Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(4-Fluorobenzylidene)propanedinitrile: monoclinic polymorph

Ahmed M. El-Agrody, ${ }^{\text {a,b }}$ Mohamed A. Al-Omar, ${ }^{\text {c,d }}$ Abd El-Galil E. Amr, ${ }^{\text {d,e }} \ddagger$ Seik Weng $\mathbf{N g}^{\text {f,g }}$ and Edward R. T. Tiekink ${ }^{\mathbf{f}_{*}}$

${ }^{\text {a }}$ Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, PO Box 9004, Saudi Arabia, ${ }^{\mathbf{b}}$ Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt, ${ }^{\text {PPharmaceutical Chemistry Department, }}$ College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, dDrug Exploration \& Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ${ }^{\text {e Applied Organic Chemistry Department, }}$ National Research Center, Dokki 12622, Cairo, Egypt, ' $D e p a r t m e n t ~ o f ~ C h e m i s t r y, ~$ University of Malaya, 50603 Kuala Lumpur, Malaysia, and ${ }^{\mathrm{s}}$ Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 4 March 2013; accepted 4 March 2013

Key indicators: single-crystal X-ray study; $T=295 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.060 ; w R$ factor $=0.190 ;$ data-to-parameter ratio $=16.6$.

The title compound, $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{FN}_{2}$, is a monoclinic $\left(P 2_{1} / c\right)$ polymorph of the previously reported triclinic ($P \overline{1}$) form [Antipin et al. (2003). J. Mol. Struct. 650, 1-20]. The 13 non-H atoms in the title polymorph are almost coplanar (r.m.s. deviation $=0.020 \AA$); a small twist between the fluorobenzene and dinitrile groups $[\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angle $=$ $175.49(16)^{\circ}$] is evident in the triclinic polymorph. In the crystal, $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions lead to supramolecular layers parallel to ($\overline{1} 01$); these are connected by $\mathrm{C}-\mathrm{F} \cdots \pi$ interactions.

Related literature

For background to the chemistry and biological activity of 4 H pyran derivatives, see: El-Agrody et al. (2011); Sabry et al. (2011). For the structure of the triclinic polymorph, see: Antipin et al. (2003); Ng \& Tiekink (2013).

Experimental

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{FN}_{2}$

$$
M_{r}=172.16
$$

\ddagger Additional correspondence author, e-mail: aamr1963@yahoo.com.

Monoclinic, $P 2_{1} / c$
$a=9.1491$ (9) A
$b=12.7961(14) \AA$
$c=7.5828(11) \AA$
$\beta=106.317$ (13) ${ }^{\circ}$
$V=851.98(18) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
$0.35 \times 0.15 \times 0.05 \mathrm{~mm}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.892, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.190$
$S=1.09$
1957 reflections

7732 measured reflections
1957 independent reflections 1149 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.045$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the C1-C6 ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.93	2.61	$3.478(4)$	155
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.93	2.51	$3.424(3)$	167
$\mathrm{C} 4-\mathrm{F} 1 \cdots \mathrm{Cg} 1^{\text {iii }}$	$1.35(1)$	$3.59(1)$	$3.573(2)$	$79(1)$
Symmetry codes: (i) $x-1, y, z-1$; (ii)		$-x+2, y+\frac{1}{2},-z+\frac{3}{2}$; (iii) $x,-y-\frac{1}{2}, z-\frac{3}{2}$.		

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), QMol (Gans \& Shalloway, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through the research group project No. RGP-VPP-099. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7051).

References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Antipin, M. Yu., Nesterov, V. N., Jiang, S., Borbulevych, O. Ya., Sammeth, D. M., Sevostianova, E. V. \& Timofeeva, T. V. (2003). J. Mol. Struct. 650, 1-20. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. El-Agrody, A. M., Sabry, N. M. \& Motlaq, S. S. (2011). J. Chem. Res. 35, 77-83 Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Gans, J. \& Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.
Ng, S. W. \& Tiekink, E. R. T. (2013). Private communication (deposition number 926904). CCDC, Cambridge, England.
Sabry, N. M., Mohamed, H. M., Khattab, E. S. A. E. H., Motlaq, S. S. \& ElAgrody, A. M. (2011). Eur. J. Med. Chem. 46, 765-772.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o515 [doi:10.1107/S1600536813006235]

2-(4-Fluorobenzylidene)propanedinitrile: monoclinic polymorph

Ahmed M. El-Agrody, Mohamed A. Al-Omar, Abd El-Galil E. Amr, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

In continuation of a program on the chemistry of 4H-pyran derivatives (El-Agrody et al., 2011; Sabry et al., 2011), the title compound was isolated from a failed reaction, see Experimental, as a monoclinic polymorph $\left(P 2_{1} / c\right)$ of the previously reported triclinic $(P \overline{1})$ form (Antipin et al., 2003). In fact, both forms were characterized from the same reaction product ($\mathrm{Ng} \&$ Tiekink, 2013).
In (I), Fig. 1, the 13 non-hydrogen atoms are almost co-planar with a r.m.s. deviation of $0.020 \AA$, and with maximum deviations of 0.028 (2) \AA for the C 5 atom and -0.028 (2) \AA for C 2 . This contrasts the small twist found in the triclinic form (r.m.s. deviation $=0.062 \AA$) as seen in the $\mathrm{C} 2-\mathrm{C} 1 — \mathrm{C} 7 — \mathrm{C} 8$ torsion angle of $175.49(16)^{\circ}(\mathrm{Ng} \&$ Tiekink, 2013), which compares to $-180.0(2)^{\circ}$ in (I); this difference is emphasized in the overlay diagram shown in Fig. 2.
In the crystal, supramolecular layers mediated by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions are formed parallel to ($\overline{1} 01$), Fig. 2 and Table 1, and these are connected into a three-dimensional array by $\mathrm{C}-\mathrm{F} \cdots \pi$ contacts, Fig. 4 and Table 1. This pattern of interactions is in stark contrast to that in the triclinic polymorph whereby $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, involving one N atom only, lead to supramolecular chains which are connected into double chains by weak $\pi-\pi$ contacts ($\mathrm{Ng} \&$ Tiekink, 2013).

S2. Experimental

A solution of 6-bromo-1-naphthol $(0.01 \mathrm{~mol})$ in $\mathrm{EtOH}(30 \mathrm{ml})$ was treated with 4-fluoro-1-(2,2-dicyanovinyl)benzene $(0.01 \mathrm{~mol})$ and piperidine $(0.5 \mathrm{ml})$. The reaction mixture was heated until complete precipitation occurred (reaction time: $60 \mathrm{~min})$. The solid product which formed was collected by filtration and recrystallized from ethanol to give the title compound, i.e. unreacted 4-fluoro-1-(2,2-dicyanovinyl)benzene, as both triclinic (Ng \& Tiekink, 2013) and monoclinic (I) polymorphs. Both crystal forms have the appearance of yellow prisms.

S3. Refinement

The C-bound H atoms were geometrically placed $(\mathrm{C}-\mathrm{H}=0.93 \AA)$ and refined as riding with $U_{\text {iso }}(\mathrm{H})=1.2 U_{e q}(\mathrm{C})$.

Figure 1
The molecular structures of (I) showing displacement ellipsoids at the 35% probability level.

Figure 2
Overlay diagram of (I) (red) with the triclinic form (blue). The molecules are overlaid so that the benzene rings are superimposed.

Figure 3
A view of the supramolecular layer parallel to ($\overline{1} 011$) in (I) sustained by $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions, shown as blue dashed lines.

Figure 4

A view in projection down the b axis of the crystal packing in (I). The $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{F} \cdots \pi$ interactions are shown as blue and purple dashed lines, respectively.

2-(4-Fluorobenzylidene)propanedinitrile

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{FN}_{2}$
$M_{r}=172.16$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=9.1491$ (9) \AA
$b=12.7961$ (14) \AA
$c=7.5828(11) \AA$
$\beta=106.317(13)^{\circ}$
$V=851.98(18) \AA^{3}$
$Z=4$

Data collection

Agilent SuperNova Dual
diffractometer with an Atlas detector
Radiation source: SuperNova (Mo) X-ray
Source
Mirror monochromator
$F(000)=352$
$D_{\mathrm{x}}=1.342 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1835 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Prism, yellow
$0.35 \times 0.15 \times 0.05 \mathrm{~mm}$

Detector resolution: 10.4041 pixels mm^{-1}
ω scan
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\min }=0.892, T_{\max }=1.000$

7732 measured reflections
1957 independent reflections
1149 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.045$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.190$
$S=1.09$
1957 reflections
118 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& \theta_{\max }=27.6^{\circ}, \theta_{\min }=3.2^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=-16 \rightarrow 14 \\
& l=-9 \rightarrow 9
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
F1	$0.35050(15)$	$0.22275(14)$	$0.1895(2)$	$0.0959(6)$
N1	$1.2165(3)$	$0.47627(19)$	$0.9490(4)$	$0.1097(9)$
N2	$1.0706(2)$	$0.15887(19)$	$0.8205(3)$	$0.0900(8)$
C1	$0.7452(2)$	$0.34429(17)$	$0.5304(3)$	$0.0566(6)$
C2	$0.6299(3)$	$0.4089(2)$	$0.4263(3)$	$0.0704(7)$
H2	0.6434	0.4809	0.4340	0.084^{*}
C3	$0.4968(3)$	$0.3689(2)$	$0.3126(3)$	$0.0775(7)$
H3	0.4209	0.4129	0.2442	0.093^{*}
C4	$0.4797(2)$	$0.2624(2)$	$0.3035(3)$	$0.0685(7)$
C5	$0.5886(2)$	$0.1964(2)$	$0.4027(3)$	$0.0651(6)$
H5	0.5733	0.1245	0.3937	0.078^{*}
C6	$0.7208(2)$	$0.23631(18)$	$0.5158(3)$	$0.0606(6)$
H6	0.7952	0.1911	0.5836	0.073^{*}
C7	$0.8788(2)$	$0.39364(18)$	$0.6487(3)$	$0.0627(6)$
H7	0.8763	0.4663	0.6451	0.075^{*}
C8	$1.0061(2)$	$0.35367(18)$	$0.7630(3)$	$0.0611(6)$
C9	$1.1232(3)$	$0.4227(2)$	$0.8665(3)$	$0.0773(7)$
C10	$1.0398(2)$	$0.2445(2)$	$0.7927(3)$	$0.0648(6)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
F1	$0.0668(9)$	$0.1132(15)$	$0.0951(11)$	$-0.0038(8)$	$0.0019(8)$	$-0.0117(9)$
N1	$0.1033(16)$	$0.0584(16)$	$0.131(2)$	$-0.0124(13)$	$-0.0271(14)$	$0.0014(13)$
N2	$0.0849(14)$	$0.0549(15)$	$0.1148(19)$	$0.0018(11)$	$0.0028(12)$	$0.0019(12)$
C1	$0.0644(12)$	$0.0469(14)$	$0.0582(12)$	$0.0029(9)$	$0.0169(9)$	$0.0002(9)$
C2	$0.0809(15)$	$0.0528(15)$	$0.0747(14)$	$0.0089(11)$	$0.0174(12)$	$0.0037(11)$
C3	$0.0714(14)$	$0.080(2)$	$0.0734(15)$	$0.0198(13)$	$0.0088(11)$	$0.0048(13)$
C4	$0.0595(13)$	$0.080(2)$	$0.0642(14)$	$-0.0006(11)$	$0.0139(10)$	$-0.0066(11)$
C5	$0.0686(13)$	$0.0576(15)$	$0.0684(13)$	$-0.0032(11)$	$0.0179(11)$	$-0.0039(10)$
C6	$0.0639(12)$	$0.0516(14)$	$0.0632(12)$	$0.0033(10)$	$0.0125(10)$	$0.0013(9)$
C7	$0.0760(14)$	$0.0398(13)$	$0.0702(13)$	$0.0018(10)$	$0.0174(11)$	$0.0001(9)$
C8	$0.0681(12)$	$0.0434(14)$	$0.0686(13)$	$-0.0041(10)$	$0.0141(10)$	$-0.0015(9)$
C9	$0.0803(15)$	$0.0485(16)$	$0.0899(17)$	$-0.0003(12)$	$0.0024(13)$	$0.0028(12)$
C10	$0.0638(13)$	$0.0487(15)$	$0.0766(14)$	$-0.0028(11)$	$0.0113(10)$	$-0.0037(11)$

Geometric parameters ($A,{ }^{\circ}$)

F1-C4	1.352 (3)	C3-H3	0.9300
N1-C9	1.135 (3)	C4-C5	1.361 (3)
N2-C10	1.136 (3)	C5-C6	1.370 (3)
C1-C6	1.399 (3)	C5-H5	0.9300
$\mathrm{C} 1-\mathrm{C} 2$	1.396 (3)	C6-H6	0.9300
C1-C7	1.443 (3)	C7-C8	1.342 (3)
C2-C3	1.378 (3)	C7-H7	0.9300
C2-H2	0.9300	C8-C10	1.435 (3)
C3-C4	1.372 (3)	C8-C9	1.440 (3)
C6-C1-C2	117.5 (2)	C4-C5-H5	120.2
C6-C1-C7	124.74 (19)	C6-C5-H5	120.2
C2-C1-C7	117.8 (2)	C5-C6-C1	120.7 (2)
C3-C2-C1	121.9 (3)	C5-C6-H6	119.6
C3-C2-H2	119.0	C1-C6-H6	119.6
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.0	C8-C7- 1	131.6 (2)
C4-C3-C2	118.0 (2)	C8-C7-H7	114.2
C4-C3-H3	121.0	C1-C7-H7	114.2
C2-C3-H3	121.0	C7-C8-C10	125.6 (2)
F1-C4-C5	119.5 (3)	C7-C8-C9	119.7 (2)
F1-C4-C3	118.2 (2)	C10-C8-C9	114.7 (2)
C5-C4-C3	122.3 (2)	N1-C9-C8	179.3 (3)
C4-C5-C6	119.7 (2)	N2-C10-C8	177.8 (2)
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.2 (3)	C4-C5-C6-C1	0.0 (3)
C7-C1-C2-C3	-178.55 (19)	C2- $21-\mathrm{C} 6-\mathrm{C} 5$	0.2 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.1 (4)	C7-C1-C6-C5	178.50 (19)
C2-C3-C4-F1	-178.78 (19)	C6- $\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8$	1.7 (4)
C2-C3-C4-C5	0.3 (4)	C2-C1-C7-C8	-180.0 (2)

$\mathrm{F} 1-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$178.84(19)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 10$	$0.8(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.2(4)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-179.9(2)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)
Cg 1 is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3 — \mathrm{H} 3 \cdots \mathrm{~N} 1^{\mathrm{i}}$	0.93	2.61	$3.478(4)$	155
$\mathrm{C} 7 — \mathrm{H} 7 \cdots \mathrm{~N} 2^{\mathrm{ii}}$	0.93	2.51	$3.424(3)$	167
$\mathrm{C} 4 — \mathrm{~F} 1 \cdots C g 1^{\mathrm{iii}}$	$1.35(1)$	$3.59(1)$	$3.573(2)$	$79(1)$

Symmetry codes: (i) $x-1, y, z-1$; (ii) $-x+2, y+1 / 2,-z+3 / 2$; (iii) $x,-y-1 / 2, z-3 / 2$.

