organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[2-Acetoxy-3-(naphthalen-1-yloxy)propyl](propan-2-yl)azanium chloride monohydrate

Yuan-Yuan Liu,* Guang-Hui Xu, Zheng-Jie Li, Hong-Yu Xu and Chang-Qing Gu

Department of Chemical and Pharmaceutical Engineering, Southeast University ChengXian College, Nanjing 210088, People's Republic of China Correspondence e-mail: liuyuanyuan1985419@163.com

Received 16 February 2013; accepted 26 February 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.006 Å; R factor = 0.070; wR factor = 0.200; data-to-parameter ratio = 15.6.

The title compound, $C_{18}H_{24}NO_3^+ \cdot Cl^- \cdot H_2O$, was synthesized by the reaction of propranolol hydrochloride with acetyl chloride in chloroform followed by slow evaporation in air. In the cation, the dihedral angle between the planes of the naphthalene ring system and the acetate group is $71.1 (2)^{\circ}$. An intramolecular N-H···O hydrogen bond results in the formation of a non-planar pseudo-ring, with the ether O and the H atom displaced by -1.328 (2) and 0.65 Å, respectively, from the plane of the other ring atoms. The cation and anion are linked by an N-H···Cl hydrogen bond. The water molecule is linked to a methyl H atom by $C-H \cdots O$ hydrogen bond.

Related literature

The applications of the title compound, see: Barbosa et al. (2010). For the synthetic procedure, see: Irwin & Belaid (1987). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data $C_{18}H_{24}NO_3^+ \cdot Cl^- \cdot H_2O$

 $M_r = 355.85$

Monoclinic, PZ_1/c	Z = 4
a = 15.559 (3) Å	Mo $K\alpha$ radiation
b = 8.2120 (16) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 14.665 (3) Å	T = 293 K
$\beta = 93.23 \ (3)^{\circ}$	$0.30 \times 0.20 \times 0.10 \text{ mm}$
V = 1870.8 (6) Å ³	
Data collection	
Enraf–Nonius CAD-4	3424 independent reflections
diffractometer	1948 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	3 standard reflections every 200
(North <i>et al.</i> , 1968)	reflections
$T_{\min} = 0.936, T_{\max} = 0.978$	intensity decay: 1%

3424 measured reflections Refinement

$R[F^2 > 2\sigma(F^2)] = 0.070$	1 restraint
$wR(F^2) = 0.200$	H-atom parameters constrained
S = 0.99	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
3424 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$
219 parameters	

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N - H0A \cdots Cl$ $N - H0A \cdots O2$ $C15 - H15B \cdots O1W^{i}$	0.90	2.37	3.194 (3)	152
	0.90	2.59	2.948 (3)	105
	0.96	2.53	3.469 (9)	166

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2383).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Barbosa, O., Ariza, C., Ortiz, C. & Torres, R. (2010). New Biotechnol. 27, 844-850

Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Irwin, W. J. & Belaid, K. A. (1987). Drug Dev. Ind. Pharm. 13, 2017-2031.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2013). E69, o512 [doi:10.1107/S1600536813005515]

[2-Acetoxy-3-(naphthalen-1-yloxy)propyl](propan-2-yl)azanium chloride monohydrate

Yuan-Yuan Liu, Guang-Hui Xu, Zheng-Jie Li, Hong-Yu Xu and Chang-Qing Gu

S1. Comment

Propranolol hydrochloride is an important beta-adrenergic blocking agent, and used in the treatment of hypertension and cardiovascular disorders. Molecular modifications of propranolol are varied with examples in the amino-substituent, sidechain variants and nuclear changes including all mono ring-hydroxylated products (Irwin *et al.*, 1987). Here, the title compound, (I), an important propranolol derivative, was synthesized by the reaction of propranolol hydrochloride with acetyl chloride in chloroform, and we report the crystal structure of (I).

In the molecule of (I), (Fig.1), the bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The dihedral angle of naphthalene ring system and acetate group is 71.11 °. The amino hydrogen is linked to chloride and oxygen atoms by the intramolecular N—H···Cl and N—H···O hydrogen bonds, respectively, which seem to be very effective in the stabilization of the crystal structure. The intramolecular N—H···O hydrogen bond results in the formation of one non-planar pseudo ring (O2/C12/C13/N/H0A), with O2 and H0A atoms displaced by -1.328 Å and 0.65 Å, respectively, from the plane of the other ring atoms.

S2. Experimental

The title compound, (I) was prepared by the literature method (Irwin *et al.*, 1987). Crystals suitable for X-ray analysis were obtained by dissolving (I) (0.5 g) in methanol (20 ml) and evaporating the solvent slowly at room temperature for about 10 d.

S3. Refinement

H atoms were positioned geometrically, with N—H = 0.90 Å (for NH), C—H = 0.93, 0.96, 0.97 and 0.98 Å for aromatic, methyl, methylene and methine H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C)$, where x = 1.2 for aromatic H, and x = 1.5 for other H.

Figure 1

The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown by dashed lines.

Figure 2

A packing diagram of (I). Hydrogen bonds are shown by dashed lines.

[2-Acetoxy-3-(naphthalen-1-yloxy)propyl](propan-2-yl)azanium chloride monohydrate

Crystal data	
$C_{18}H_{24}NO_3^+ \cdot Cl^- \cdot H_2O$	F(000) = 760
$M_r = 355.85$	$D_{\rm x} = 1.263 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 25 reflections
a = 15.559 (3) Å	$\theta = 9-13^{\circ}$
b = 8.2120 (16) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 14.665 (3) Å	T = 293 K
$\beta = 93.23 \ (3)^{\circ}$	Block, yellow
V = 1870.8 (6) Å ³	$0.30 \times 0.20 \times 0.10 \text{ mm}$
Z = 4	

Data collection

Enraf–Nonius CAD-4 diffractometer	3424 independent reflections 1948 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.000$
Graphite monochromator	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
$\omega/2\theta$ scans	$h = -18 \rightarrow 18$
Absorption correction: ψ scan	$k = 0 \rightarrow 9$
(North <i>et al.</i> , 1968)	$l = 0 \rightarrow 17$
$T_{\min} = 0.936, T_{\max} = 0.978$	3 standard reflections every 200 reflections
3424 measured reflections	intensity decay: 1%
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.070$	Hydrogen site location: inferred from
$wR(F^2) = 0.200$	neighbouring sites
<i>S</i> = 0.99	H-atom parameters constrained
3424 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1097P)^2]$

3424 reflections $w = 1/[\sigma^2(F_o^2) + (0.1097P)^2]$ 219 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 1 restraint $(\Delta/\sigma)_{max} = 0.001$ Primary atom site location: structure-invariant
direct methods $\Delta\rho_{max} = 0.60 \text{ e } \text{Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
N	0.40172 (17)	0.4306 (4)	0.60092 (17)	0.0541 (7)	
H0A	0.3855	0.5068	0.5593	0.065*	
H0B	0.4541	0.3943	0.5874	0.065*	
01	0.20414 (15)	0.0867 (3)	0.54378 (16)	0.0606 (7)	
C1	0.0783 (2)	-0.0245 (5)	0.5948 (2)	0.0591 (10)	
O2	0.27260 (14)	0.3625 (3)	0.45087 (15)	0.0553 (6)	
C2	0.0499 (2)	0.1326 (6)	0.6206 (2)	0.0669 (11)	
H2A	0.0842	0.2231	0.6110	0.080*	
03	0.3081 (2)	0.2709 (4)	0.31387 (19)	0.0930 (10)	
C3	-0.0272 (3)	0.1522 (7)	0.6592 (3)	0.0810 (13)	
H3A	-0.0450	0.2555	0.6758	0.097*	
C4	-0.0788 (3)	0.0189 (9)	0.6735 (3)	0.0974 (17)	
H4A	-0.1314	0.0343	0.6993	0.117*	
C5	-0.0547 (3)	-0.1334 (8)	0.6510(3)	0.0886 (15)	
H5A	-0.0908	-0.2206	0.6619	0.106*	

C6	0.0248 (3)	-0.1623 (6)	0.6110 (3)	0.0714 (12)
C7	0.0532 (3)	-0.3184 (6)	0.5867 (3)	0.0811 (13)
H7A	0.0194	-0.4091	0.5972	0.097*
C8	0.1295 (3)	-0.3368 (6)	0.5482 (3)	0.0821 (13)
H8A	0.1473	-0.4406	0.5322	0.099*
C9	0.1817 (3)	-0.2049 (5)	0.5320 (3)	0.0652 (10)
H9A	0.2338	-0.2211	0.5052	0.078*
C10	0.1576 (2)	-0.0522 (5)	0.5546 (2)	0.0538 (9)
C11	0.2810 (2)	0.0738 (5)	0.4924 (3)	0.0592 (9)
H11A	0.2657	0.0439	0.4296	0.071*
H11B	0.3192	-0.0088	0.5191	0.071*
C12	0.3240 (2)	0.2361 (4)	0.4961 (2)	0.0537 (9)
H12A	0.3791	0.2280	0.4672	0.064*
C13	0.3402 (2)	0.2938 (5)	0.5934 (2)	0.0582 (9)
H13A	0.2861	0.3276	0.6172	0.070*
H13B	0.3626	0.2039	0.6305	0.070*
C14	0.4085 (2)	0.5085 (5)	0.6944 (2)	0.0603 (10)
H14A	0.4113	0.4211	0.7400	0.072*
C15	0.4901 (3)	0.6048 (6)	0.7055 (3)	0.1012 (17)
H15A	0.4967	0.6463	0.7666	0.152*
H15B	0.4879	0.6939	0.6630	0.152*
H15C	0.5381	0.5359	0.6938	0.152*
C16	0.3301 (3)	0.6086 (6)	0.7096 (3)	0.0930 (15)
H16A	0.3348	0.6548	0.7698	0.140*
H16B	0.2798	0.5409	0.7035	0.140*
H16C	0.3255	0.6945	0.6652	0.140*
C17	0.2726 (2)	0.3674 (5)	0.3586 (2)	0.0626 (10)
C18	0.2213 (3)	0.5119 (6)	0.3213 (3)	0.0890 (14)
H18A	0.2218	0.5128	0.2559	0.134*
H18B	0.2465	0.6108	0.3453	0.134*
H18C	0.1630	0.5037	0.3391	0.134*
Cl	0.41641 (6)	0.70545 (13)	0.44852 (7)	0.0688 (4)
O1W	0.5140 (4)	0.0297 (9)	0.4132 (5)	0.252 (3)
H1WB	0.5328	-0.0674	0.4172	0.302*
H1WA	0.5574	0.0922	0.4113	0.302*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N	0.0495 (16)	0.0682 (19)	0.0441 (15)	-0.0011 (15)	-0.0008 (12)	-0.0002 (14)
01	0.0526 (14)	0.0639 (16)	0.0663 (16)	-0.0022 (13)	0.0111 (12)	-0.0077 (13)
C1	0.050 (2)	0.085 (3)	0.0401 (18)	0.002 (2)	-0.0130 (16)	0.0034 (18)
O2	0.0534 (14)	0.0682 (16)	0.0438 (13)	0.0015 (12)	-0.0022 (10)	-0.0029 (11)
C2	0.054 (2)	0.090 (3)	0.056 (2)	0.002 (2)	-0.0078 (17)	-0.008 (2)
03	0.110 (3)	0.121 (3)	0.0496 (16)	0.022 (2)	0.0121 (16)	-0.0121 (17)
C3	0.056 (3)	0.122 (4)	0.064 (3)	0.021 (3)	-0.004 (2)	-0.008 (3)
C4	0.058 (3)	0.165 (6)	0.069 (3)	0.010 (4)	0.007 (2)	0.010 (3)
C5	0.056 (3)	0.138 (5)	0.071 (3)	-0.019 (3)	-0.004 (2)	0.019 (3)

supporting information

C6	0.053 (2)	0.106 (4)	0.054 (2)	-0.012 (2)	-0.0072 (17)	0.018 (2)
C7	0.086 (3)	0.082 (3)	0.074 (3)	-0.021 (3)	-0.010 (2)	0.018 (2)
C8	0.089 (3)	0.074 (3)	0.082 (3)	-0.001 (3)	-0.008 (3)	0.008 (2)
C9	0.061 (2)	0.072 (3)	0.061 (2)	-0.003 (2)	-0.0072 (18)	0.001 (2)
C10	0.0479 (19)	0.066 (3)	0.0473 (19)	-0.0038 (19)	-0.0015 (15)	-0.0021 (17)
C11	0.051 (2)	0.063 (2)	0.063 (2)	-0.0006 (18)	0.0019 (17)	-0.0068 (18)
C12	0.0424 (18)	0.066 (2)	0.053 (2)	0.0026 (17)	0.0037 (15)	0.0012 (17)
C13	0.059 (2)	0.067 (2)	0.049 (2)	-0.008 (2)	-0.0005 (16)	-0.0014 (18)
C14	0.064 (2)	0.076 (3)	0.0399 (18)	-0.002 (2)	-0.0031 (16)	-0.0029 (18)
C15	0.100 (4)	0.113 (4)	0.090 (3)	-0.035 (3)	0.004 (3)	-0.036 (3)
C16	0.090 (3)	0.108 (4)	0.079 (3)	0.028 (3)	-0.009 (2)	-0.027 (3)
C17	0.058 (2)	0.081 (3)	0.049 (2)	-0.016 (2)	-0.0001 (17)	0.001 (2)
C18	0.093 (3)	0.099 (3)	0.073 (3)	-0.012 (3)	-0.021 (2)	0.016 (3)
Cl	0.0648 (6)	0.0687 (7)	0.0732 (7)	0.0056 (5)	0.0059 (5)	0.0091 (5)
O1W	0.240 (7)	0.227 (7)	0.286 (8)	-0.022 (6)	-0.014 (7)	0.026 (6)

Geometric parameters (Å, °)

N—C13	1.476 (4)	C9—C10	1.355 (5)	
N-C14	1.511 (4)	С9—Н9А	0.9300	
N—H0A	0.9000	C11—C12	1.491 (5)	
N—H0B	0.9000	C11—H11A	0.9700	
O1—C10	1.365 (4)	C11—H11B	0.9700	
O1-C11	1.452 (4)	C12—C13	1.511 (5)	
C1—C10	1.416 (5)	C12—H12A	0.9800	
C1—C2	1.422 (5)	C13—H13A	0.9700	
C1—C6	1.432 (5)	C13—H13B	0.9700	
O2—C17	1.353 (4)	C14—C15	1.498 (5)	
O2—C12	1.448 (4)	C14—C16	1.498 (5)	
С2—С3	1.364 (5)	C14—H14A	0.9800	
C2—H2A	0.9300	C15—H15A	0.9600	
O3—C17	1.186 (5)	C15—H15B	0.9600	
C3—C4	1.380 (7)	C15—H15C	0.9600	
С3—НЗА	0.9300	C16—H16A	0.9600	
C4—C5	1.352 (7)	C16—H16B	0.9600	
C4—H4A	0.9300	C16—H16C	0.9600	
C5—C6	1.419 (6)	C17—C18	1.515 (6)	
С5—Н5А	0.9300	C18—H18A	0.9600	
С6—С7	1.409 (6)	C18—H18B	0.9600	
С7—С8	1.351 (6)	C18—H18C	0.9600	
C7—H7A	0.9300	O1W—H1WB	0.8500	
С8—С9	1.382 (6)	O1W—H1WA	0.8500	
C8—H8A	0.9300			
C13—N—C14	113.7 (3)	C12—C11—H11B	110.3	
C13 - N - H0A	108.8	H11A—C11—H11B	108.5	
C14—N—H0A	108.8	02-C12-C11	112.9 (3)	
C13—N—H0B	108.8	02-C12-C13	105.5 (3)	

C14—N—H0B	108.8	C11—C12—C13	111.4 (3)
H0A—N—H0B	107.7	O2—C12—H12A	109.0
C10-01-C11	117.2 (3)	C11—C12—H12A	109.0
C10—C1—C2	123.2 (4)	C13—C12—H12A	109.0
C10—C1—C6	118.1 (4)	N—C13—C12	112.5 (3)
C2—C1—C6	118.7 (4)	N—C13—H13A	109.1
C17—O2—C12	116.6 (3)	C12—C13—H13A	109.1
C3—C2—C1	120.7 (4)	N—C13—H13B	109.1
C3—C2—H2A	119.6	C12—C13—H13B	109.1
C1—C2—H2A	119.6	H13A—C13—H13B	107.8
C2—C3—C4	120.2 (5)	C15—C14—C16	112.7 (4)
С2—С3—НЗА	119.9	C15—C14—N	109.7 (3)
С4—С3—НЗА	119.9	C16—C14—N	110.6 (3)
C5—C4—C3	121.6 (5)	C15—C14—H14A	107.9
C5—C4—H4A	119.2	C16—C14—H14A	107.9
C3—C4—H4A	119.2	N—C14—H14A	107.9
C4—C5—C6	121.0 (5)	C14—C15—H15A	109.5
C4—C5—H5A	119.5	C14—C15—H15B	109.5
С6—С5—Н5А	119.5	H15A—C15—H15B	109.5
C7—C6—C5	123.4 (5)	C14—C15—H15C	109.5
C7—C6—C1	118.9 (4)	H15A—C15—H15C	109.5
C5—C6—C1	117.7 (5)	H15B—C15—H15C	109.5
C8—C7—C6	120.2 (4)	C14—C16—H16A	109.5
С8—С7—Н7А	119.9	C14—C16—H16B	109.5
С6—С7—Н7А	119.9	H16A—C16—H16B	109.5
C7—C8—C9	121.5 (5)	C14—C16—H16C	109.5
С7—С8—Н8А	119.3	H16A—C16—H16C	109.5
С9—С8—Н8А	119.3	H16B—C16—H16C	109.5
C10—C9—C8	120.7 (4)	O3—C17—O2	124.0 (4)
С10—С9—Н9А	119.7	O3—C17—C18	125.2 (4)
С8—С9—Н9А	119.7	O2—C17—C18	110.8 (4)
C9—C10—O1	126.1 (3)	C17—C18—H18A	109.5
C9—C10—C1	120.7 (4)	C17—C18—H18B	109.5
O1—C10—C1	113.2 (3)	H18A—C18—H18B	109.5
O1—C11—C12	107.3 (3)	C17—C18—H18C	109.5
O1—C11—H11A	110.3	H18A—C18—H18C	109.5
C12—C11—H11A	110.3	H18B—C18—H18C	109.5
O1-C11-H11B	110.3	H1WB—O1W—H1WA	107.3
C10-C1-C2-C3	-179.9 (3)	C11—O1—C10—C1	-172.2 (3)
C6—C1—C2—C3	-0.6 (5)	C2-C1-C10-C9	179.6 (3)
C1—C2—C3—C4	-0.1 (6)	C6—C1—C10—C9	0.2 (5)
C2—C3—C4—C5	0.7 (7)	C2-C1-C10-O1	0.4 (5)
C3—C4—C5—C6	-0.4 (7)	C6-C1-C10-O1	-178.9 (3)
C4—C5—C6—C7	179.6 (4)	C10-01-C11-C12	-175.7 (3)
C4—C5—C6—C1	-0.4 (6)	C17—O2—C12—C11	-78.9 (4)
C10-C1-C6-C7	0.2 (5)	C17—O2—C12—C13	159.2 (3)
C2-C1-C6-C7	-179.1 (3)	O1—C11—C12—O2	-64.4 (4)

C10-C1-C6-C5	-179.8 (3)	O1-C11-C12-C13	54.0 (4)
C2 - C1 - C6 - C5	0.9 (5)	C14—N—C13—C12	170.7 (3)
$C_{1} - C_{6} - C_{7} - C_{8}$	-0.5(6)	$C_{11} = C_{12} = C_{13} = N$	-72.0(3) 165.1(3)
C6-C7-C8-C9	0.3 (6)	C13—N—C14—C15	161.4 (4)
C7—C8—C9—C10	0.1 (6)	C13—N—C14—C16	-73.6 (4)
C8—C9—C10—O1	178.6 (3)	C12—O2—C17—O3	4.0 (5)
C8—C9—C10—C1	-0.4 (5)	C12—O2—C17—C18	-176.2 (3)
C11—O1—C10—C9	8.8 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	D—H··· A	
N—H0A····Cl	0.90	2.37	3.194 (3)	152	
N—H0A····O2	0.90	2.59	2.948 (3)	105	
C15—H15 <i>B</i> ····O1 <i>W</i> ⁱ	0.96	2.53	3.469 (9)	166	

Symmetry code: (i) -x+1, -y+1, -z+1.