organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diethyl 1,8-bis(4-methylphenyl)-11oxatricyclo[6.2.1.0^{2,7}]undeca-2,4,6triene-9,10-dicarboxylate

B. Balakrishnan,^a Meganathan Nandakumar,^b Pandamangalam R. Seshadri^{c*} and Arasambattu K. Mohanakrishnan^b

^aDepartment of Physics, P.T. Lee Chengalvaraya Naicker College of Engineering and Technology, Kancheepuram 631 502, India, ^bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ^cPostgraduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114. India

Correspondence e-mail: seshadri_pr@yahoo.com

Received 30 January 2013; accepted 24 February 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.038; wR factor = 0.112; data-to-parameter ratio = 12.5

The title compound, $C_{30}H_{30}O_5$, is the Diels-Alder adduct from 1,3-diphenylbenzo[c]furan and diethyl maleate. The molecule comprises a fused tricyclic system containing two fivemembered rings, which are in envelope conformations with the O atom at the flap, and a six-membered ring adopting a boat conformation. The dihedral angle between the 4methylphenyl substituents in the 1- and 8-positions is $62.1 (1)^{\circ}$. The ethyl group of one ester group and the ethoxy group of the other ester group are disordered over two sets of sites, with occupancy ratios of 0.43 (2):0.57 (2) and 0.804 (7):0.196 (7), respectively. In the crystal, inversion dimers are formed through pairs of $C-H \cdots O$ interactions.

Related literature

For background to Diels-Alder reactions, see: Akio & Toshiki (2010). For related structures, see: Bailey et al. (1995); Takahashi et al. (2003); Simpson et al. (2004); Toze et al. (2010). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental

Crystal data

CILO	$00.274(1)^{\circ}$
$C_{30}\Pi_{30}O_5$	$\gamma = 90.574(1)$
$M_r = 470.54$	V = 1279.45 (6) Å ³
Triclinic, P1	Z = 2
a = 9.8722 (3) Å	Mo $K\alpha$ radiation
b = 10.7413 (3) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 13.3081 (3) Å	T = 293 K
$\alpha = 109.319 \ (1)^{\circ}$	$0.30 \times 0.20 \times 0.20$ mm
$\beta = 105.045 \ (1)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2004)	
$T_{\min} = 0.951, T_{\max} = 0.953$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.112$ S = 1.034505 reflections 360 parameters

Table 1

Hydrogen-bond geometry (Å, °).

			$D = \Pi \cdots A$
C5-H5···O4 ⁱ 0.9	3 2.66	3.558 (2)	164
$C11 - H11 \cdots O2^{ii}$ 0.9	3 2.66	3.433 (2)	141

21475 measured reflections 4505 independent reflections

 $R_{\rm int} = 0.027$

84 restraints

 $\Delta \rho_{\rm max} = 0.23 \ {\rm e} \ {\rm \AA}^{-1}$ $\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$

3754 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Symmetry codes: (i) -x, -y + 2, -z; (ii) x, y - 1, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97, PLATON and publCIF (Westrip, 2010).

The authors thank Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2419).

References

Akio, K. & Toshiki, N. (2010). J. Org. Chem. 75, 3133-3136.

- Bailey, J. H., Coulter, C. V., Pratt, A. J. & Robinson, W. T. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 589-592.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Simpson, M., Storey, J. M. D. & Harrison, W. T. A. (2004). Acta Cryst. E60, o1081-o1083.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Takahashi, I., Tsuzuki, M., Kitajima, H., Hetanaka, M., Maeda, S., Yamano, A., Ohta, T. & Hosoi, S. (2003). Anal. Sci. 19, 973-974.
- Toze, F. A. A., Ershova, J. D., Obushak, M. D., Zubkov, F. I. & Khrustalev, V. N. (2010). Acta Cryst. E66, o1388-o1389.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2013). E69, o500 [doi:10.1107/S1600536813005291]

Diethyl 1,8-bis(4-methylphenyl)-11-oxatricyclo[6.2.1.0^{2,7}]undeca-2,4,6triene-9,10-dicarboxylate

B. Balakrishnan, Meganathan Nandakumar, Pandamangalam R. Seshadri and Arasambattu K. Mohanakrishnan

S1. Comment

Diels-Alder adducts are valuable synthetic intermediates and their use for the synthesis of natural products and of polycyclic aromatic hydrocarbons is well documented (Akio & Toshiki, 2010). The title compound, $C_{30}H_{30}O_5$, comprises a fused tricyclic system and two 4-methylphenyl rings attached to this system (Fig.1). The tricyclic system consists of two 5-membered rings and one aromatic ring. In addition, two ethyl carboxylate units are attached to the tricyclic system. Geometrical parameters agree well with reported structures (Bailey *et al.* 1995; Takahashi *et al.* 2003; Simpson *et al.*, 2004; Toze *et al.*, 2010). The 5-membered ring $C_1 \setminus C_2 \setminus C_7 \setminus C_8 \setminus O_1$ adopts an envelope conformation with atom O_1 displaced by -(0.757) Å from the mean plane of the other ring atoms $C_1 \setminus C_2 \setminus C_7 \setminus C_8$. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are $q_2 = 0.515$ (1) Å, $\varphi = 143.2$ (2)°, $\Delta_8(O_1) = 0.007$ (1)° and $\Delta_2(O_1) = 0.312$ (1)°. The second 5-membered ring $C_1 \setminus C_{23} \setminus C_{27} \setminus C_8$. The puckering parameters (Cremer & Pople, 1975) Å from the mean plane of the other ring atoms $C_1 \setminus C_{23} \setminus C_{27} \setminus C_8$. The puckering parameters (Cremer & Pople, 10.835) Å from the mean plane of the other ring atoms $C_1 \setminus C_{23} \setminus C_{27} \setminus C_8$. The puckering parameters (Cremer & Pople, 1975) and asymmetry parameters (Nardelli, 1983) are $q_2 = 0.593$ (1) Å, $\varphi = -37.5$ (1)°, $\Delta_8(O_1) = 0.012$ (1)° and $\Delta_2(O_1) = 0.355$ (1)°. The six membered ring $C_1/C_2/C_7/C_8/C_{27}/C_{23}$ adopts a boat conformation with puckering parameter $q_2 = 0.951$ (1) Å, $\theta = 89.6$ (9)° and $\varphi = 359.9$ (9)°.

The dihedral angle between the rings $C_1/C_2/C_7/C_8/O_1$ and $C_1/C_{23}/C_{27}/C_8/O_1$ is 66.1 (1)°. The dihedral angle between the terminal 4-methylphenyl rings is 62.1 (1)°. One of the aromatic substituents (C9 - C15) is almost orthogonal to the plane formed by the six atoms C1, C2, C7, C8, C27 and C23 of the tricyclic ring, the dihedral angle being 84.8 (1)° (Nardelli, 1983). The atoms O5, C29 and C30 and C26 of ester groups are disordered over two sites with occupancy ratios of 0.804 (7): 0.196 (7) and 0.43 (2): 0.57 (2). The ester group is twisted from the mean plane of the tricyclic ring, with C30 towards C28 as evidenced by the torsion angle C30—C29—O5—C28 = 89.1 (5)°. The second ester group is co-planer with the attached trycyclic ring as evidenced by the torsion angle C24—O3—C25—C26 = -172 (9)°. Centrosymmetric dimers are formed by C—H…O interactions.

S2. Experimental

1,3-Di-p-tolylisobenzofuran 4 (1.00 g, 3.36 mmole) was dissolved in toluene (25 ml) and treated with 2 equivalents of dimethyl maleate (1.16 g, 1.15 ml, 6.74 mmole). The reaction mixture was refluxed and the reaction was monitored by TLC. After 8 h, the mixture was cooled to room temperature. The solvent was removed and the residue was purified by column chromatography (Silica gel, 10%, EA/hexane) to give the adduct as a white solid. Yield: 1.41 g (89%) and m.p. 179° C. This adduct was crystallized from CHCl₃/CH₃OH (3:1) by the slow evaporation method.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with (C—H= 0.93–0.96 Å), and $U_{iso}(H) = 1.5 U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for other H atoms. In one ester group the ethyl group and in the other ester group the ethoxy group are disordered over two sites with occupancy ratio of 0.43 (2): 0.57 (2), 0.804 (7): 0.196 (7), respectively.

Figure 1

Molecular structure of the title compound, showing 30% probability displacement ellipsoids.

Diethyl 1,8-bis(4-methylphenyl)-11-oxatricyclo[6.2.1.0^{2,7}]undeca-2,4,6-triene-9,10-dicarboxylate

Crystal data	
$C_{30}H_{30}O_5$ $M_r = 470.54$ Triclinic, <i>P</i> 1 Hall symbol: -P 1 a = 9.8722 (3) Å b = 10.7413 (3) Å c = 13.3081 (3) Å a = 109.319 (1)° $\beta = 105.045$ (1)° $\gamma = 90.374$ (1)° V = 1279.45 (6) Å ³	Z = 2 F(000) = 500 $D_x = 1.221 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7905 reflections $\theta = 2.0-25.0^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 293 K Block, colourless $0.30 \times 0.20 \times 0.20 \text{ mm}$
Data collection Bruker Kappa APEXII CCD	21475 measured reflections
diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scan Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004) $T_{\min} = 0.951, T_{\max} = 0.953$	4505 independent reflections 3754 reflections with $I > 2\sigma(I)$ $R_{int} = 0.027$ $\theta_{max} = 25.0^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0574P)^2 + 0.3047P]$
<i>S</i> = 1.03	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4505 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
360 parameters	$\Delta \rho_{\rm max} = 0.23 \ { m e} \ { m \AA}^{-3}$
84 restraints	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.028 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

			TT ¥/TT	0(
X	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
0.16153 (14)	1.11798 (13)	0.42413 (11)	0.0342 (3)	
0.18246 (14)	1.12120 (14)	0.31608 (11)	0.0364 (3)	
0.25194 (16)	1.21282 (16)	0.29039 (13)	0.0452 (4)	
0.2958	1.2926	0.3444	0.054*	
0.25420 (18)	1.18202 (19)	0.18119 (15)	0.0555 (4)	
0.3011	1.2418	0.1616	0.067*	
0.18819 (18)	1.06438 (19)	0.10146 (14)	0.0554 (4)	
0.1923	1.0454	0.0289	0.066*	
0.11570 (17)	0.97368 (17)	0.12708 (13)	0.0482 (4)	
0.0697	0.8949	0.0727	0.058*	
0.11386 (14)	1.00369 (14)	0.23586 (11)	0.0376 (3)	
0.05102 (14)	0.93225 (13)	0.29702 (11)	0.0362 (3)	
0.02041 (15)	0.78454 (14)	0.24879 (12)	0.0393 (3)	
0.08168 (15)	0.70361 (14)	0.30645 (12)	0.0404 (3)	
0.1472	0.7408	0.3753	0.049*	
0.04615 (18)	0.56778 (15)	0.26241 (14)	0.0485 (4)	
0.0881	0.5153	0.3027	0.058*	
-0.04982 (19)	0.50845 (15)	0.16043 (14)	0.0524 (4)	
-0.0889 (3)	0.36078 (18)	0.11335 (19)	0.0792 (6)	
-0.1722	0.3401	0.0520	0.119*	
-0.1065	0.3306	0.1695	0.119*	
-0.0128	0.3174	0.0885	0.119*	
-0.1090 (2)	0.58990 (17)	0.10260 (15)	0.0589 (5)	
	$\begin{array}{c} x\\ 0.16153 (14)\\ 0.18246 (14)\\ 0.25194 (16)\\ 0.2958\\ 0.25420 (18)\\ 0.3011\\ 0.18819 (18)\\ 0.1923\\ 0.11570 (17)\\ 0.0697\\ 0.11386 (14)\\ 0.05102 (14)\\ 0.02041 (15)\\ 0.08168 (15)\\ 0.1472\\ 0.04615 (18)\\ 0.0881\\ -0.04982 (19)\\ -0.0889 (3)\\ -0.1722\\ -0.1065\\ -0.0128\\ -0.1090 (2) \end{array}$	xy $0.16153 (14)$ $1.11798 (13)$ $0.18246 (14)$ $1.12120 (14)$ $0.25194 (16)$ $1.21282 (16)$ 0.2958 1.2926 $0.25420 (18)$ $1.18202 (19)$ 0.3011 1.2418 $0.18819 (18)$ $1.06438 (19)$ 0.1923 1.0454 $0.11570 (17)$ $0.97368 (17)$ 0.0697 0.8949 $0.11386 (14)$ $1.00369 (14)$ $0.02041 (15)$ $0.78454 (14)$ $0.08168 (15)$ $0.70361 (14)$ 0.1472 0.7408 $0.04615 (18)$ $0.56778 (15)$ 0.0881 0.5153 $-0.04982 (19)$ $0.50845 (15)$ $-0.0889 (3)$ $0.36078 (18)$ -0.1722 0.3401 -0.1065 0.3306 -0.0128 0.3174 $-0.1090 (2)$ $0.58990 (17)$	xyz $0.16153(14)$ $1.11798(13)$ $0.42413(11)$ $0.18246(14)$ $1.12120(14)$ $0.31608(11)$ $0.25194(16)$ $1.21282(16)$ $0.29039(13)$ 0.2958 1.2926 0.3444 $0.25420(18)$ $1.18202(19)$ $0.18119(15)$ 0.3011 1.2418 0.1616 $0.18819(18)$ $1.06438(19)$ $0.10146(14)$ 0.1923 1.0454 0.0289 $0.11570(17)$ $0.97368(17)$ $0.12708(13)$ 0.0697 0.8949 0.0727 $0.11386(14)$ $1.00369(14)$ $0.23586(11)$ $0.05102(14)$ $0.93225(13)$ $0.29702(11)$ $0.02041(15)$ $0.78454(14)$ $0.24879(12)$ $0.08168(15)$ $0.70361(14)$ $0.30645(12)$ 0.1472 0.7408 0.3753 $0.04615(18)$ $0.56778(15)$ $0.16043(14)$ $-0.0881(3)$ $0.36078(18)$ $0.11335(19)$ -0.1722 0.3401 0.0520 -0.1065 0.3306 0.1695 -0.0128 0.3174 0.0885 $-0.1090(2)$ $0.58990(17)$ $0.10260(15)$	xyz $U_{iso}*/U_{eq}$ 0.16153 (14)1.11798 (13)0.42413 (11)0.0342 (3)0.18246 (14)1.12120 (14)0.31608 (11)0.0364 (3)0.25194 (16)1.21282 (16)0.29039 (13)0.0452 (4)0.29581.29260.34440.054*0.25420 (18)1.18202 (19)0.18119 (15)0.0555 (4)0.30111.24180.16160.067*0.18819 (18)1.06438 (19)0.10146 (14)0.0554 (4)0.19231.04540.02890.066*0.11570 (17)0.97368 (17)0.12708 (13)0.0482 (4)0.06970.89490.07270.058*0.11386 (14)1.00369 (14)0.23586 (11)0.0376 (3)0.05102 (14)0.93225 (13)0.29702 (11)0.0362 (3)0.02041 (15)0.78454 (14)0.24879 (12)0.0393 (3)0.08168 (15)0.70361 (14)0.30645 (12)0.0404 (3)0.14720.74080.37530.049*0.04615 (18)0.56778 (15)0.16043 (14)0.0524 (4)-0.0889 (3)0.36078 (18)0.11335 (19)0.0792 (6)-0.17220.34010.05200.119*-0.10650.33060.16950.119*-0.10280.31740.08850.119*-0.1090 (2)0.58990 (17)0.10260 (15)0.0589 (5)

H14	-0.1727	0.5524	0.0329	0.071*	
C15	-0.07535 (18)	0.72575 (16)	0.14621 (14)	0.0534 (4)	
H15	-0.1177	0.7782	0.1060	0.064*	
C16	0.27490 (14)	1.19021 (14)	0.52804 (11)	0.0366 (3)	
C17	0.41180 (16)	1.15731 (18)	0.53553 (14)	0.0532 (4)	
H17	0.4309	1.0915	0.4764	0.064*	
C18	0.51974 (18)	1.2206 (2)	0.62912 (15)	0.0632 (5)	
H18	0.6105	1.1958	0.6328	0.076*	
C19	0.49591 (18)	1.32047 (19)	0.71785 (14)	0.0566 (4)	
C20	0.6155 (2)	1.3927 (3)	0.81909 (18)	0.0905 (8)	
H20A	0.6696	1.4543	0.8027	0.136*	
H20B	0.6750	1 3298	0.8398	0.136*	
H20C	0 5779	1 4399	0.8791	0.136*	
C21	0.35987(18)	1 35224 (17)	0.71005 (13)	0.0525(4)	
H21	0 3411	1 4185	0 7691	0.063*	
C22	0.25038(16)	1 28856 (15)	0.7091 0.61707 (12)	0.003	
U22 H22	0.1594	1 3121	0.6144	0.052*	
C23	0.1394 0.00553 (14)	1.3121 1 13855 (13)	0.0144 0.42240(11)	0.032°	
U23	-0.00333(14)	1.13035 (15)	0.42249 (11)	0.0337 (3)	
C24	-0.0045	1.1576	0.4942 0.40726 (11)	0.040°	
C24 C25	-0.04309(13)	1.20400(14) 1.29622(18)	0.40720(11) 0.20520(18)	0.0373(3)	
C25	-0.24373 (19)	1.38033 (18)	0.39329 (18)	0.0033(3)	0.42(2)
п23А	-0.2320	1.3908	0.5281	0.076*	0.43(2)
H25B	-0.2002	1.4038	0.4574	0.076*	0.43(2)
H25C	-0.2742	1.3/43	0.3170	0.076*	0.57(2)
H25D	-0.1768	1.4649	0.4329	0.076*	0.57 (2)
C26	-0.3945 (9)	1.3647 (15)	0.3868 (18)	0.091 (3)	0.43 (2)
H26A	-0.4391	1.2929	0.3197	0.136*	0.43 (2)
H26B	-0.4385	1.4439	0.3859	0.136*	0.43 (2)
H26C	-0.4040	1.3432	0.4493	0.136*	0.43 (2)
C26′	-0.3651 (11)	1.4015 (12)	0.4408 (11)	0.087 (2)	0.57 (2)
H26D	-0.4239	1.3189	0.4107	0.130*	0.57 (2)
H26E	-0.4183	1.4687	0.4214	0.130*	0.57 (2)
H26F	-0.3328	1.4268	0.5200	0.130*	0.57 (2)
C27	-0.07443 (14)	1.00649 (13)	0.33396 (11)	0.0347 (3)	
H27	-0.1136	0.9575	0.3721	0.042*	
C28	-0.19370 (16)	1.02059 (15)	0.24236 (13)	0.0422 (4)	
01	0.15563 (9)	0.97526 (9)	0.40324 (7)	0.0361 (2)	
O2	0.02359 (12)	1.34954 (11)	0.39779 (10)	0.0543 (3)	
03	-0.17832 (11)	1.27117 (10)	0.41131 (9)	0.0479 (3)	
O4	-0.18455 (12)	1.07858 (13)	0.18168 (10)	0.0586 (3)	
05	-0.3145 (3)	0.9610 (3)	0.2455 (3)	0.0586 (7)	0.804 (7)
C29	-0.4441 (3)	0.9681 (3)	0.1669 (3)	0.0782 (10)	0.804 (7)
H29A	-0.4388	1.0503	0.1522	0.094*	0.804 (7)
H29B	-0.5227	0.9671	0.1980	0.094*	0.804 (7)
C30	-0.4678 (5)	0.8522 (5)	0.0606 (3)	0.1017 (14)	0.804 (7)
H30A	-0.3971	0.8603	0.0247	0.152*	0.804 (7)
H30B	-0.5594	0.8512	0.0126	0.152*	0.804 (7)
H30C	-0.4619	0.7712	0.0765	0.152*	0.804 (7)
					\[\] \] \]

supporting information

O5′	-0.2954 (12)	0.9430 (15)	0.2035 (11)	0.064 (2)	0.196 (7)	
C29′	-0.4114 (12)	0.9582 (17)	0.1155 (14)	0.077 (3)	0.196 (7)	
H29C	-0.3818	0.9476	0.0494	0.093*	0.196 (7)	
H29D	-0.4453	1.0448	0.1395	0.093*	0.196 (7)	
C30′	-0.5239 (16)	0.8499 (19)	0.0939 (19)	0.104 (5)	0.196 (7)	
H30D	-0.4892	0.7652	0.0683	0.156*	0.196 (7)	
H30E	-0.6058	0.8556	0.0385	0.156*	0.196 (7)	
H30F	-0.5486	0.8599	0.1612	0.156*	0.196 (7)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0362 (7)	0.0306 (7)	0.0349 (7)	0.0041 (5)	0.0088 (6)	0.0109 (6)
C2	0.0330 (7)	0.0402 (8)	0.0362 (7)	0.0066 (6)	0.0103 (6)	0.0125 (6)
C3	0.0409 (8)	0.0479 (9)	0.0481 (9)	0.0005 (7)	0.0134 (7)	0.0173 (7)
C4	0.0531 (10)	0.0686 (11)	0.0566 (10)	0.0035 (8)	0.0230 (8)	0.0306 (9)
C5	0.0562 (10)	0.0763 (12)	0.0407 (9)	0.0097 (9)	0.0200 (8)	0.0240 (9)
C6	0.0495 (9)	0.0536 (9)	0.0361 (8)	0.0078 (7)	0.0112 (7)	0.0091 (7)
C7	0.0360 (7)	0.0395 (8)	0.0359 (7)	0.0067 (6)	0.0090 (6)	0.0119 (6)
C8	0.0370 (7)	0.0348 (7)	0.0330 (7)	0.0049 (6)	0.0051 (6)	0.0104 (6)
C9	0.0407 (8)	0.0352 (8)	0.0405 (8)	0.0050 (6)	0.0124 (6)	0.0101 (6)
C10	0.0417 (8)	0.0385 (8)	0.0411 (8)	0.0076 (6)	0.0136 (6)	0.0119 (6)
C11	0.0582 (10)	0.0386 (8)	0.0545 (10)	0.0128 (7)	0.0228 (8)	0.0179 (7)
C12	0.0623 (10)	0.0361 (8)	0.0558 (10)	0.0021 (7)	0.0230 (8)	0.0071 (7)
C13	0.1085 (17)	0.0395 (10)	0.0787 (14)	-0.0028 (10)	0.0258 (13)	0.0067 (9)
C14	0.0661 (11)	0.0458 (9)	0.0473 (10)	-0.0056 (8)	0.0021 (8)	0.0040 (8)
C15	0.0610 (10)	0.0415 (9)	0.0464 (9)	0.0022 (7)	0.0000 (8)	0.0121 (7)
C16	0.0367 (7)	0.0369 (7)	0.0354 (7)	0.0023 (6)	0.0078 (6)	0.0132 (6)
C17	0.0410 (9)	0.0607 (10)	0.0460 (9)	0.0083 (7)	0.0083 (7)	0.0062 (8)
C18	0.0366 (9)	0.0819 (13)	0.0579 (11)	0.0053 (8)	0.0048 (8)	0.0136 (10)
C19	0.0463 (9)	0.0692 (11)	0.0438 (9)	-0.0116 (8)	0.0026 (7)	0.0137 (8)
C20	0.0609 (12)	0.123 (2)	0.0564 (12)	-0.0219 (13)	-0.0039 (10)	0.0063 (12)
C21	0.0569 (10)	0.0503 (9)	0.0393 (9)	-0.0051 (8)	0.0113 (7)	0.0030 (7)
C22	0.0411 (8)	0.0431 (8)	0.0417 (8)	0.0023 (6)	0.0109 (6)	0.0095 (7)
C23	0.0352 (7)	0.0345 (7)	0.0316 (7)	0.0046 (6)	0.0087 (6)	0.0119 (6)
C24	0.0393 (8)	0.0354 (7)	0.0349 (7)	0.0052 (6)	0.0090 (6)	0.0102 (6)
C25	0.0553 (10)	0.0506 (10)	0.0903 (14)	0.0237 (8)	0.0199 (10)	0.0313 (10)
C26	0.051 (4)	0.080 (6)	0.151 (9)	0.023 (3)	0.028 (5)	0.053 (6)
C26′	0.068 (4)	0.083 (5)	0.127 (6)	0.040 (3)	0.044 (4)	0.047 (5)
C27	0.0352 (7)	0.0334 (7)	0.0361 (7)	0.0027 (6)	0.0081 (6)	0.0141 (6)
C28	0.0403 (8)	0.0376 (8)	0.0431 (8)	0.0057 (6)	0.0047 (7)	0.0119 (7)
01	0.0377 (5)	0.0324 (5)	0.0344 (5)	0.0049 (4)	0.0045 (4)	0.0106 (4)
02	0.0534 (7)	0.0397 (6)	0.0768 (8)	0.0059 (5)	0.0227 (6)	0.0256 (6)
03	0.0405 (6)	0.0424 (6)	0.0644 (7)	0.0132 (5)	0.0161 (5)	0.0219 (5)
O4	0.0597 (7)	0.0728 (8)	0.0491 (7)	0.0125 (6)	0.0080 (6)	0.0337 (6)
05	0.0323 (9)	0.0749 (13)	0.0728 (16)	-0.0031 (8)	0.0011 (10)	0.0415 (13)
C29	0.0372 (14)	0.107 (2)	0.089 (2)	-0.0006 (13)	-0.0061 (14)	0.0509 (19)
C30	0.075 (3)	0.137 (3)	0.084 (3)	-0.027 (2)	-0.0103 (18)	0.053 (2)

supporting information

O5′	0.037 (4)	0.087 (4)	0.073 (5)	-0.016 (3)	-0.001 (4)	0.046 (4)
C29′	0.037 (5)	0.110 (6)	0.079 (6)	-0.010 (4)	-0.006 (4)	0.042 (5)
C30′	0.063 (8)	0.126 (9)	0.110 (9)	-0.004 (7)	-0.010 (7)	0.048 (8)

Geometric parameters (Å, °)

C1—01	1.4626 (16)	С20—Н20С	0.9600
C1-C16	1.4973 (19)	C21—C22	1.380 (2)
C1—C2	1.5161 (19)	C21—H21	0.9300
C1—C23	1.5528 (18)	C22—H22	0.9300
C2—C3	1.375 (2)	C23—C24	1.5039 (19)
C2—C7	1.383 (2)	C23—C27	1.5557 (19)
C3—C4	1.386 (2)	C23—H23	0.9800
С3—Н3	0.9300	C24—O2	1.1918 (17)
C4—C5	1.375 (3)	C24—O3	1.3317 (17)
C4—H4	0.9300	C25—O3	1.4513 (19)
C5—C6	1.384 (2)	C25—C26′	1.464 (6)
С5—Н5	0.9300	C25—C26	1.474 (8)
С6—С7	1.380 (2)	C25—H25A	0.9700
С6—Н6	0.9300	C25—H25B	0.9700
С7—С8	1.518 (2)	C25—H25C	0.9700
C8—O1	1.4429 (16)	C25—H25D	0.9700
C8—C9	1.4967 (19)	C26—H26A	0.9600
C8—C27	1.5750 (19)	C26—H26B	0.9600
C9—C15	1.381 (2)	C26—H26C	0.9600
C9—C10	1.385 (2)	C26′—H26D	0.9600
C10-C11	1.384 (2)	С26'—Н26Е	0.9600
С10—Н10	0.9300	C26′—H26F	0.9600
C11—C12	1.378 (2)	C27—C28	1.5082 (19)
C11—H11	0.9300	C27—H27	0.9800
C12—C14	1.385 (2)	C28—O5′	1.185 (12)
C12—C13	1.505 (2)	C28—O4	1.1908 (18)
С13—Н13А	0.9600	C28—O5	1.367 (3)
C13—H13B	0.9600	O5—C29	1.448 (3)
С13—Н13С	0.9600	C29—C30	1.506 (5)
C14—C15	1.382 (2)	C29—H29A	0.9700
C14—H14	0.9300	C29—H29B	0.9700
С15—Н15	0.9300	С30—Н30А	0.9600
C16—C22	1.379 (2)	C30—H30B	0.9600
C16—C17	1.386 (2)	C30—H30C	0.9600
C17—C18	1.375 (2)	O5′—C29′	1.464 (9)
С17—Н17	0.9300	C29′—C30′	1.505 (10)
C18—C19	1.382 (3)	С29′—Н29С	0.9700
C18—H18	0.9300	C29′—H29D	0.9700
C19—C21	1.374 (2)	C30′—H30D	0.9600
C19—C20	1.511 (2)	С30'—Н30Е	0.9600
C20—H20A	0.9600	C30′—H30F	0.9600
C20—H20B	0.9600		

O1—C1—C16	110.12 (10)	C22—C21—H21	119.1
O1—C1—C2	100.29 (10)	C16—C22—C21	120.49 (14)
C16—C1—C2	117.12 (11)	C16—C22—H22	119.8
O1—C1—C23	99.13 (10)	C21—C22—H22	119.8
C16—C1—C23	118.59 (11)	C24—C23—C1	116.13 (11)
C2—C1—C23	108.50 (11)	C24—C23—C27	116.58 (11)
C3—C2—C7	121.60 (13)	C1—C23—C27	102.32 (10)
C3—C2—C1	132.64 (13)	С24—С23—Н23	107.1
C7—C2—C1	105.76 (12)	C1—C23—H23	107.1
C2—C3—C4	117.65 (15)	С27—С23—Н23	107.1
С2—С3—Н3	121.2	O2—C24—O3	124.22 (13)
С4—С3—Н3	121.2	O2—C24—C23	126.09 (13)
C5—C4—C3	120.99 (15)	O3—C24—C23	109.61 (12)
С5—С4—Н4	119.5	O3—C25—C26′	108.0 (4)
C3—C4—H4	119.5	O3—C25—C26	107.3 (6)
C4—C5—C6	121.24 (15)	C26'—C25—C26	26.7 (5)
С4—С5—Н5	119.4	O3—C25—H25A	110.2
С6—С5—Н5	119.4	C26'—C25—H25A	130.6
C7—C6—C5	117.93 (15)	C26—C25—H25A	110.2
С7—С6—Н6	121.0	O3—C25—H25B	110.2
С5—С6—Н6	121.0	C26'—C25—H25B	85.8
C6—C7—C2	120.57 (14)	С26—С25—Н25В	110.2
C6—C7—C8	134.20 (14)	H25A—C25—H25B	108.5
C2—C7—C8	105.22 (12)	O3—C25—H25C	110.1
O1—C8—C9	112.25 (11)	C26'—C25—H25C	110.1
O1—C8—C7	100.69 (10)	C26—C25—H25C	86.1
C9—C8—C7	118.93 (12)	H25A—C25—H25C	26.2
O1—C8—C27	98.67 (10)	H25B—C25—H25C	128.7
C9—C8—C27	113.99 (11)	O3—C25—H25D	110.1
C7—C8—C27	109.66 (11)	C26'—C25—H25D	110.2
C15—C9—C10	118.17 (14)	C26—C25—H25D	131.3
C15—C9—C8	120.12 (13)	H25A—C25—H25D	84.6
С10—С9—С8	121.66 (13)	H25B—C25—H25D	26.4
C11—C10—C9	120.54 (15)	H25C—C25—H25D	108.4
C11—C10—H10	119.7	C25—C26—H26A	109.5
C9—C10—H10	119.7	C25—C26—H26B	109.5
C12—C11—C10	121.65 (15)	C25—C26—H26C	109.5
C12—C11—H11	119.2	C25—C26′—H26D	109.5
C10-C11-H11	119.2	С25—С26′—Н26Е	109.5
C11—C12—C14	117.43 (15)	C25—C26′—H26F	109.5
C11—C12—C13	121.41 (17)	C28—C27—C23	115.71 (11)
C14—C12—C13	121.17 (17)	C28—C27—C8	116.03 (11)
C12—C13—H13A	109.5	C23—C27—C8	101.22 (10)
C12—C13—H13B	109.5	С28—С27—Н27	107.8
H13A—C13—H13B	109.5	С23—С27—Н27	107.8
C12—C13—H13C	109.5	С8—С27—Н27	107.8
H13A—C13—H13C	109.5	O5′—C28—O4	110.8 (6)

H13B—C13—H13C	109.5	O5'—C28—O5	26.3 (6)
C15—C14—C12	121.43 (16)	O4—C28—O5	126.40 (18)
C15—C14—H14	119.3	O5'—C28—C27	120.1 (6)
C12—C14—H14	119.3	O4—C28—C27	125.79 (14)
C9—C15—C14	120.77 (16)	O5—C28—C27	107.73 (16)
С9—С15—Н15	119.6	C8—O1—C1	98.05 (9)
C14—C15—H15	119.6	C24—O3—C25	116.27 (12)
C22—C16—C17	118.01 (14)	C28—O5—C29	116.9 (2)
C22—C16—C1	123.37 (13)	O5—C29—C30	110.0 (3)
C17—C16—C1	118.62 (13)	O5—C29—H29A	109.7
C18—C17—C16	120.91 (15)	С30—С29—Н29А	109.7
C18—C17—H17	119.5	O5—C29—H29B	109.7
C16—C17—H17	119.5	C30—C29—H29B	109.7
C17 - C18 - C19	121 23 (16)	H29A_C29_H29B	108.2
C17 - C18 - H18	119.4	$C_{28} = 05' = C_{29'}$	119.8 (10)
C19 - C18 - H18	119.4	05' - 03' = 030'	104.5(11)
$C_{10}^{-10} = C_{10}^{-110}$	117.54 (15)	05' - 020' - 030'	110.8
$C_{21} = C_{19} = C_{18}$	117.34(13) 121.38(17)	C_{20}^{-1} C_{20}^{-1} C_{20}^{-1} C_{20}^{-1} C_{20}^{-1}	110.8
$C_{21} = C_{19} = C_{20}$	121.30(17) 121.07(17)	$C_{50} = C_{29} = H_{29}C_{50}$	110.8
$C_{10} = C_{20} = U_{20}$	121.07 (17)	$C_{29} = C_{29} = H_{29} D$	110.8
C19 - C20 - H20A	109.5	$C_{30} = C_{29} = H_{29}D$	110.8
C19—C20—H20B	109.5	H29C - C29' - H29D	108.9
H20A—C20—H20B	109.5	$C_{29} = C_{30} = H_{30} = H_{30}$	109.5
С19—С20—Н20С	109.5	C29'—C30'—H30E	109.5
H20A—C20—H20C	109.5	H30D—C30′—H30E	109.5
H20B—C20—H20C	109.5	C29'—C30'—H30F	109.5
C19—C21—C22	121.80 (15)	H30D—C30′—H30F	109.5
C19—C21—H21	119.1	H30E—C30′—H30F	109.5
01 61 62 63	149 50 (15)	C18 C10 C21 C22	0.7.(2)
01 - 01 - 02 - 03	-148.50(15)	C18 - C19 - C21 - C22	-0.7(3)
C10 - C1 - C2 - C3	-29.4(2)	$C_{20} - C_{19} - C_{21} - C_{22}$	1/8./6(18)
$C_{23} = C_{1} = C_{2} = C_{3}$	108.15 (17)	C1/-C16-C22-C21	0.4 (2)
01-01-02-07	31.14 (13)	C1—C16—C22—C21	-179.34 (14)
C16—C1—C2—C7	150.21 (12)	C19—C21—C22—C16	-0.2 (3)
C23—C1—C2—C7	-72.21 (13)	01-C1-C23-C24	-162.37 (11)
C7—C2—C3—C4	-1.6 (2)	C16—C1—C23—C24	78.66 (15)
C1—C2—C3—C4	177.97 (15)	C2-C1-C23-C24	-58.21 (15)
C2—C3—C4—C5	0.5 (2)	O1—C1—C23—C27	-34.26 (12)
C3—C4—C5—C6	0.9 (3)	C16—C1—C23—C27	-153.23 (11)
C4—C5—C6—C7	-1.2 (2)	C2—C1—C23—C27	69.90 (12)
C5—C6—C7—C2	0.1 (2)	C1—C23—C24—O2	-0.9 (2)
C5—C6—C7—C8	-178.61 (15)	C27—C23—C24—O2	-121.67 (16)
C3—C2—C7—C6	1.3 (2)	C1—C23—C24—O3	-177.87 (11)
C1—C2—C7—C6	-178.37 (13)	C27—C23—C24—O3	61.39 (15)
C3—C2—C7—C8	-179.61 (13)	C24—C23—C27—C28	0.28 (17)
C1—C2—C7—C8	0.70 (14)	C1—C23—C27—C28	-127.54 (12)
C6—C7—C8—O1	146.03 (16)	C24—C23—C27—C8	126.58 (12)
C2—C7—C8—O1	-32.84 (13)	C1—C23—C27—C8	-1.25 (12)
C6—C7—C8—C9	23.0 (2)	O1—C8—C27—C28	162.98 (11)

C2—C7—C8—C9	-155.84 (12)	C9—C8—C27—C28	-77.88 (15)
C6—C7—C8—C27	-110.65 (17)	C7—C8—C27—C28	58.28 (15)
C2—C7—C8—C27	70.48 (13)	O1—C8—C27—C23	36.89 (11)
O1—C8—C9—C15	-178.75 (13)	C9—C8—C27—C23	156.03 (11)
C7—C8—C9—C15	-61.68 (19)	C7—C8—C27—C23	-67.81 (13)
C27—C8—C9—C15	70.13 (18)	C23—C27—C28—O5'	-145.8 (9)
O1—C8—C9—C10	3.92 (18)	C8—C27—C28—O5′	95.8 (9)
C7—C8—C9—C10	120.99 (15)	C23—C27—C28—O4	56.7 (2)
C27—C8—C9—C10	-107.20 (15)	C8—C27—C28—O4	-61.7 (2)
C15—C9—C10—C11	-0.7 (2)	C23—C27—C28—O5	-120.24 (18)
C8—C9—C10—C11	176.67 (13)	C8—C27—C28—O5	121.37 (18)
C9—C10—C11—C12	0.4 (2)	C9—C8—O1—C1	178.96 (11)
C10-C11-C12-C14	0.6 (2)	C7—C8—O1—C1	51.43 (11)
C10-C11-C12-C13	-179.54 (17)	C27—C8—O1—C1	-60.60 (11)
C11—C12—C14—C15	-1.3 (3)	C16—C1—O1—C8	-174.89 (10)
C13—C12—C14—C15	178.88 (18)	C2-C1-O1-C8	-50.84 (11)
C10—C9—C15—C14	0.1 (2)	C23—C1—O1—C8	60.00 (11)
C8—C9—C15—C14	-177.36 (15)	O2—C24—O3—C25	4.4 (2)
C12—C14—C15—C9	0.9 (3)	C23—C24—O3—C25	-178.61 (13)
O1—C1—C16—C22	-122.79 (14)	C26'—C25—O3—C24	-160.0 (6)
C2-C1-C16-C22	123.55 (15)	C26—C25—O3—C24	172.0 (9)
C23—C1—C16—C22	-9.7 (2)	O5′—C28—O5—C29	-60.0 (15)
O1—C1—C16—C17	57.42 (17)	O4—C28—O5—C29	0.5 (4)
C2-C1-C16-C17	-56.24 (18)	C27—C28—O5—C29	177.4 (2)
C23—C1—C16—C17	170.51 (13)	C28—O5—C29—C30	89.0 (5)
C22-C16-C17-C18	0.2 (3)	O4—C28—O5'—C29'	-20.1 (14)
C1-C16-C17-C18	180.00 (16)	O5—C28—O5'—C29'	111 (2)
C16—C17—C18—C19	-1.1 (3)	C27—C28—O5'—C29'	179.3 (9)
C17—C18—C19—C21	1.3 (3)	C28—O5'—C29'—C30'	-176 (2)
C17—C18—C19—C20	-178.1 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	$D \cdots A$	D—H···A
C5—H5…O4 ⁱ	0.93	2.66	3.558 (2)	164
С11—Н11…О2 ^{іі}	0.93	2.66	3.433 (2)	141

Symmetry codes: (i) –*x*, –*y*+2, –*z*; (ii) *x*, *y*–1, *z*.