Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2E)-2-(3-Ethoxy-2-hydroxybenzylidene)hydrazinecarboxamide

A. Ambili Aravindakshan, ${ }^{\text {a }}$ M. Sithambaresan ${ }^{\text {b }}$ * and M. R. Prathapachandra Kurup ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, India, and ${ }^{\text {b }}$ Department of Chemistry, Faculty of Science, Eastern
University, Sri Lanka, Chenkalady, Sri Lanka
Correspondence e-mail: eesans@yahoo.com

Received 5 March 2013; accepted 19 March 2013
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.037 ; w R$ factor $=0.109 ;$ data-to-parameter ratio $=11.0$.

The title compound, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$, adopts an E conformation with respect to the azomethine bond and crystallizes in the amide form. A classical intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond is present. The two N atoms of the hydrazinecarboxamide unit are also involved in intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, with the O atom of the hydrazinecarboxamide group acting as the acceptor. Pairs of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond link the molecules into centrosymmetric dimers, which are linked by further $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into chains along the b axis. The chains are linked by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Related literature

For biological applications of hydrazinecarboxamide and its derivatives, see: Afrasiabi et al. (2005); Siji et al. (2010); Beraldo \& Gambino (2004). For related structures and background references, see: Sithambaresan \& Kurup (2011); Noblía et al. (2004, 2005); Benítez et al. (2009, 2011); Rivadeneira et al. (2009); Gambino et al. (2011). For standard bond-length data, see: Allen et al. (1987); Kala et al. (2007). For the synthesis, see: Sreekanth et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$
$\gamma=105.790(4)^{\circ}$
$M_{r}=223.23$
Triclinic, $P \overline{1}$
$a=5.0676$ (4) A

$$
Z=2
$$

$b=7.0426$ (7) \AA
$c=15.8394$ (15) \AA
$\alpha=97.509(4)^{\circ}$
$\beta=98.819(3)^{\circ}$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2004)
$T_{\text {min }}=0.969, T_{\text {max }}=0.979$

$$
V=528.62(8) \AA^{3}
$$

Mo $K \alpha$ radiation
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.109$
$S=1.05$
1794 reflections
163 parameters
5 restraints

> H atoms treated by a mixture of independent and constrained refinement
> $\Delta \rho_{\max }=0.15$ e \AA^{-3}
> $\Delta \rho_{\min }=-0.18$ e $^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.85(1)$	$2.06(1)$	$2.9034(19)$	$173(2)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 2^{\prime} \cdots \mathrm{N} 1$	$0.84(1)$	$1.89(1)$	$2.6736(15)$	$155(2)$
N2-H2 $\cdots \mathrm{O}^{\mathrm{ii}}$	$0.87(1)$	$2.06(1)$	$2.8965(17)$	$161(2)$
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{Cg}^{\mathrm{iii}}$	0.97	2.75	$3.5896(19)$	145

Symmetry codes: (i) $-x+3,-y+3,-z+1$; (ii) $-x+3,-y+2,-z+1$; (iii)
$x-1, y, z$.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

AAA thanks the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Junior Research Fellowship. The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India, for the data collection. MRPK thanks the University Grants Commission, New Delhi, for a UGC-BSR one-time grant to faculty.

[^0]
References

Afrasiabi, Z., Sinn, E., Lin, W., Ma, Y., Campana, C. \& Padhye, S. (2005). J. Inorg. Biochem. 99, 1526-1531.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Benítez, J., Becco, L., Correia, I., Leal, S. M., Guiset, H., Costa Pessoa, J., Lorenzo, J., Aviles, F., Escobar, P., Moreno, V., Garat, B. \& Gambino, D. (2011). J. Inorg. Biochem. 105, 303-312.

Benítez, J., Guggeri, L., Tomaz, I., Arrambide, G., Navarro, M., Costa Pessoa, J., Garat, B. \& Gambino, D. (2009). J. Inorg. Biochem. 103, 609-616.

Beraldo, H. \& Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). SADABS, APEX2, XPREP and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gambino, D., Fernándeza, M., Santosa, D., Etcheverría, G. A., Piro, O. E., Pavan, F. R., Leite, C. Q. F., Tomaz, I. \& Marques, F. (2011). Polyhedron, 30, 1360-1366.

Kala, U. L., Suma, S., Kurup, M. R. P., Suja, K. \& John, R. P. (2007). Polyhedron, 26, 1427-1435.
Noblía, P., Vieites, M., Parajón-Costa, P., Baran, E. J., Cerecetto, H., Draper, P., González, M., Piro, O. E., Castellano, E. E., Azqueta, A., López, A., MongeVega, A. \& Gambino, D. (2005). J. Inorg. Biochem. 99, 443-451.
Noblía, P., Baran, E. J., Otero, L., Draper, P., Cerecetto, H., González, M., Piro, O. E., Castellano, E. E., Inohara, T., Adachi, Y., Sakurai, H. \& Gambino, D. (2004). Eur. J. Inorg. Chem. pp. 322-328.

Rivadeneira, J., Barrio, D., Arrambide, G., Gambino, D., Bruzzone, L. \& Etcheverry, S. (2009). J. Inorg. Biochem. 103, 633-642.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siji, V. L., Sudarsanakumar, M. R., Suma, S. \& Kurup, M. R. P. (2010). Spectrochim. Acta Part A, 76, 22-28.
Sithambaresan, M. \& Kurup, M. R. P. (2011). Acta Cryst. E67, o2972.
Sreekanth, A., Kala, U. L., Nayar, C. R. \& Kurup, M. R. P. (2004). Polyhedron, 23, 41-47.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o586-o587 [doi:10.1107/S1600536813007617]

(2E)-2-(3-Ethoxy-2-hydroxybenzylidene)hydrazinecarboxamide

A. Ambili Aravindakshan, M. Sithambaresan and M. R. Prathapachandra Kurup

S1. Comment

The importance of semicarbazones lies in its pharmacological activities such as antitumoral (Afrasiabi et al., 2005), antimicrobial (Siji et al., 2010), antihypertensive, hypolipidemic, antineoplastic, hypnotic and anticonvulsant properties (Beraldo \& Gambino, 2004). As the literature reports, the title compound, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$, is a tridentate semicarbazone ligand which formed complexes with vanadium (Noblía et al., 2004, 2005; Rivadeneira et al., 2009; Benítez et al., 2009; Benítez et al., 2011), and gallium (Gambino et al., 2011) and have demonstrated to possess biological activity as antitumor and antiparasitic agents.
The compound crystallizes in triclinic, $P \overline{1}$ space group. The molecule exists in the E configuration with respect to $\mathrm{C} 7=\mathrm{N} 1$ bond (Sithambaresan \& Kurup, 2011) which is confirmed by the torsion angle of -176.32 (13) of C6-C7-N1 -N 2 moiety (Fig. 1). The torsion angle value of $-169.81(13)^{\circ}$ corresponding to $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{O} 3$ moiety supports the trans configuration of the O 3 atom with respect to the hydrazine nitrogen atom N 1 similar to its phenyl derivative (Sithambaresan \& Kurup, 2011). The torsion angle value of 10.5 (2) ${ }^{\circ}$ corresponding to $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$ moiety supports the cis configuration of the N 3 atom with respect to the nitrogen atom N 1 . Also the torsion angles of $-1.8(2)^{\circ}$ and $6.9(2)^{\circ}$ for $\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7$ and $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 1$ moieties respectively confirm the cis configuration of phenolic oxygen O 2 and azomethine nitrogen N 1 and it favours intramolecular hydrogen bonding between N 1 and H attached to O 2 . The molecule as a whole slightly goes out of planarity with maximum mean plane deviations of $0.392(2)^{\circ}$ at $\mathrm{N}(3)$ and $-0.345(1)^{\circ}$ at $\mathrm{O}(3)$.
Even though atom O 1 lies cis to O 2 , with a torsion angle of $-0.8(2)^{\circ}(\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1)$ and N 1 lies $c i s$ to N 3 , with a torsion angle of $10.5(2)^{\circ}(\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3)$, there are no intramolecular hydrogen bonding interactions involving N 3 $-\mathrm{H}^{\prime} \cdots \mathrm{N} 1$ and $\mathrm{O} 2-\mathrm{H} 2^{\prime} \cdots \mathrm{O} 1$ bonds, which makes the title compound different from its phenyl derivative (Sithambaresan \& Kurup, 2011). The $\mathrm{C} 7=\mathrm{N} 1[1.278$ (2) $\AA]$ and $\mathrm{C} 8=\mathrm{O} 3[1.2481$ (17) \AA] bond distances are very close to the formal $\mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ bond lengths $[\mathrm{C}=\mathrm{N} ; 1.28 \AA$ and $\mathrm{C}=\mathrm{O} ; 1.21 \AA$] (Allen et al., 1987) respectively confirming the azomethine bond formation and the existence of semicarbazone in amido form in solid state. The N1— N 2 [1.3749 (17) \AA] and C8- $\mathrm{N} 2[1.352(2) \AA]$ bond distances lie in between the ideal values of corresponding single and double bonds [N $-\mathrm{N} ; 1.45$ and $\mathrm{C}-\mathrm{N} ; 1.47, \mathrm{~N}=\mathrm{N} ; 1.25$ and $\mathrm{C}=\mathrm{N} ; 1.28$ (Kala et al., 2007) and it clearly proves the extended conjugation in the molecule.
Two conventional intermolecular hydrogen bonds are present in the molecular system (Fig. 2) between the O3 and the H atoms attached to N 2 and N 3 atoms of the neighbouring molecules with $\mathrm{D} \cdots \mathrm{A}$ distances of 2.8963 (19) and 2.9032 (18) \AA. N2-H2 $\cdots \mathrm{O} 3$ hydrogen bonds form centrosymmetric dimers and these dimers are connected together by means of $\mathrm{N} 3-$ $\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{O} 3$ hydrogen bond to construct a 1-D hydrogen bonding chain and such chains are beautifully connected one over the other by C-H $\cdots \pi$ interaction (Fig. 3) with $\mathrm{H} \cdots \pi$ distance of $2.7500 \AA$ keeping the molecular system stable. Fig. 4 shows the packing diagram of the title compound along b axis.

S2. Experimental

The title compound was prepared by adapting a reported procedure (Sreekanth et al., 2004). To a warm methanolic solution of hydrazinecarboxamide $(0.1115 \mathrm{~g}, 1 \mathrm{mmol})$, a methanolic solution of 3-ethoxy-2-hydroxybenzaldehyde ($0.1662 \mathrm{~g}, 1 \mathrm{mmol}$) was added and the resulting solution was refluxed for 6 h after adding 3 drops of conc. HCl . On cooling the solution, colorless crystals were separated out. Single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of its solution in 1:1 mixture of methanol and DMF.

S3. Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with $\mathrm{C}-\mathrm{H}$ bond distances $0.93-0.97 \AA$. H atoms were assigned as $U_{\mathrm{iso}}=1.2 \mathrm{Ueq}(1.5$ for Me$) . \mathrm{N} 2-\mathrm{H} 2$ and $\mathrm{O} 2-\mathrm{H} 2^{\prime} \mathrm{H}$ atoms were located from difference maps and restrained using DFIX instructions. N3-H3A and N3-H3B H atoms were also located from difference maps and restrained using $D F I X$ and DANG instructions. Omitted owing to bad disagreement was the reflection ($\left.\begin{array}{lll}0 & 0 & 1\end{array}\right)$.

Figure 1

ORTEP view of the compound, drawn with 50% probability displacement ellipsoids for the non-H atoms.

Figure 2
Graphical representation showing 1-D hydrogen bonding chain in the crystal structure of $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$.

Figure 3
$\mathrm{C}-\mathrm{H} \cdots \pi$ interaction found in the title compound showing the linkage between layers.

Figure 4

A view of the unit cell along b axis.

(2E)-2-(3-Ethoxy-2-hydroxybenzylidene)hydrazinecarboxamide

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$
$M_{r}=223.23$
Triclinic, $P \overline{1}$
Hall symbol: -P 1
$a=5.0676$ (4) \AA
$b=7.0426$ (7) \AA
$c=15.8394(15) \AA$
$\alpha=97.509(4)^{\circ}$
$\beta=98.819(3)^{\circ}$
$\gamma=105.790(4)^{\circ}$
$V=528.62(8) \AA^{3}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 8.33 pixels mm^{-1}
ω and φ scan
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min }=0.969, T_{\text {max }}=0.979$
$Z=2$
$F(000)=236.0$
$D_{\mathrm{x}}=1.403 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1468 reflections
$\theta=3.1-27.8^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Needle, colorless
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

2559 measured reflections
1794 independent reflections
1496 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.7^{\circ}$
$h=-4 \rightarrow 6$
$k=-8 \rightarrow 7$
$l=-18 \rightarrow 18$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.109$
$S=1.05$
1794 reflections
163 parameters
5 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
O1	$0.0222(2)$	$0.77360(18)$	$0.14679(8)$	$0.0535(4)$
O2	$0.4871(2)$	$0.95529(17)$	$0.25818(8)$	$0.0507(4)$
N3	$1.1509(3)$	$1.3215(2)$	$0.44231(10)$	$0.0451(4)$
N1	$0.9230(2)$	$0.92842(19)$	$0.36957(8)$	$0.0378(3)$
N2	$1.1846(3)$	$1.0000(2)$	$0.42199(9)$	$0.0415(4)$
O3	$1.5573(2)$	$1.25778(16)$	$0.48904(8)$	$0.0484(3)$
C1	$0.4059(3)$	$0.7519(2)$	$0.24373(10)$	$0.0380(4)$
C2	$0.1566(3)$	$0.6509(2)$	$0.18340(10)$	$0.0409(4)$
C3	$0.0673(3)$	$0.4439(3)$	$0.16548(11)$	$0.0482(4)$
H3	-0.0981	0.3773	0.1258	0.058^{*}
C4	$0.2212(4)$	$0.3340(3)$	$0.20585(12)$	$0.0518(5)$
H4	0.1593	0.1945	0.1932	0.062^{*}
C5	$0.4660(3)$	$0.4317(3)$	$0.26476(11)$	$0.0460(4)$
H5	0.5691	0.3576	0.2916	0.055^{*}
C6	$0.5613(3)$	$0.6415(2)$	$0.28465(9)$	$0.0374(4)$
C7	$0.8283(3)$	$0.7384(2)$	$0.34449(9)$	$0.0383(4)$
H7	0.9336	0.6587	0.3652	0.046^{*}
C8	$1.3056(3)$	$1.1985(2)$	$0.45241(9)$	$0.0359(4)$
C9	$-0.2192(3)$	$0.6811(3)$	$0.07918(11)$	$0.0510(5)$
H9A	-0.3608	0.5872	0.1005	0.061^{*}
H9B	-0.1694	0.6088	0.0307	0.061^{*}
C10	$-0.3277(4)$	$0.8456(3)$	$0.05117(13)$	$0.0641(6)$
H10A	-0.3775	0.9153	0.096^{*}	

H10B	-0.4897	0.7890	0.0054	0.096^{*}
H10C	-0.1854	0.9378	0.0305	0.096^{*}
H2	$1.274(3)$	$0.917(2)$	$0.4371(11)$	$0.045(5)^{*}$
H2 $^{\prime}$	$0.642(3)$	$0.984(3)$	$0.2920(12)$	$0.079(7)^{*}$
H3A	$1.223(3)$	$1.4467(15)$	$0.4605(12)$	$0.061(6)^{*}$
H3B	$0.975(2)$	$1.278(3)$	$0.4271(13)$	$0.068(6)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0390(6)$	$0.0514(8)$	$0.0589(7)$	$0.0127(5)$	$-0.0154(5)$	$0.0016(6)$
O2	$0.0410(7)$	$0.0387(7)$	$0.0609(8)$	$0.0109(5)$	$-0.0143(5)$	$-0.0013(5)$
N3	$0.0284(7)$	$0.0373(8)$	$0.0621(9)$	$0.0075(6)$	$-0.0051(6)$	$0.0045(7)$
N1	$0.0270(7)$	$0.0419(8)$	$0.0375(7)$	$0.0069(5)$	$-0.0039(5)$	$0.0016(6)$
N2	$0.0284(7)$	$0.0392(8)$	$0.0493(8)$	$0.0102(6)$	$-0.0094(5)$	$0.0010(6)$
O3	$0.0246(6)$	$0.0407(7)$	$0.0695(8)$	$0.0063(5)$	$-0.0086(5)$	$0.0021(5)$
C1	$0.0323(8)$	$0.0383(9)$	$0.0383(8)$	$0.0081(7)$	$0.0016(6)$	$0.0009(6)$
C2	$0.0315(8)$	$0.0461(10)$	$0.0405(8)$	$0.0107(7)$	$-0.0008(6)$	$0.0029(7)$
C3	$0.0345(9)$	$0.0492(10)$	$0.0474(9)$	$0.0026(7)$	$-0.0057(7)$	$-0.0013(7)$
C4	$0.0468(10)$	$0.0385(9)$	$0.0569(10)$	$0.0015(8)$	$-0.0026(8)$	$0.0018(8)$
C5	$0.0434(9)$	$0.0411(9)$	$0.0471(9)$	$0.0086(7)$	$-0.0022(7)$	$0.0075(7)$
C6	$0.0316(8)$	$0.0418(9)$	$0.0341(8)$	$0.0075(7)$	$0.0018(6)$	$0.0032(6)$
C7	$0.0341(8)$	$0.0392(9)$	$0.0381(8)$	$0.0108(7)$	$-0.0012(6)$	$0.0050(7)$
C8	$0.0270(7)$	$0.0386(8)$	$0.0382(8)$	$0.0075(6)$	$0.0006(6)$	$0.0053(6)$
C9	$0.0367(9)$	$0.0647(12)$	$0.0425(9)$	$0.0128(8)$	$-0.0072(7)$	$-0.0004(8)$
C10	$0.0483(11)$	$0.0769(14)$	$0.0604(12)$	$0.0167(10)$	$-0.0099(9)$	$0.0168(10)$

Geometric parameters (\AA, ${ }^{\circ}$)

O1-C2	1.3697 (19)	C3-C4	1.386 (2)
O1-C9	1.4319 (18)	C3-H3	0.9300
$\mathrm{O} 2-\mathrm{C} 1$	1.3558 (19)	C4-C5	1.377 (2)
$\mathrm{O} 2-\mathrm{H} 2^{\prime}$	0.837 (10)	C4-H4	0.9300
N3-C8	1.326 (2)	C5-C6	1.400 (2)
N3-H3A	0.849 (9)	C5-H5	0.9300
N3-H3B	0.846 (9)	C6-C7	1.459 (2)
N1-C7	1.278 (2)	C7-H7	0.9300
N1-N2	1.3749 (17)	C9-C10	1.499 (3)
N2-C8	1.352 (2)	C9-H9A	0.9700
N2-H2	0.869 (9)	C9-H9B	0.9700
O3-C8	1.2481 (17)	C10-H10A	0.9600
C1-C6	1.397 (2)	C10-H10B	0.9600
C1-C2	1.407 (2)	C10-H10C	0.9600
C2-C3	1.380 (2)		
C2-O1-C9	117.61 (13)	C6-C5-H5	119.7
$\mathrm{C} 1-\mathrm{O} 2-\mathrm{H} 2^{\prime}$	102.2 (16)	C1-C6-C5	119.31 (14)
C8-N3-H3A	120.2 (13)	C1-C6-C7	121.94 (14)

$\mathrm{C} 8-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	$121.7(13)$
$\mathrm{H} 3 \mathrm{~A}-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	$117.1(17)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$	$116.34(13)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{N} 1$	$121.45(13)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2$	$118.6(12)$
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2$	$120.0(12)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 6$	$122.85(14)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	$117.48(14)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$119.66(15)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$125.56(14)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$114.78(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.66(14)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.82(15)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.6
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	$119.85(16)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	120.1
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.1
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	$120.70(15)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	119.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	$-179.98(14)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8$	$-5.3(2)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	$174.53(14)$
$\mathrm{C} 9-\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$-0.8(2)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$-179.55(13)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$179.03(14)$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.3(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.43(16)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.4(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$0.1(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-178.64(14)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	

121.7 (13)
116.34 (13)
121.45 (13)
118.6 (12)
120.0 (12)
122.85 (14)
117.48 (14)
119.66 (15)
125.56 (14)
114.78 (14)
119.66 (14)
120.82 (15)
119.6
119.85 (16)
120.1
120.1
120.70 (15)
119.7
-179.98 (14)
-5.3 (2)
174.53 (14)
-0.8 (2)
-179.55 (13)
179.03 (14)
0.3 (2)
179.43 (16)
-0.4 (3)
0.1 (3)
0.2 (3)
-178.64 (14)
$\mathrm{H} 3 \mathrm{~A} 3-\mathrm{H} 3 \mathrm{~B}$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{N} 2$
-
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{H} 2$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$
Cl-C2

O1-C2-C1

C2-C3-C4

- 4

C5-C4-C3

C3-C4-H4
C4-C5-C6

C7-N1-N2-C8

C9-O1-C2-C1
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$
C6-C1-C2-C3
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$

C3-C4-C5-C6
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$

N1-C7-C6
N1-C7-H7
C6-C7-H7
O3-C8-N3
O3-C8-N2
N3-C8-N2
$\mathrm{O} 1-\mathrm{C} 9-\mathrm{C} 10$
O1-C9—H9A
C10-C9—H9A
O1-C9—H9B
C10-C9—H9B
H9A-C9-H9B
C9-C10-H10A
C9-C10- H 10 B
H10A-C10-H10B
C9-C10- H 10 C
H10A-C10-H10C
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$

C2-C1-C6-C5
O2-C1-C6-C7
C2-C1-C6-C7
C4-C5-C6-C1
C4-C5-C6-C7
N2-N1-C7-C6
C1-C6-C7-N1
C5-C6-C7-N1
N1-N2-C8-O3
$\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 3$
C2-O1-C9-C10
118.68 (14)
122.59 (14)
118.7
118.7
122.89 (15)
118.66 (13)
118.45 (13)
107.13 (15)
110.3
110.3
110.3
110.3
108.5
109.5
109.5
109.5
109.5
109.5 109.5
0.1 (2)
-1.8 (2)
176.94 (13)
-0.3 (3)
-177.26 (14)
-176.32 (13)
6.9 (2)
-176.21 (15)
-169.81 (13)
10.5 (2)
179.40 (14)

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 A \cdots 3{ }^{\mathrm{i}}$	$0.85(1)$	$2.06(1)$	$2.9034(19)$	$173(2)$
$\mathrm{O} 2 — \mathrm{H} 2^{\prime} \cdots \mathrm{N} 1$	$0.84(1)$	$1.89(1)$	$2.6736(15)$	$155(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{O} 3^{\mathrm{ii}}$	$0.87(1)$	$2.06(1)$	$2.8965(17)$	$161(2)$
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots \mathrm{Cg}^{\mathrm{iii}}$	0.97	2.75	$3.5896(19)$	145

Symmetry codes: (i) $-x+3,-y+3,-z+1$; (ii) $-x+3,-y+2,-z+1$; (iii) $x-1, y, z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2621).

