.1774	0.028*
C19	0.2903 (2)	0.84768 (12)	0.24259 (9)	0.0185 (4)
H19A	0.2864	0.9095	0.2714	0.028*
H19B	0.4121	0.8258	0.2380	0.028*
H19C	0.2221	0.7984	0.2708	0.028*
C20	0.3939 (2)	0.37170 (12)	0.05503 (9)	0.0171 (4)
C21	0.3414 (2)	0.27630 (13)	0.02084 (11)	0.0235 (4)
H21A	0.3040	0.2858	-0.0335	0.035*
H21B	0.2445	0.2488	0.0513	0.035*
H21C	0.4412	0.2314	0.0222	0.035*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
01	0.0168 (7)	0.0216 (7)	0.0286 (7)	-0.0011 (6)	0.0030 (6)	0.0020 (6)

supporting information

O2	0.0319 (8)	0.0174 (7)	0.0339 (7)	0.0057 (6)	0.0032 (6)	0.0027 (6)
03	0.0141 (7)	0.0206 (7)	0.0341 (7)	-0.0022 (6)	-0.0049 (6)	-0.0006 (6)
O4	0.0173 (6)	0.0210 (6)	0.0172 (6)	-0.0004 (5)	-0.0026 (5)	-0.0010 (5)
05	0.0169 (7)	0.0224 (7)	0.0397 (8)	0.0009 (6)	-0.0023 (6)	-0.0068 (6)
C1	0.0127 (9)	0.0166 (9)	0.0206 (9)	0.0005 (8)	0.0010 (7)	0.0009 (8)
C2	0.0225 (10)	0.0152 (9)	0.0240 (9)	-0.0014 (8)	-0.0014 (8)	-0.0005 (8)
C3	0.0267 (10)	0.0183 (9)	0.0147 (8)	0.0034 (8)	0.0010 (8)	-0.0016 (8)
C4	0.0188 (9)	0.0207 (9)	0.0186 (9)	0.0012 (8)	-0.0014 (7)	-0.0028 (8)
C5	0.0181 (9)	0.0165 (9)	0.0135 (8)	-0.0005 (8)	0.0007 (7)	-0.0042 (7)
C6	0.0155 (9)	0.0195 (9)	0.0218 (9)	0.0000 (8)	0.0016 (7)	-0.0014 (8)
C7	0.0153 (9)	0.0156 (8)	0.0209 (8)	0.0010 (7)	-0.0006 (8)	0.0016 (7)
C8	0.0116 (8)	0.0155 (8)	0.0159 (8)	0.0012 (7)	-0.0017 (7)	0.0010 (7)
C9	0.0127 (9)	0.0153 (9)	0.0142 (8)	0.0006 (7)	-0.0001 (7)	0.0006 (7)
C10	0.0144 (9)	0.0153 (9)	0.0160 (8)	0.0003 (7)	0.0001 (7)	-0.0008 (7)
C11	0.0164 (9)	0.0145 (8)	0.0204 (8)	-0.0021 (7)	0.0029 (8)	0.0013 (7)
C12	0.0130 (9)	0.0153 (8)	0.0198 (8)	-0.0005 (8)	0.0017 (7)	-0.0010 (7)
C13	0.0130 (9)	0.0145 (8)	0.0148 (8)	0.0007 (7)	-0.0008 (7)	0.0000 (7)
C14	0.0140 (9)	0.0154 (8)	0.0140 (8)	-0.0008 (7)	-0.0011 (7)	0.0003 (7)
C15	0.0128 (9)	0.0164 (9)	0.0199 (8)	-0.0006 (7)	-0.0002 (7)	0.0011 (7)
C16	0.0184 (10)	0.0160 (9)	0.0167 (8)	-0.0019 (7)	-0.0010 (7)	0.0032 (7)
C17	0.0158 (9)	0.0156 (9)	0.0146 (8)	0.0006 (8)	-0.0018 (7)	0.0014 (7)
C18	0.0181 (10)	0.0188 (9)	0.0187 (8)	0.0008 (8)	-0.0012 (7)	0.0010 (7)
C19	0.0186 (10)	0.0194 (9)	0.0176 (9)	0.0012 (8)	-0.0004 (7)	-0.0017 (7)
C20	0.0190 (10)	0.0150 (9)	0.0173 (8)	0.0006 (8)	0.0025 (8)	0.0018 (7)
C21	0.0213 (11)	0.0182 (10)	0.0310 (10)	-0.0003 (8)	0.0010 (8)	-0.0023 (8)

Geometric parameters (Å, °)

01—C1	1.4421 (19)	C9—C10	1.573 (2)
O1—H1	0.88 (2)	С9—Н9	1.0000
O2—C3	1.232 (2)	C10-C19	1.554 (2)
O3—C15	1.4270 (19)	C11—C12	1.540 (2)
O3—H3	0.86 (2)	C11—H11A	0.9900
O4—C16	1.4434 (19)	C11—H11B	0.9900
O4—C17	1.4583 (19)	C12—C13	1.521 (2)
O5—C20	1.2213 (19)	C12—H12A	0.9900
C1—C2	1.523 (2)	C12—H12B	0.9900
C1—C10	1.546 (2)	C13—C17	1.541 (2)
C1—H1A	1.0000	C13—C14	1.543 (2)
C2—C3	1.499 (2)	C13—C18	1.547 (2)
C2—H2A	0.9900	C14—C15	1.525 (2)
C2—H2B	0.9900	C14—H14	1.0000
C3—C4	1.461 (2)	C15—C16	1.511 (2)
C4—C5	1.346 (2)	C15—H15	1.0000
C4—H4	0.9500	C16—C17	1.488 (2)
C5—C6	1.507 (2)	C16—H16	1.0000
C5—C10	1.540 (2)	C17—C20	1.509 (2)
C6—C7	1.530 (2)	C18—H18A	0.9800

С6—Н6А	0.9900	C18—H18B	0.9800
С6—Н6В	0.9900	C18—H18C	0.9800
C7—C8	1.527 (2)	С19—Н19А	0.9800
C7—H7A	0.9900	С19—Н19В	0.9800
С7—Н7В	0.9900	С19—Н19С	0.9800
C8—C14	1.526 (2)	C20—C21	1.487 (2)
C8—C9	1.550 (2)	C21—H21A	0.9800
C8—H8	1.0000	C21—H21B	0.9800
C9—C11	1 548 (2)	C_{21} H21C	0.9800
0, 011	1.0 10 (2)		0.9000
C1—O1—H1	107.2 (14)	H11A—C11—H11B	107.5
С15—О3—Н3	111.2 (14)	C13—C12—C11	109.95 (13)
C16—O4—C17	61.72 (10)	C13—C12—H12A	109.7
01-C1-C2	107.82 (14)	C11—C12—H12A	109.7
Q1—C1—C10	109.88 (13)	C13—C12—H12B	109.7
C2-C1-C10	113.98 (14)	C11—C12—H12B	109.7
01—C1—H1A	108.3	H12A—C12—H12B	108.2
C2-C1-H1A	108.3	C12 - C13 - C17	118 52 (14)
C10-C1-H1A	108.3	C12 - C13 - C14	106 96 (13)
$C_3 - C_2 - C_1$	113 03 (15)	C17 - C13 - C14	101.66 (13)
$C_3 - C_2 - H_2 A$	109.0	C12-C13-C18	101.00(13) 111.13(13)
C1 - C2 - H2A	109.0	C17 - C13 - C18	105 30 (13)
$C_3 - C_2 - H_2B$	109.0	C14 - C13 - C18	103.30(13) 113.11(13)
C1 - C2 - H2B	109.0	C_{15} C_{16} C	120.04(13)
$H_2A = C_2 = H_2B$	107.8	$C_{15} - C_{14} - C_{13}$	120.04(13) 105.81(13)
02-C3-C4	122 16 (16)	C_{8} C_{14} C_{13}	103.01(13) 112.52(13)
02 - 03 - 04	122.10 (10)	C_{15} C_{14} H_{14}	105.8
$C_1 = C_2 = C_2$	122.03(10) 115.09(15)	C_{13} C_{14} H_{14}	105.8
$C_{4} = C_{3} = C_{2}$	124.00 (16)	C_{3} C_{14} H_{14}	105.8
$C_{5} = C_{4} = U_{5}$	124.00 (10)	$C_{13} = C_{14} = 1114$	103.8 112.84(14)
$C_3 = C_4 = H_4$	118.0	03 - C15 - C14	112.04(14) 100.30(13)
C_{3} C_{4} C_{5} C_{6}	110.0	$C_{15} = C_{15} = C_{14}$	109.39(13) 102.00(13)
$C_{4} = C_{5} = C_{10}$	119.13 (10)	$C_{10} = C_{13} = C_{14}$	102.90 (13)
C4 - C3 - C10	125.80(10) 117.04(14)	$C_{16} = C_{15} = H_{15}$	110.5
$C_{0} = C_{3} = C_{10}$	117.04(14) 112.48(12)	C14 C15 H15	110.5
$C_{5} = C_{6} = H_{6}$	113.46 (13)	C14 - C15 - H15	110.3
C_{3}	108.9	04 - C16 - C17	39.03 (10)
C = C = H O A	108.9	04-010-015	113.00(13)
С5—С6—Н6В	108.9		109.33 (14)
$C = C = H \delta B$	108.9	04-016-116	120.1
H6A - C6 - H6B	107.7	C1/-C16-H16	120.1
$C_8 = C_7 = C_6$	110./3 (14)	C15—C16—H16	120.1
C8—C7—H7A	109.5	04-C17-C16	58.65 (10)
С6—С/—Н/А	109.5	04	111.69 (13)
С8—С'/—Н'/В	109.5	C16—C17—C20	120.89 (14)
Со—С/—Н7В	109.5	04	115.34 (13)
Н/А—С7—Н7В	108.1	C16—C17—C13	107.21 (13)
C14—C8—C7	111.60 (13)	C20—C17—C13	125.04 (14)
C14—C8—C9	108.89 (13)	C13—C18—H18A	109.5

C7—C8—C9	110.14 (13)	C13—C18—H18B	109.5
C14—C8—H8	108.7	H18A—C18—H18B	109.5
С7—С8—Н8	108.7	C13—C18—H18C	109.5
С9—С8—Н8	108.7	H18A—C18—H18C	109.5
С11—С9—С8	113.17 (14)	H18B—C18—H18C	109.5
C11—C9—C10	113.43 (13)	С10—С19—Н19А	109.5
C8—C9—C10	112.33 (12)	C10—C19—H19B	109.5
С11—С9—Н9	105.7	H19A—C19—H19B	109.5
С8—С9—Н9	105.7	C10—C19—H19C	109.5
С10—С9—Н9	105.7	H19A—C19—H19C	109.5
C5-C10-C1	108.00 (13)	H19B—C19—H19C	109.5
C5—C10—C19	108.31 (13)	O5—C20—C21	121.64 (16)
C1—C10—C19	110.15 (13)	O5—C20—C17	120.23 (15)
C5—C10—C9	107.70 (13)	C21—C20—C17	118.12 (15)
C1—C10—C9	111.07 (13)	C20—C21—H21A	109.5
C19—C10—C9	111.47 (13)	C20—C21—H21B	109.5
C12—C11—C9	115.02 (13)	H21A—C21—H21B	109.5
C12—C11—H11A	108.5	C_{20} C_{21} $H_{21}C$	109.5
C9-C11-H11A	108 5	$H_{21}A - C_{21} - H_{21}C$	109.5
C12—C11—H11B	108.5	H_{21B} C_{21} H_{21C}	109.5
C9-C11-H11B	108.5		109.0
	100.0		
01-C1-C2-C3	-177.45 (14)	C7—C8—C14—C15	-53.53 (19)
C10-C1-C2-C3	-55.2(2)	C9-C8-C14-C15	-175.33(13)
C1 - C2 - C3 - O2	-153.53(16)	C7-C8-C14-C13	-179.01(13)
C1 - C2 - C3 - C4	30.1.(2)	C9-C8-C14-C13	59 20 (17)
02-C3-C4-C5	-17479(17)	C12-C13-C14-C15	160 68 (13)
$C_2 - C_3 - C_4 - C_5$	16(2)	C17 - C13 - C14 - C15	35 75 (15)
C_{3} C_{4} C_{5} C_{6}	168.03(15)	C18 - C13 - C14 - C15	-7665(17)
C_{3} C_{4} C_{5} C_{10}	-9.8(3)	C12 - C13 - C14 - C8	-6643(16)
C4-C5-C6-C7	133 18 (16)	C17 - C13 - C14 - C8	16864(12)
C_{10} C_{5} C_{6} C_{7}	-48.82(19)	C18 - C13 - C14 - C8	56 24 (18)
C_{5} C_{6} C_{7} C_{8}	51 31 (19)	C8-C14-C15-O3	77 47 (18)
C6-C7-C8-C14	-178 18 (13)	C_{13} C_{14} C_{15} C_{3}	-153.96(13)
C6 C7 C8 C9	-57 10 (17)	$C_{13}^{8} = C_{14}^{14} = C_{15}^{15} = C_{16}^{16}$	-162.36(13)
$C_{14} - C_{8} - C_{9} - C_{11}$	-47.05(17)	C_{13} C_{14} C_{15} C_{16}	-33.78(16)
C7 - C8 - C9 - C11	-16973(13)	$C_{17} - O_{4} - C_{16} - C_{15}$	99.68 (15)
$C_{14} = C_{8} = C_{9} = C_{10}$	$-177 \ 10 \ (13)$	03-C15-C16-O4	71.90 (17)
C7 C8 C9 C10	60.23(17)	C_{14} C_{15} C_{16} O_{4}	-45.87(16)
$C_{1} = C_{2} = C_{10} = C_{10}$	-130(2)	$C_{14} = C_{15} = C_{16} = C_{17}$	43.87(10)
$C_{4} = C_{5} = C_{10} = C_{1}$	13.9(2) 168 22 (13)	$C_{14} = C_{15} = C_{16} = C_{17}$	130.24(14) 18 47 (17)
$C_{0} = C_{0} = C_{10} = C_{10}$	106.22(13) 105.41(18)	$C_{14} = C_{13} = C_{10} = C_{17}$	10.47(17) 113.86(15)
$C_{4} = C_{5} = C_{10} = C_{19}$	-72.40(17)	$C_{10} = 04 = C_{17} = C_{20}$	-05.44(15)
$C_{4} = C_{5} = C_{10} = C_{19}$	-133 01 (16)	$C_{10} = 0_{1} = 0_{17} = 0_{15}$	-105 02 (13)
$C_{4} = C_{5} = C_{10} = C_{9}$	133.71 (10) A8 10 (17)	04 $C16$ $C17$ $C20$	-0804(15)
01 01 010 05	166.20(12)	$C_{1} = C_{10} = C_{17} = C_{20}$	30.04(13)
$C_1 = C_1 = C_1 = C_2$	100.20(12)	C_{13} $-C_{10}$ $-C_{17}$ $-C_{20}$	130.03(14) 100.62(12)
$C_2 - C_1 - C_1 - C_3$	43.07 (19)	04 - 010 - 017 - 013	109.05(13)
01-01-010-019	40.08 (17)	U13—U10—U1/—U13	5./1(1/)

C2-C1-C10-C19	-73.04 (18)	C12—C13—C17—O4	-77.88 (18)
O1-C1-C10-C9	-75.92 (17)	C14—C13—C17—O4	38.94 (16)
C2-C1-C10-C9	162.96 (14)	C18—C13—C17—O4	157.10 (13)
C11—C9—C10—C5	176.74 (13)	C12—C13—C17—C16	-140.75 (14)
C8—C9—C10—C5	-53.34 (17)	C14—C13—C17—C16	-23.94 (16)
C11—C9—C10—C1	58.67 (18)	C18—C13—C17—C16	94.23 (14)
C8—C9—C10—C1	-171.41 (13)	C12-C13-C17-C20	68.4 (2)
C11—C9—C10—C19	-64.58 (17)	C14—C13—C17—C20	-174.80 (14)
C8—C9—C10—C19	65.34 (17)	C18—C13—C17—C20	-56.64 (19)
C8—C9—C11—C12	45.42 (18)	O4—C17—C20—O5	146.18 (15)
C10-C9-C11-C12	174.91 (13)	C16—C17—C20—O5	-148.31 (16)
C9—C11—C12—C13	-51.89 (18)	C13—C17—C20—O5	-1.1 (2)
C11—C12—C13—C17	173.60 (13)	O4—C17—C20—C21	-33.4 (2)
C11-C12-C13-C14	59.64 (17)	C16—C17—C20—C21	32.2 (2)
C11-C12-C13-C18	-64.26 (17)	C13—C17—C20—C21	179.35 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	$D \cdots A$	D—H···A
01—H1…O4 ⁱ	0.88 (2)	2.06 (2)	2.929 (2)	168
O3—H3…O5 ⁱⁱ	0.86 (2)	1.95 (2)	2.767 (2)	159
C1—H1A···O3 ⁱ	1.00	2.59	3.527 (2)	157
C6—H6A····O1 ⁱⁱ	0.99	2.59	3.527 (2)	158
C12—H12 <i>B</i> ···O3 ⁱⁱⁱ	0.99	2.52	3.468 (2)	161
C21—H21 B ····O2 ^{iv}	0.98	2.53	3.501 (2)	170

Symmetry codes: (i) x+1/2, -y+3/2, -z; (ii) x-1, y, z; (iii) x+1, y, z; (iv) x, y-1, z.