

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-Iodo-3,3-diphenyloctahydrobenzofuran

Muhammad Sohail, Wang Yao-Feng, Wang Qi and Fu-Xue Chen*

School of Chemical Engineering and Environment, Beijing Institue of Technology, Beijing 100081, People's Republic of China Correspondence e-mail: fuxue.chen@bit.edu.cn

Received 8 March 2013; accepted 19 March 2013

Key indicators: single-crystal X-ray study: T = 153 K: mean σ (C–C) = 0.004 Å: R factor = 0.039; wR factor = 0.091; data-to-parameter ratio = 24.2.

The title compound, C₂₀H₂₁IO, was synthesized by cyclohaloetherification of 2-(cyclohex-2-enyl)-2,2-diphenylethanol in CH₂Cl₂, and crystallized with two independent molecules in the asymmetric unit. The six-membered cyclohexane ring adopts a chair conformation, while the five-membered ring adopts an envelope conformation with the fused C atom opposite the O atom as the flap in each case [displacements of the flap atoms = 0.6813 (3) and 0.6679 (3) Å]. In the crystal, molecules are linked via pairs of $C-H\cdots\pi$ interactions, forming inversion dimers.

Related literature

For the title compound as a core structure of many drugs and natural products, see: Huang & Chen (2007); Trost et al. (2003). For the synthesis of 2-(cyclohex-2-enyl)-2,2-diphenylethanol, see: Brooner & Widenhoefer (2011).

organic compounds

19455 measured reflections

 $R_{\rm int} = 0.034$

397 parameters

 $\Delta \rho_{\text{max}} = 1.05 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.75$ e Å⁻³

9610 independent reflections

7599 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Experimental

Crystal data

$C_{20}H_{21}IO$	$\gamma = 64.945 \ (7)^{\circ}$
$M_r = 404.27$	V = 1692.8 (5) Å ³
Triclinic, P1	Z = 4
a = 11.4082 (18) Å	Mo $K\alpha$ radiation
b = 12.523 (2) Å	$\mu = 1.89 \text{ mm}^{-1}$
c = 14.007 (3) Å	T = 153 K
$\alpha = 73.306 \ (8)^{\circ}$	$0.33 \times 0.27 \times 0.10 \text{ mm}$
$\beta = 71.646 \ (8)^{\circ}$	

Data collection

Rigaku AFC10/Saturn724+ diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) $T_{\min} = 0.572, T_{\max} = 0.833$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.091$ S = 1.009610 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C9-C14 and C15'-C20' rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2\cdots Cg1^{i}$ $C2'-H2'\cdots Cg2^{ii}$	$\begin{array}{c} 1.00\\ 1.00 \end{array}$	2.53 2.54	3.519 (3) 3.533 (3)	171 171

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 2, -z.

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Financial support from Beijing Institute of Technology is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5298).

References

Brooner, R. E. M. & Widenhoefer, R. A. (2011). Chem. Eur. J. 17, 6170-6178. Huang, J. & Chen, F. (2007). Helv. Chim. Acta, 90, 1366-1372.

Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Trost, B. M., Shen, H. C. & Surivet, J. (2003). Angew. Chem. Int. Ed. 42, 3943-3947.

supporting information

Acta Cryst. (2013). E69, o585 [doi:10.1107/S1600536813007563]

7-Iodo-3,3-diphenyloctahydrobenzofuran

Muhammad Sohail, Wang Yao-Feng, Wang Qi and Fu-Xue Chen

S1. Comment

The title compound (I, Fig. 1), is an important core structure of many organic drugs and natural products (Huang *et al.* 2007, Trost *et al.*, 2003) and is useful to introduce functionality at C7. The asymmetric unit of title compound consists of two independent molecules in which the iodo-cyclohexane rings adopt chair conformations. In the crystal lattice, two molecules in asymmetric unit are linked by C—H… π interactions with phenyl ring.

S2. Experimental

N-Iodosuccinimide (13.5 mg, 0.06 mmole, 1.2 eq) was added to the solution of 2-(cyclohex-2-enyl)-2,2-diphenylethanol (13.9 mg, 0.05 mmole, 1 eq) in CH₂Cl₂ (0.5 ml) at -78°C. The reaction mixture was stirred at -78°C for 2.5 h, after reaction completion, as monitored by TLC the crude was directly loaded on column and purified by flash column chromatography (silica gel, Et₂O-Petrolium ether, 1:40), redissolving of crude in *n*-hexane afforded pure crystals (99%) of (I) (Brooner *et al.* 2011).

S3. Refinement

Carbon protons were included in the riding model approximation with C—H distances 0.95-1.00 Å, and with $U_{iso}(H)=1.2U_{eq}(C)$.

Figure 1

The molecular structure of the two molecules of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Figure 2

A view of C—H··· π interactions are indicated by dotted lines in the crystal structure of the title compound.

7-Iodo-3,3-diphenyloctahydrobenzofuran

Crystal data

C₂₀H₂₁IO $M_r = 404.27$ Triclinic, *P*1 Hall symbol: -P 1 a = 11.4082 (18) Å b = 12.523 (2) Å c = 14.007 (3) Å a = 73.306 (8)° $\beta = 71.646$ (8)° $\gamma = 64.945$ (7)° V = 1692.8 (5) Å³

Data collection

Rigaku AFC10/Saturn724+ diffractometer Radiation source: Rotating Anode Graphite monochromator Detector resolution: 28.5714 pixels mm⁻¹ phi and ω scans Z = 4 F(000) = 808 $D_x = 1.586 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5864 reflections $\theta = 2.2-30.0^{\circ}$ $\mu = 1.89 \text{ mm}^{-1}$ T = 153 K Block, colourless $0.33 \times 0.27 \times 0.10 \text{ mm}$

Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2008) $T_{min} = 0.572$, $T_{max} = 0.833$ 19455 measured reflections 9610 independent reflections 7599 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$

$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 2.2^\circ$	$k = -17 \rightarrow 16$
$h = -16 \rightarrow 13$	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.091$	neighbouring sites
S = 1.00	H-atom parameters constrained
9610 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0318P)^2 + 1.060P]$
397 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.05 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.75 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
I1	0.65947 (2)	0.703016 (18)	0.295052 (16)	0.03449 (6)	
01	0.53230 (19)	0.40425 (16)	0.40367 (15)	0.0228 (4)	
C1	0.5264 (2)	0.5248 (2)	0.3578 (2)	0.0184 (5)	
H1	0.4776	0.5777	0.4103	0.022*	
C2	0.6681 (3)	0.5206 (2)	0.3193 (2)	0.0216 (5)	
H2	0.7177	0.4710	0.3743	0.026*	
C3	0.7423 (3)	0.4681 (3)	0.2228 (2)	0.0278 (6)	
H3A	0.7611	0.3809	0.2388	0.033*	
H3B	0.8283	0.4796	0.1973	0.033*	
C4	0.6631 (3)	0.5265 (3)	0.1397 (2)	0.0285 (6)	
H4A	0.7133	0.4889	0.0784	0.034*	
H4B	0.6493	0.6127	0.1201	0.034*	
C5	0.5288 (3)	0.5116 (3)	0.1782 (2)	0.0228 (5)	
H5A	0.5438	0.4253	0.1913	0.027*	
H5B	0.4778	0.5523	0.1240	0.027*	
C6	0.4460 (2)	0.5624 (2)	0.27622 (19)	0.0176 (5)	
H6	0.4037	0.6517	0.2601	0.021*	
C7	0.3390 (2)	0.5062 (2)	0.33450 (19)	0.0176 (5)	
C8	0.4302 (3)	0.3834 (2)	0.3831 (2)	0.0212 (5)	
H8A	0.3792	0.3500	0.4472	0.025*	
H8B	0.4686	0.3260	0.3355	0.025*	
C9	0.2348 (2)	0.5739 (2)	0.4198 (2)	0.0196 (5)	
C10	0.1516 (3)	0.5193 (3)	0.4926 (2)	0.0241 (6)	

H10	0.1619	0.4411	0.4891	0.029*
C11	0.0547 (3)	0.5757 (3)	0.5698 (2)	0.0304 (7)
H11	0.0001	0.5360	0.6187	0.036*
C12	0.0376 (3)	0.6890 (3)	0.5754 (2)	0.0314 (7)
H12	-0.0294	0.7283	0.6279	0.038*
C13	0.1182 (3)	0.7460 (3)	0.5043 (2)	0.0302 (7)
H13	0.1067	0.8244	0.5082	0.036*
C14	0.2156 (3)	0.6888 (3)	0.4276 (2)	0.0241 (6)
H14	0.2704	0.7288	0.3794	0.029*
C15	0.2651 (2)	0.4991 (2)	0.2641 (2)	0.0195 (5)
C16	0.2684 (3)	0.3913 (3)	0.2510 (2)	0.0250 (6)
H16	0.3194	0.3175	0.2864	0.030*
C17	0.1972 (3)	0.3913 (3)	0.1862 (2)	0.0300 (7)
H17	0.2004	0.3174	0.1777	0.036*
C18	0.1223 (3)	0.4975 (3)	0.1342 (2)	0.0296 (6)
H18	0.0736	0.4969	0.0905	0.036*
C19	0.1185 (3)	0.6049 (3)	0.1461 (2)	0.0311 (7)
H19	0.0671	0.6783	0.1104	0.037*
C20	0.1893 (3)	0.6057 (3)	0.2100 (2)	0.0260 (6)
H20	0.1863	0.6800	0.2172	0.031*
I1′	1.19069 (2)	1.181469 (19)	0.013330 (16)	0.03506 (7)
01′	1.02918 (19)	0.90326 (17)	0.12779 (15)	0.0251 (4)
C1′	1.0347 (3)	1.0201 (2)	0.1134 (2)	0.0203 (5)
H1′	0.9883	1.0756	0.0581	0.024*
C2′	1.1807 (3)	1.0044 (3)	0.0810(2)	0.0245 (6)
H2′	1.2252	0.9533	0.0270	0.029*
C3′	1.2537 (3)	0.9465 (3)	0.1671 (2)	0.0305 (7)
H3′1	1.3435	0.9502	0.1426	0.037*
H3′2	1.2639	0.8610	0.1875	0.037*
C4′	1.1806 (3)	1.0078 (3)	0.2598 (2)	0.0301 (6)
H4′1	1.1757	1.0918	0.2411	0.036*
H4′2	1.2300	0.9663	0.3150	0.036*
C5′	1.0407 (3)	1.0052 (3)	0.2979 (2)	0.0256 (6)
H5′1	0.9939	1.0483	0.3563	0.031*
H5′2	1.0471	0.9210	0.3230	0.031*
C6′	0.9582 (3)	1.0620 (2)	0.21581 (19)	0.0187 (5)
H6′	0.9238	1.1514	0.2063	0.022*
C7′	0.8417 (3)	1.0166 (2)	0.2427 (2)	0.0187 (5)
C8′	0.9195 (3)	0.8919 (2)	0.2105 (2)	0.0229 (6)
H8′1	0.9521	0.8306	0.2686	0.027*
H8′2	0.8617	0.8680	0.1878	0.027*
C9′	0.7693 (3)	1.0112 (2)	0.3550(2)	0.0195 (5)
C10′	0.7127 (3)	1.1150 (2)	0.3963 (2)	0.0238 (6)
H10′	0.7222	1.1868	0.3546	0.029*
C11′	0.6425 (3)	1.1161 (3)	0.4972 (2)	0.0273 (6)
H11′	0.6047	1.1879	0.5242	0.033*
C12′	0.6277 (3)	1.0117 (3)	0.5583 (2)	0.0322 (7)
H12′	0.5803	1.0116	0.6276	0.039*

C13′	0.6820 (3)	0.9087 (3)	0.5183 (2)	0.0368 (7)	
H13′	0.6707	0.8376	0.5600	0.044*	
C14′	0.7535 (3)	0.9072 (3)	0.4174 (2)	0.0295 (6)	
H14′	0.7916	0.8349	0.3911	0.035*	
C15′	0.7364 (3)	1.0920 (2)	0.1781 (2)	0.0198 (5)	
C16′	0.6360 (3)	1.0507 (3)	0.1877 (2)	0.0271 (6)	
H16′	0.6351	0.9781	0.2331	0.032*	
C17′	0.5377 (3)	1.1134 (3)	0.1324 (2)	0.0333 (7)	
H17′	0.4708	1.0836	0.1398	0.040*	
C18′	0.5376 (3)	1.2199 (3)	0.0662 (2)	0.0332 (7)	
H18′	0.4704	1.2634	0.0283	0.040*	
C19′	0.6352 (3)	1.2623 (3)	0.0557 (2)	0.0288 (6)	
H19′	0.6356	1.3348	0.0100	0.035*	
C20′	0.7336 (3)	1.1995 (2)	0.1118 (2)	0.0232 (6)	
H20′	0.7995	1.2304	0.1047	0.028*	

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
I1	0.04589 (13)	0.03359 (11)	0.03171 (11)	-0.02655 (10)	-0.00455 (9)	-0.00285 (9)
01	0.0265 (10)	0.0197 (9)	0.0248 (10)	-0.0122 (8)	-0.0108 (8)	0.0038 (8)
C1	0.0200 (12)	0.0202 (12)	0.0166 (12)	-0.0102 (10)	-0.0033 (9)	-0.0018 (10)
C2	0.0205 (12)	0.0250 (13)	0.0213 (13)	-0.0099 (11)	-0.0060 (10)	-0.0033 (11)
C3	0.0201 (13)	0.0360 (16)	0.0271 (15)	-0.0110 (12)	-0.0010 (11)	-0.0089 (13)
C4	0.0257 (14)	0.0394 (17)	0.0210 (14)	-0.0141 (13)	0.0013 (11)	-0.0102 (12)
C5	0.0228 (13)	0.0294 (14)	0.0161 (12)	-0.0088 (11)	-0.0029 (10)	-0.0063 (11)
C6	0.0182 (12)	0.0199 (12)	0.0147 (11)	-0.0071 (10)	-0.0038 (9)	-0.0026 (9)
C7	0.0196 (12)	0.0174 (12)	0.0169 (12)	-0.0059 (10)	-0.0055 (9)	-0.0046 (9)
C8	0.0210 (12)	0.0212 (13)	0.0228 (13)	-0.0086 (10)	-0.0065 (10)	-0.0029 (10)
C9	0.0153 (11)	0.0247 (13)	0.0187 (12)	-0.0040 (10)	-0.0063 (9)	-0.0060 (10)
C10	0.0191 (12)	0.0350 (15)	0.0222 (13)	-0.0129 (11)	-0.0027 (10)	-0.0083 (12)
C11	0.0211 (13)	0.054 (2)	0.0215 (14)	-0.0184 (14)	0.0009 (11)	-0.0130 (14)
C12	0.0198 (13)	0.0466 (18)	0.0260 (15)	-0.0042 (13)	-0.0041 (11)	-0.0176 (14)
C13	0.0314 (15)	0.0264 (15)	0.0288 (15)	-0.0011 (12)	-0.0084 (12)	-0.0124 (12)
C14	0.0249 (13)	0.0256 (14)	0.0211 (13)	-0.0072 (11)	-0.0046 (10)	-0.0068 (11)
C15	0.0177 (12)	0.0240 (13)	0.0181 (12)	-0.0081 (10)	-0.0014 (9)	-0.0080 (10)
C16	0.0250 (13)	0.0317 (15)	0.0224 (13)	-0.0118 (12)	-0.0052 (11)	-0.0089 (12)
C17	0.0334 (16)	0.0384 (17)	0.0280 (15)	-0.0209 (14)	-0.0007 (12)	-0.0146 (13)
C18	0.0249 (14)	0.0471 (18)	0.0237 (14)	-0.0149 (13)	-0.0040 (11)	-0.0153 (13)
C19	0.0263 (14)	0.0367 (17)	0.0303 (16)	-0.0055 (13)	-0.0131 (12)	-0.0080 (13)
C20	0.0242 (14)	0.0264 (14)	0.0295 (15)	-0.0054 (11)	-0.0106 (11)	-0.0089 (12)
I1′	0.04789 (13)	0.04025 (12)	0.02762 (11)	-0.02840 (10)	-0.00919 (9)	-0.00140 (9)
O1′	0.0276 (10)	0.0228 (10)	0.0267 (10)	-0.0111 (8)	0.0004 (8)	-0.0114 (8)
C1′	0.0239 (13)	0.0226 (13)	0.0178 (12)	-0.0106 (11)	-0.0045 (10)	-0.0054 (10)
C2′	0.0231 (13)	0.0277 (14)	0.0253 (14)	-0.0119 (11)	-0.0034 (11)	-0.0070 (11)
C3′	0.0236 (14)	0.0333 (16)	0.0356 (17)	-0.0095 (12)	-0.0092 (12)	-0.0064 (13)
C4′	0.0323 (15)	0.0389 (17)	0.0255 (15)	-0.0156 (13)	-0.0140 (12)	-0.0026 (13)
C5′	0.0287 (14)	0.0316 (15)	0.0187 (13)	-0.0120 (12)	-0.0084 (11)	-0.0028 (11)

C6′	0.0228 (12)	0.0205 (12)	0.0164 (12)	-0.0098 (10)	-0.0043 (10)	-0.0054 (10)	
C7′	0.0220 (12)	0.0170 (12)	0.0178 (12)	-0.0071 (10)	-0.0050 (10)	-0.0038 (10)	
C8′	0.0238 (13)	0.0207 (13)	0.0243 (13)	-0.0077 (11)	-0.0044 (11)	-0.0059 (11)	
C9′	0.0204 (12)	0.0217 (13)	0.0168 (12)	-0.0080 (10)	-0.0079 (10)	0.0003 (10)	
C10′	0.0272 (14)	0.0217 (13)	0.0193 (13)	-0.0082 (11)	-0.0047 (10)	-0.0008 (10)	
C11′	0.0246 (14)	0.0322 (15)	0.0232 (14)	-0.0079 (12)	-0.0044 (11)	-0.0069 (12)	
C12′	0.0301 (15)	0.0488 (19)	0.0180 (13)	-0.0184 (14)	-0.0041 (11)	-0.0018 (13)	
C13′	0.0483 (19)	0.0392 (18)	0.0256 (16)	-0.0266 (16)	-0.0056 (14)	0.0037 (13)	
C14′	0.0421 (17)	0.0270 (15)	0.0247 (15)	-0.0193 (13)	-0.0089 (13)	-0.0004 (12)	
C15′	0.0212 (12)	0.0192 (12)	0.0183 (12)	-0.0051 (10)	-0.0035 (10)	-0.0069 (10)	
C16′	0.0264 (14)	0.0330 (15)	0.0233 (14)	-0.0133 (12)	-0.0041 (11)	-0.0048 (12)	
C17′	0.0239 (14)	0.0474 (19)	0.0316 (16)	-0.0135 (14)	-0.0066 (12)	-0.0103 (14)	
C18′	0.0244 (14)	0.0414 (18)	0.0288 (16)	-0.0018 (13)	-0.0119 (12)	-0.0084 (14)	
C19′	0.0318 (15)	0.0249 (14)	0.0243 (14)	-0.0032 (12)	-0.0114 (12)	-0.0023 (11)	
C20′	0.0259 (13)	0.0242 (13)	0.0199 (13)	-0.0081 (11)	-0.0073 (10)	-0.0038 (11)	

Geometric parameters (Å, °)

IIC2 $2.175 (3)$ II'C2' 2.1 O1C8 $1.421 (3)$ O1'C8' 1.4 O1C1 $1.442 (3)$ O1'C1' 1.4 C1C2 $1.518 (4)$ C1'C2' 1.5 C1C6 $1.534 (4)$ C1'C6' 1.5 C1H1 1.0000 C1'H1' 1.000 C2C3 $1.514 (4)$ C2'C3' 1.5 C2H2 1.0000 C2'-H2' 1.000 C3C4 $1.524 (4)$ C3'C4' 1.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	183 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	439 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	444 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	522 (4)
C1—H11.0000C1'—H1'1.0C2—C31.514 (4)C2'—C3'1.5C2—H21.0000C2'—H2'1.0C3—C41.524 (4)C3'—C4'1.5	534 (3)
C2-C31.514 (4)C2'-C3'1.5C2-H21.0000C2'-H2'1.0C3-C41.524 (4)C3'-C4'1.5	0000
C2—H2 1.0000 C2'—H2' 1.0 C3—C4 1.524 (4) C3'—C4' 1.5	515 (4)
C3—C4 1.524 (4) C3'—C4' 1.5	0000
	523 (4)
C3—H3A 0.9900 C3'—H3'1 0.9	9900
C3—H3B 0.9900 C3'—H3'2 0.9	9900
C4—C5 1.528 (4) C4′—C5′ 1.5	526 (4)
C4—H4A 0.9900 C4'—H4'1 0.9	9900
C4—H4B 0.9900 C4'—H4'2 0.9	9900
C5—C6 1.536 (3) C5'—C6' 1.5	535 (4)
C5—H5A 0.9900 C5'—H5'1 0.9	9900
C5—H5B 0.9900 C5'—H5'2 0.9	9900
C6—C7 1.556 (3) C6'—C7' 1.5	560 (4)
С6—Н6 1.0000 С6'—Н6' 1.0	0000
C7—C15 1.526 (4) C7′—C9′ 1.5	527 (4)
C7—C9 1.547 (3) C7′—C15′ 1.5	545 (4)
C7—C8 1.550 (4) C7′—C8′ 1.5	553 (4)
C8—H8A 0.9900 C8'—H8'1 0.9	9900
C8—H8B 0.9900 C8'—H8'2 0.9	9900
C9—C14 1.393 (4) C9′—C10′ 1.3	388 (4)
C9—C10 1.396 (4) C9′—C14′ 1.3	392 (4)
C10—C11 1.384 (4) C10′—C11′ 1.3	389 (4)
C10—H10 0.9500 C10'—H10' 0.9	9500
C11—C12 1.370 (5) C11′—C12′ 1.3	386 (4)
C11—H11 0.9500 C11'—H11' 0.9	

C12—C13	1.385 (4)	C12′—C13′	1.372 (5)
C12—H12	0.9500	C12'—H12'	0.9500
C13—C14	1.385 (4)	C13′—C14′	1.392 (4)
C13—H13	0.9500	C13'—H13'	0.9500
C14—H14	0.9500	C14′—H14′	0.9500
C15—C16	1.398 (4)	C15′—C20′	1.393 (4)
C_{15} C_{20}	1 399 (4)	C15' - C16'	1 401 (4)
C_{16} C_{17}	1 395 (4)	C16' - C17'	1 388 (4)
C16—H16	0.9500	C16' - H16'	0.9500
C17-C18	1.380(5)	C10 - 110 C17' - C18'	1 388 (5)
C17 H17	0.9500	C17' H17'	0.9500
C_{1}^{18} C_{10}^{10}	1.383(4)	C18' - C19'	1.378(4)
C_{10}	1.363 (4)	$C_{10} - C_{19}$	1.578 (4)
	0.9300		0.9300
C19—C20	1.380 (4)	C19 - C20	1.396 (4)
C19—H19	0.9500	C19'—H19'	0.9500
C20—H20	0.9500	C20'—H20'	0.9500
C8 01 C1	110.04 (10)	C^{0} O^{1} C^{1}	100 76 (10)
$C_0 = C_1 = C_1$	110.04(19)	$C_{8} = 01 = C_{1}$	109.70(19) 107.0(2)
01-C1-C2	107.4 (2)	01 - 01 - 02	107.0 (2)
OI - CI - C6	104.0(2)	01^{-}	104.5 (2)
C2-CI-C6	116.3 (2)	C2' = C1' = C6'	116.3 (2)
OI—CI—HI	109.6		109.6
C2—C1—H1	109.6	C2'—C1'—H1'	109.6
C6—C1—H1	109.6	C6'—C1'—H1'	109.6
C3—C2—C1	114.5 (2)	C3'—C2'—C1'	114.1 (2)
C3—C2—I1	110.48 (19)	C3'—C2'—I1'	110.34 (19)
C1—C2—I1	107.01 (17)	C1'—C2'—I1'	107.33 (18)
С3—С2—Н2	108.2	C3'—C2'—H2'	108.3
C1—C2—H2	108.2	C1'—C2'—H2'	108.3
I1—C2—H2	108.2	I1′—C2′—H2′	108.3
C2—C3—C4	111.7 (2)	C2'—C3'—C4'	112.0 (2)
С2—С3—НЗА	109.3	C2'—C3'—H3'1	109.2
C4—C3—H3A	109.3	C4′—C3′—H3′1	109.2
С2—С3—Н3В	109.3	C2'—C3'—H3'2	109.2
С4—С3—Н3В	109.3	C4′—C3′—H3′2	109.2
НЗА—СЗ—НЗВ	108.0	H3'1—C3'—H3'2	107.9
C3—C4—C5	110.1 (2)	C3'—C4'—C5'	110.2 (2)
C3-C4-H4A	109.6	C3'-C4'-H4'1	109.6
C_{5} C_{4} H_{4A}	109.6	C5' - C4' - H4'1	109.6
$C_3 - C_4 - H_4B$	109.6	C3' - C4' - H4'2	109.0
$C_5 C_4 H_{4B}$	109.6	C5' C4' H4'2	109.0
	109.0	$H_{11} = C_{11} + C$	109.0
$H_{A} = C_{4} = H_{4} = H_{4}$	100.2 112 5 (2)	H4 I - C4 - H4 2	100.1 112.6(2)
$C_{1} = C_{2} = C_{0}$	113.3(2)	$C_4 = C_3 = C_0$	115.0 (2)
$C_4 - C_5 - \Pi 5 A$	100.9	C4 - C3 - H5'I	108.8
CO-CS-HSD	108.9	$C_0 - C_3 - H_3 I$	108.8
C4-C5-H5B	108.9	$C4^{-}$ $C5^{-}$ $H5^{\prime}2$	108.8
CO-CO-HSB	108.9	C6'-C5'-H5'2	108.8
нэд—Сэ—Нэв	107.7	H5'I-C5'-H5'2	107.7

C1—C6—C5	112.9 (2)	C1'—C6'—C5'	112.9 (2)
C1—C6—C7	100.37 (19)	C1'—C6'—C7'	100.5 (2)
C5—C6—C7	111.6 (2)	C5'—C6'—C7'	111.4 (2)
С1—С6—Н6	110.5	C1'—C6'—H6'	110.6
С5—С6—Н6	110.5	С5'—С6'—Н6'	110.6
С7—С6—Н6	110.5	С7'—С6'—Н6'	110.6
C15—C7—C9	108.0 (2)	C9'—C7'—C15'	107.4 (2)
C15—C7—C8	114.7 (2)	C9'—C7'—C8'	113.8 (2)
<u>C9–C7–C8</u>	109.6 (2)	C15'-C7'-C8'	109.0(2)
$C_{15} - C_{7} - C_{6}$	112.9(2)	C9'-C7'-C6'	103.0(2) 113.4(2)
C9-C7-C6	112.9(2) 113.0(2)	$C_{15'} - C_{7'} - C_{6'}$	113.1(2)
C_{8} C_{7} C_{6}	98 61 (19)	C8' - C7' - C6'	99.6(2)
$C_{0} = C_{1} = C_{0}$	106.6(2)	$C_{0} = C_{1} = C_{0}$	106.6(2)
O1 C8 H8A	110.0 (2)	01 - 03 - 07	100.0(2)
C_{1}	110.4	$C_1 - C_0 - H_0 I$	110.4
$C = C = H \delta A$	110.4	$C/-C_{0}$ H8 1	110.4
01—C8—H8B	110.4	$O1^{-}$ $C8^{-}$ $H8^{2}$	110.4
C/—C8—H8B	110.4	C//	110.4
H8A—C8—H8B	108.6	H8'1—C8'—H8'2	108.6
C14—C9—C10	117.0 (2)	C10'—C9'—C14'	118.3 (3)
C14—C9—C7	124.0 (2)	C10'—C9'—C7'	118.9 (2)
C10—C9—C7	118.9 (2)	C14'—C9'—C7'	122.8 (2)
C11—C10—C9	121.9 (3)	C9'—C10'—C11'	121.4 (3)
C11—C10—H10	119.0	C9'—C10'—H10'	119.3
С9—С10—Н10	119.0	C11'—C10'—H10'	119.3
C12—C11—C10	119.9 (3)	C12'—C11'—C10'	119.6 (3)
C12—C11—H11	120.1	C12'—C11'—H11'	120.2
C10—C11—H11	120.1	C10′—C11′—H11′	120.2
C11—C12—C13	119.8 (3)	C13'—C12'—C11'	119.6 (3)
C11—C12—H12	120.1	C13'—C12'—H12'	120.2
C13—C12—H12	120.1	C11′—C12′—H12′	120.2
C14-C13-C12	120.2 (3)	C12'—C13'—C14'	120.8 (3)
C14—C13—H13	119.9	C12'-C13'-H13'	119.6
C12—C13—H13	119.9	C14'-C13'-H13'	119.6
C12 - C13 - C14 - C9	121.3 (3)	$C_{0'} - C_{14'} - C_{13'}$	120.2(3)
C_{13} C_{14} H_{14}	110 /	C_{0} C_{14} H_{14}	110.0
C_{13} C_{14} H_{14}	119.4	$C_{3} - C_{14} - H_{14}$	119.9
$C_{16} = C_{15} = C_{20}$	117.7	$C_{13} = C_{14} = 1114$	117.7 (2)
C10 - C15 - C20	117.9(3)	$C_{20} = C_{15} = C_{10}$	117.7(3)
C10 - C15 - C7	123.3 (2)	$C_{20} = C_{13} = C_{7}$	124.2 (2)
$C_{20} = C_{15} = C_{7}$	118.7 (2)		118.1 (2)
C17—C16—C15	120.5 (3)	C17' - C16' - C15'	121.5 (3)
С17—С16—Н16	119.7	C17′—C16′—H16′	119.2
C15—C16—H16	119.7	C15'—C16'—H16'	119.2
C18—C17—C16	120.6 (3)	C18'—C17'—C16'	119.7 (3)
C18—C17—H17	119.7	C18'—C17'—H17'	120.1
C16—C17—H17	119.7	C16'—C17'—H17'	120.1
C17—C18—C19	119.5 (3)	C19'—C18'—C17'	119.7 (3)
C17—C18—H18	120.2	C19'—C18'—H18'	120.1
C19—C18—H18	120.2	C17'—C18'—H18'	120.1

C18—C19—C20	120.2 (3)	C18′—C19′—C20′	120.5 (3)
C18—C19—H19	119.9	C18'—C19'—H19'	119.8
С20—С19—Н19	119.9	С20'—С19'—Н19'	119.8
C19—C20—C15	121.3 (3)	C15'—C20'—C19'	120.8 (3)
C19—C20—H20	119.4	C15'—C20'—H20'	119.6
C15—C20—H20	119.4	C19'—C20'—H20'	119.6
C8—O1—C1—C2	-143.3 (2)	C8'—O1'—C1'—C2'	145.4 (2)
C8—O1—C1—C6	-19.5 (3)	C8′—O1′—C1′—C6′	21.4 (3)
O1—C1—C2—C3	74.7 (3)	O1'—C1'—C2'—C3'	-74.9 (3)
C6—C1—C2—C3	-41.2 (3)	C6'—C1'—C2'—C3'	41.4 (3)
O1—C1—C2—I1	-162.47 (16)	O1'—C1'—C2'—I1'	162.51 (16)
C6—C1—C2—I1	81.6 (2)	C6'—C1'—C2'—I1'	-81.2 (2)
C1—C2—C3—C4	50.6 (3)	C1'—C2'—C3'—C4'	-50.7 (3)
I1—C2—C3—C4	-70.3 (3)	I1′—C2′—C3′—C4′	70.2 (3)
C2—C3—C4—C5	-58.0 (3)	C2'—C3'—C4'—C5'	57.8 (3)
C3—C4—C5—C6	56.8 (3)	C3'—C4'—C5'—C6'	-56.4 (3)
O1—C1—C6—C5	-79.3 (2)	O1′—C1′—C6′—C5′	79.0 (3)
C2-C1-C6-C5	38.5 (3)	C2'—C1'—C6'—C5'	-38.7 (3)
O1—C1—C6—C7	39.7 (2)	O1′—C1′—C6′—C7′	-39.8 (2)
C2-C1-C6-C7	157.5 (2)	C2′—C1′—C6′—C7′	-157.4 (2)
C4—C5—C6—C1	-46.6 (3)	C4′—C5′—C6′—C1′	46.5 (3)
C4—C5—C6—C7	-158.8 (2)	C4′—C5′—C6′—C7′	158.6 (2)
C1—C6—C7—C15	-164.5 (2)	C1′—C6′—C7′—C9′	162.8 (2)
C5—C6—C7—C15	-44.6 (3)	C5'—C6'—C7'—C9'	43.0 (3)
C1—C6—C7—C9	72.6 (2)	C1′—C6′—C7′—C15′	-74.1 (2)
C5—C6—C7—C9	-167.5 (2)	C5'—C6'—C7'—C15'	166.0 (2)
C1—C6—C7—C8	-43.0 (2)	C1′—C6′—C7′—C8′	41.6 (2)
C5—C6—C7—C8	76.9 (2)	C5'—C6'—C7'—C8'	-78.2 (2)
C1—O1—C8—C7	-9.2 (3)	C1′—O1′—C8′—C7′	6.3 (3)
C15—C7—C8—O1	153.3 (2)	C9′—C7′—C8′—O1′	-151.4 (2)
C9—C7—C8—O1	-85.2 (2)	C15'—C7'—C8'—O1'	88.8 (3)
C6-C7-C8-O1	33.1 (2)	C6'—C7'—C8'—O1'	-30.4 (3)
C15—C7—C9—C14	-109.6 (3)	C15'—C7'—C9'—C10'	-68.6 (3)
C8—C7—C9—C14	124.8 (3)	C8′—C7′—C9′—C10′	170.7 (2)
C6-C7-C9-C14	16.0 (4)	C6'—C7'—C9'—C10'	57.8 (3)
C15—C7—C9—C10	68.7 (3)	C15'—C7'—C9'—C14'	109.2 (3)
C8—C7—C9—C10	-56.9 (3)	C8′—C7′—C9′—C14′	-11.6 (4)
C6-C7-C9-C10	-165.8 (2)	C6'—C7'—C9'—C14'	-124.4 (3)
C14—C9—C10—C11	-0.4 (4)	C14′—C9′—C10′—C11′	0.3 (4)
C7—C9—C10—C11	-178.8 (2)	C7'—C9'—C10'—C11'	178.2 (3)
C9—C10—C11—C12	0.6 (4)	C9′—C10′—C11′—C12′	-0.3 (4)
C10-C11-C12-C13	-0.5 (5)	C10'—C11'—C12'—C13'	-0.4 (5)
C11—C12—C13—C14	0.2 (5)	C11'—C12'—C13'—C14'	0.9 (5)
C12—C13—C14—C9	0.1 (5)	C10'—C9'—C14'—C13'	0.3 (4)
C10—C9—C14—C13	0.0 (4)	C7'—C9'—C14'—C13'	-177.5 (3)
C7—C9—C14—C13	178.3 (3)	C12'—C13'—C14'—C9'	-0.9 (5)
C9—C7—C15—C16	-116.8 (3)	C9'—C7'—C15'—C20'	118.0 (3)

$\begin{array}{c} C8 & -C7 & -C15 & -C16\\ C6 & -C7 & -C15 & -C16\\ C9 & -C7 & -C15 & -C20\\ C8 & -C7 & -C15 & -C20\\ C6 & -C7 & -C15 & -C20\\ C20 & -C15 & -C16 & -C17\\ C7 & -C15 & -C16 & -C17\\ C15 & -C16 & -C17 & -C18\\ C16 & -C17 & -C18 & -C19\\ C17 & -C18 & -C19 & -C20\\ C18 & -C19 & -C20 & -C15\\ C16 & -C15 & -C20 & -C19\\ \end{array}$	5.7 (4) 117.6 (3) 62.9 (3) -174.7 (2) -62.7 (3) -0.3 (4) 179.3 (2) -0.2 (4) 0.4 (4) -0.1 (5) -0.4 (5) 0.6 (4)	$\begin{array}{c} C8'-C7'-C15'-C20'\\ C6'-C7'-C15'-C20'\\ C9'-C7'-C15'-C16'\\ C8'-C7'-C15'-C16'\\ C6'-C7'-C15'-C16'\\ C20'-C15'-C16'-C17'\\ C7'-C15'-C16'-C17'\\ C15'-C16'-C17'\\ C15'-C16'-C17'\\ C15'-C16'-C19'\\ C16'-C17'-C18'-C19'\\ C16'-C15'-C20'-C19'\\ C7'-C15'-C20'-C19'\\ C7'-C15'-C20'-C19'\\ \end{array}$	$\begin{array}{c} -118.3 (3) \\ -8.3 (3) \\ -61.1 (3) \\ 62.6 (3) \\ 172.6 (2) \\ 0.8 (4) \\ 179.9 (3) \\ -0.3 (5) \\ 0.2 (5) \\ -0.6 (5) \\ -1.1 (4) \\ 179.8 (2) \end{array}$
C16—C15—C20—C19	0.6 (4)	C18'—C19'—C20'—C19'	1/9.8 (2)
C7—C15—C20—C19	-179.0 (3)	C18'—C19'—C20'—C15'	1.0 (4)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C9–C14 and C15'–C20' rings, respectively.

D—H···A	<i>D</i> —Н	H···A	D····A	D—H···A
$C2$ — $H2$ ··· $Cg1^i$	1.00	2.53	3.519 (3)	171
$C2'$ — $H2'$ ···· $Cg2^{ii}$	1.00	2.54	3.533 (3)	171

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*+2, -*y*+2, -*z*.