organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis{(R)-1-(3-aminosulfonyl-4-methoxyphenyl)-N-[2-(2-ethoxyphenoxy)ethyl]propan-2-aminium} adipate tetrahydrate

Zoran Ham,^a Anton Meden^{b*} and Marta Kasunič^b

^aLek Pharmaceuticals, Sandoz Development Centre Slovenia, Verovškova 57, SI-1526 Ljubljana, Slovenia, and ^bFaculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, SI-1000 Ljubljana, Slovenia Correspondence e-mail: tone.meden@fkkt.uni-lj.si

Received 14 January 2013; accepted 23 February 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.007 Å; R factor = 0.047; wR factor = 0.143; data-to-parameter ratio = 17.1.

The title compound, $2C_{20}H_{29}N_2O_5S^+ \cdot C_6H_8O_4^{2-1} \cdot 4H_2O$, which was found to be optically active, is a relatively rare example of a chiral compound crystallizing in the triclinic crystal system. The dihedral angles between the phenyl rings of the cations are 60.03 (15) and 62.03 (16) $^{\circ}$, while the C atoms of the anion are almost coplanar (r.m.s. deviation 0.085 Å) and all *trans* to each other. In the crystal, the components are connected by an extensive network of N-H···O and O-H···O hydrogen bonds. The sulfonamide groups link the cations into pairs via two N-H···O hydrogen bonds about the pseudo-inversion centre, leading to the formation of $R_2^2(8)$ rings. The anions are stacked in between four cationic pairs. Pairs of water molecules bridge the larger building units, forming hydrogen bonds with the remaining two O atoms of the anion.

Related literature

(R)-5-(2-(2-(2-Ethoxyphenoxy)ethylamino)propyl)-2-methoxybenzenesulfonamide (generic name tamsulosin) has an α adrenergic blocking action and possesses hypotensive activity and is used mainly for the treatment of benign prostatic hyperplasia, see: Abrams et al. (1995).

Experimental

Crystal data $2C_{20}H_{29}N_2O_5S^+ \cdot C_6H_8O_4^{2-} \cdot 4H_2O_6$ $\alpha = 69.439 (1)^{\circ}$ $M_r = 1035.21$ $\beta = 70.466 \ (1)^{\circ}$ Triclinic, P1 $\gamma = 67.058 (1)^{\circ}$ $\dot{V} = 1320.95$ (5) Å³ a = 10.4595 (2) Å b = 11.9020 (3) Å Z = 1c = 12.6423 (3) Å Mo $K\alpha$ radiation

 $0.25 \times 0.25 \times 0.20$ mm

26272 measured reflections

 $R_{\rm int} = 0.030$

10988 independent reflections

8651 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Absolute structure: Flack (1983),

 $\Delta \rho_{\rm max} = 0.42 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

4978 Friedel pairs

Flack parameter: 0.10 (8)

 $\mu = 0.17 \text{ mm}^{-1}$ T = 293 K

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (DÊNZO-SMN; Otwinowski & Minor, 1997) $T_{\min} = 0.933, T_{\max} = 0.966$

Refinement

T.L.L. 4

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.143$ S = 1.0010988 reflections 641 parameters 7 restraints

lable	1			
Hydroe	en-bond	geometry	(Å	

bond geometry (A, °). ogen

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1 - H1B \cdots O21^{i}$	0.96	2.11	3.028 (5)	160
$N11-H11B\cdots O11^{ii}$	0.86	2.23	3.029 (5)	155
$N2-H2C \cdot \cdot \cdot O3W$	0.96	1.84	2.755 (4)	160
$N12-H12B\cdotsO1W$	0.96	1.87	2.797 (4)	160
$N2-H2D\cdots O1^{iii}$	0.96	1.98	2.854 (4)	151
$N12-H12A\cdots O3^{iv}$	0.96	1.83	2.746 (4)	159
$N1-H1A\cdots O3$	0.95	1.84	2.790 (5)	173
$N11 - H11A \cdot \cdot \cdot O1$	0.78	2.03	2.798 (6)	169
$O1W - H1WB \cdots O2W^{v}$	0.95	1.80	2.746 (5)	174
O3W−H3WB····O4W ^{vi}	0.96	1.82	2.747 (5)	161
$O2W-H2WA\cdots O2$	0.95	1.75	2.690 (6)	175
$O4W-H4WA\cdots O4^{iv}$	0.89	1.77	2.658 (5)	175
$O1W-H1WA\cdots O24$	0.90	2.33	2.899 (4)	121
$O1W-H1WA\cdots O25$	0.90	2.08	2.963 (4)	165
$O3W-H3WA\cdots O14$	0.92	2.39	2.920 (4)	116
O3W−H3WA···O15	0.92	2.03	2.935 (4)	166

Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z; (iii) x - 1, y, z; (iv) x + 1, y, z; (v) x, y, z + 1; (vi) x - 1, y, z - 1.

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The financial support of Ministry of Education, Science, Culture and Sport of the Republic of Slovenia via grant X-2000 is acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2093).

References

- Abrams, P., Schulman, C. C., Vaage, S. & Wyndaele, J. (1995). Br. J. Urol. 76, 325-336.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

supporting information

Acta Cryst. (2013). E69, o516-o517 [doi:10.1107/S1600536813005254]

Bis{(*R*)-1-(3-aminosulfonyl-4-methoxyphenyl)-*N*-[2-(2-ethoxyphenoxy)ethyl]propan-2-aminium} adipate tetrahydrate

Zoran Ham, Anton Meden and Marta Kasunič

S1. Comment

(R)-5-(2-(2-(2-ethoxyphenoxy)ethylamino)propyl)-2-methoxybenzenesulfonamide, designated with the generic pharmaceutical name tamsulosin, has an alpha-adrenergic blocking action and possesses a hypotensive activity and is used mainly for the treatment of benign prostatic hyperplasia (BPH) (Abrams et al., 1995). It has been used in the form of the hydrochloride salt of the pure *R*-enantiomer. Our attempts to prepare new salts of tamsulosin with improved solubility lead to the formation of yet unpublished tamsulosin adipate tetrahydrate (I). In this article, we report the absolute structure of (I). The asymmetric unit contains two protonated molecules of tamsulosin, adipate anion and four water molecules of solvation. All building units are connected with an extensive network of hydrogen bonds of N-H…O and O-H…O types. The former are donored by sulfonamide and amine N atoms from the cations: the shortest N…O distances and thus the strongest bonds lead towards water and anionic O atoms and are of lengths between 2.746 (4) and 2.854 (4) Å. As expected, intercationic N-H···O hydrogen bonds are somewhat weaker with N···O distances of 3.028 (5) and 3.029 (5) Å, respectively. O-H…O hydrogen bonds are donored by water molecules while the acceptors are anions, water molecules and cations, respectively. The shortest O...O distances are between water and anion (2.658 (5) and 2.690 (6) Å) while O(water)...O(water) distances are prolonged (2.746 (5) and 2.747 (5) Å, respectively). The building units are accommodated so that the O···O distances between water and cations are the longest (from 2.899 (4) to 2.963 (4) Å). The reason for significantly longer O···O aforementioned contacts are two pairs of bifurcated hydrogen bonds, donored by O1w and O3w. The details about hydrogen bonding can be seen in Table 1.

When considering the hydrogen bond topology, firstly, the sulfonamide groups link cations into pairs *via* two N–H···O hydrogen bonds around the pseudo inversion centre that leads to the formation of $R_2^2(8)$ rings. The cationic pairs are spatially arranged one above the other, *i.e.* there are columns of the cationic pairs in the structure. In between four of such pairs, anions are stacked, forming a larger structural segment (*i.e.* an anion in between four cationic pairs, 'A+4C'). This building unit is held together by N–H···O hydrogen bonds in which the anionic O atoms O1 and O3 are acceptors of two H-bonds being donnored by two neighbouring cationic columns. The other two anionic O atoms, *i.e.* O2 and O4, are in charge for further connections of the aforementioned larger structural segment 'A+4C', each *via* two water molecules, *e.g.* by a sequence of O–H···O hydrogen bonds which link together a cationic pair from one unit with the anion of the neighbouring unit. The described connections are depicted in Fig. 3.

S2. Experimental

Tamsulosin adipate was prepared by mixing tamsulosin base and adipic (hexanedioic) acid in acetone at reflux temperature. The solution was cooled, concentrated and filtered. Obtained tamsulosin adipate was dried and dissolved in water at 25 °C to obtain a clear solution. The solution was left to stand at 25 °C for 7 days. Precipitated crystals of the title compound were separated from mother solution. The starting base was optically pure *R* enantiomer as well as the

final product were optically active ($[a]_{Na}^{20} \circ C = -6^{\circ}$, conc. in methanol = 4 mg ml⁻¹), which proves that the chirality was preserved during synthesis.

S3. Refinement

All H atoms were observed in a difference Fourier map. All H atoms bonded to carbon atoms were put at their idealized positions and treated as riding with C–H distances 0.98 (methyl), 0.97 (methylene) and 0.93 Å (aromatic H atoms). The methyl groups were allowed to rotate. The temperature parameters of the methyl H atoms were set to $U_{iso}(H) = 1.5 U_{eq}(C)$ of the parent carbon atom, for all other H atoms they were set to $U_{iso}(H) = 1.2 U_{eq}(C)$. H atoms from the water molecules were found in a difference Fourier map; their coordinates were fixed while their displacement parameters were constrained to be $U_{iso}(H) = 1.2 U_{eq}(O)$. Hydrogen atoms bonded to N atoms were obtained from the difference electron density map. To additionally prove the correct assignment and positioning of such hydrogen atoms, their coordinates were allowed to change according to *SHELXL97*'s AFIX 4 command (*i.e.* such hydrogen were treated as riding with the changeable N–H distance while the N–H direction did not change). N–H distance was restrained to 0.95 (2) Å while displacement parameters were set to be $U_{iso}(H) = 1.2 U_{eq}(N)$.

Figure 1

ORTEP plot of the asymmetric unit. Displacement ellipsoids are drawn at the 30% probability level and H atoms are drawn as small spheres of arbitrary radii.

Figure 2

ORTEP plot of the unit-cell contents together with axis labels showing the network of hydrogen bonds. Displacement ellipsoids are drawn at the 30% probability level while and H atoms are drawn as small spheres of arbitrary radii.

Figure 3

A presentation of hydrogen bonds topology starting with the formation of cationic pairs (*a*), larger structural segments 'A+4C' (*b*), revealing a role of water molecules for further connections of 'A+4C' units with additional two cationic pairs (*c*) leading to the final structure in which each of the cationic pairs is shared by two anions (*d*). Anions are drawn in green, cationic pairs in red-orange or magenta-cyan combination, and water molecules are represented by blue spheres. Hydrogen atoms have been omitted for clarity.

Bis{(*R*)-1-(3-aminosulfonyl-4-methoxyphenyl)-*N*-[2-(2-ethoxyphenoxy)ethyl]propan-2-aminium} adipate tetrahydrate

Crystal data	
$2C_{20}H_{29}N_{2}O_{5}S^{+}C_{6}H_{8}O_{4}^{2-}4H_{2}O$ $M_{r} = 1035.21$ Triclinic, <i>P</i> 1 Hall symbol: P 1 a = 10.4595 (2) Å b = 11.9020 (3) Å c = 12.6423 (3) Å a = 69.439 (1)° $\beta = 70.466$ (1)° $\gamma = 67.058$ (1)° V = 1320.95 (5) Å ³	Z = 1 F(000) = 554 $D_x = 1.301 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5866 reflections $\theta = 2.6-27.5^{\circ}$ $\mu = 0.17 \text{ mm}^{-1}$ T = 293 K Prism, colourless $0.25 \times 0.25 \times 0.20 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator	φ and ω scans Absorption correction: multi-scan (<i>DENZO-SMN</i> ; Otwinowski & Minor, 1997) $T_{\min} = 0.933, T_{\max} = 0.966$

26272 measured reflections	$\theta_{\rm max} = 27.5^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
10988 independent reflections	$h = -13 \rightarrow 13$
8651 reflections with $I > 2\sigma(I)$	$k = -15 \rightarrow 15$
$R_{\rm int} = 0.030$	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_o^2) + (0.082P)^2 + 0.3804P]$
S = 1.00	where $P = (F_o^2 + 2F_c^2)/3$
10988 reflections	$(\Delta/\sigma)_{\rm max} = 0.012$
641 parameters	$\Delta \rho_{\rm max} = 0.42 \text{ e } \text{\AA}^{-3}$
7 restraints	$\Delta \rho_{\rm min} = -0.36 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 4978 Friedel pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: 0.10 (8)
map	_ 、 , ,

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.6496 (4)	0.5164 (3)	0.0736 (3)	0.0565 (9)	
02	0.7569 (5)	0.3443 (4)	0.0177 (3)	0.0905 (14)	
03	0.1453 (3)	0.1548 (3)	0.4551 (3)	0.0523 (8)	
04	0.0387 (5)	0.3273 (3)	0.5150 (3)	0.0777 (12)	
C1	0.6746 (4)	0.4005 (4)	0.0907 (4)	0.0442 (10)	
C2	0.5971 (5)	0.3303 (4)	0.2015 (4)	0.0477 (11)	
H2A	0.6176	0.3394	0.2669	0.057*	
H2B	0.6324	0.2413	0.2037	0.057*	
C3	0.4355 (5)	0.3774 (4)	0.2138 (3)	0.0450 (10)	
H3A	0.3981	0.4620	0.2248	0.054*	
H3B	0.4157	0.3820	0.1425	0.054*	
C4	0.3585 (4)	0.2935 (4)	0.3147 (3)	0.0421 (10)	
H4A	0.3953	0.2090	0.3034	0.050*	
H4B	0.3787	0.2884	0.3860	0.050*	
C5	0.1984 (5)	0.3409 (4)	0.3272 (4)	0.0462 (10)	
H5A	0.1770	0.3318	0.2622	0.055*	
H5B	0.1634	0.4299	0.3250	0.055*	
C6	0.1220 (4)	0.2694 (4)	0.4398 (4)	0.0415 (9)	
S1	0.18986 (9)	-0.00121 (8)	0.22314 (7)	0.0430 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

N1	0.2480 (4)	-0.0319(3)	0.3356 (3)	0.0467 (9)
H1A	0.2095 (12)	0.037 (2)	0.3710 (11)	0.056*
H1B	0.346 (3)	-0.0821 (16)	0.3247 (4)	0.056*
N2	-0.1459 (3)	0.6004 (3)	-0.1238 (3)	0.0376 (7)
H2C	-0.1640 (4)	0.6259 (4)	-0.1995 (10)	0.045*
H2D	-0.2078 (9)	0.5522 (7)	-0.0727 (7)	0.045*
011	0.2622 (4)	-0.1080 (3)	0.1734 (3)	0.0539 (8)
012	0.0377 (3)	0.0360 (3)	0.2568 (3)	0.0631 (10)
013	0.4740 (3)	0.0202 (3)	0.1156 (3)	0.0476 (7)
014	-0.3472 (3)	0.8492 (2)	-0.2029 (2)	0.0416 (7)
015	-0.3762 (3)	0.9233 (3)	-0.4155 (2)	0.0443 (7)
C11	0.2329 (4)	0.1324 (4)	0.1231 (3)	0.0357 (9)
C12	0.3758 (4)	0.1302 (4)	0.0791 (3)	0.0369 (8)
C13	0.4067 (5)	0.2386 (4)	0.0041 (4)	0.0474 (10)
H13	0.5007	0.2395	-0.0248	0.057*
C14	0.2944 (5)	0.3470 (4)	-0.0276 (4)	0.0497 (11)
H14	0.3159	0.4177	-0.0815	0.060*
C15	0.1554 (4)	0.3519 (4)	0.0180 (4)	0.0408 (9)
C16	0.1232 (4)	0.2435 (3)	0.0934 (3)	0.0367 (8)
H16	0.0285	0.2449	0.1239	0.044*
C17	0.6170 (5)	0.0194 (5)	0.0968 (4)	0.0553 (12)
H17A	0.6534	0.0513	0.0156	0.083*
H17B	0.6757	-0.0654	0.1228	0.083*
H17C	0.6179	0.0716	0.1395	0.083*
C18	0.0310 (5)	0.4697 (3)	-0.0052(3)	0.0428 (9)
H18A	0.0449	0.5370	0.0118	0.051*
H18B	-0.0551	0.4540	0.0487	0.051*
C19	0.0067 (4)	0.5163 (3)	-0.1288(3)	0.0418 (8)
H19	0.0703	0.5665	-0.1784	0.050*
C20	0.0324 (4)	0.4120 (3)	-0.1822(3)	0.0577 (8)
H20A	-0.0204	0.3559	-0.1297	0.086*
H20B	0.1323	0.3660	-0.1971	0.086*
H20C	0.0016	0.4476	-0.2538	0.086*
C21	-0.1822(5)	0.7154 (4)	-0.0838(4)	0.0443 (10)
H21A	-0.1192	0.7645	-0.1343	0.053*
H21B	-0.1680	0.6906	-0.0058	0.053*
C22	-0.3367(5)	0.7961 (4)	-0.0847(3)	0.0418 (9)
H22A	-0.3998	0.7447	-0.0438	0.050*
H22B	-0.3640	0.8626	-0.0465	0.050*
C23	-0.4814(4)	0.9261 (3)	-0.2209(3)	0.0392 (9)
C24	-0.5956 (5)	0.9652 (4)	-0.1320 (4)	0.0481 (10)
H24	-0.5858	0.9385	-0.0558	0.058*
C25	-0.7254(5)	1.0458 (5)	-0.1603(5)	0.0584 (12)
H25	-0.8029	1.0727	-0.1021	0.070*
C26	-0.7398(5)	1.0853 (4)	-0.2721(5)	0.0569 (13)
H26	-0.8264	1.1399	-0.2895	0.068*
C27	-0.6266(5)	1.0447 (4)	-0.3602 (4)	0.0486 (11)
H27	-0.6377	1.0706	-0.4359	0.058*

C28	-0.4974 (4)	0.9656 (4)	-0.3347 (4)	0.0389 (9)
C29	-0.3867 (5)	0.9648 (5)	-0.5339 (4)	0.0557 (12)
H29A	-0.4197	1.0563	-0.5577	0.067*
H29B	-0.4547	0.9337	-0.5424	0.067*
C30	-0.2435 (6)	0.9161 (6)	-0.6079 (4)	0.0683 (15)
H30A	-0.1738	0.9361	-0.5901	0.102*
H30B	-0.2458	0.9545	-0.6882	0.102*
H30C	-0.2187	0.8262	-0.5931	0.102*
S2	0.60656 (9)	0.66650 (8)	0.31156(7)	0.0439 (2)
N11	0.5491 (4)	0.6979 (4)	0.1995 (3)	0.0544 (10)
H11A	0.5659 (7)	0.647 (2)	0.1666 (13)	0.065*
H11B	0.461 (3)	0.7428 (17)	0.2154 (7)	0.065*
N12	0.9489 (4)	0.0739 (3)	0.6452 (3)	0.0428 (8)
H12A	1.0225 (10)	0.1083 (6)	0.5916 (7)	0.051*
H12B	0.9646 (4)	0.0530 (4)	0.7214 (10)	0.051*
021	0.5347 (4)	0.7730(3)	0.3602 (3)	0.0536 (8)
022	0.7593(4)	0.6269 (3)	0.2803(3)	0.0700 (11)
023	0.3185 (3)	0.6474(3)	0.4169(3)	0.0517 (8)
024	1,1348 (3)	-0.1864(3)	0.7396 (2)	0.0432(7)
025	1.1648 (3)	-0.2583(3)	0.9491(2)	0.0453(7)
C31	0.5598 (4)	0.5330 (4)	0.4112 (3)	0.0400 (9)
C32	0.4169 (4)	0.5365 (4)	0.4548 (4)	0.0424 (10)
C33	0.3869 (5)	0.4294 (4)	0.5306 (5)	0.0538(12)
H33	0.2928	0.4312	0.5659	0.065*
C34	0.4958 (5)	0.3202(5)	0.5540 (4)	0.0548 (12)
H34	0.4731	0.2474	0.6014	0.066*
C35	0.6403 (5)	0.3133(4)	0.5095 (4)	0.0493 (11)
C36	0.6673 (5)	0.4240(4)	0.4382(4)	0.0496 (11)
H36	0.7613	0.4243	0.4077	0.059*
C37	0.1771 (5)	0.6470(5)	0.4389 (5)	0.0672 (15)
H37A	0.1776	0.5791	0.4143	0.101*
H37B	0.1227	0.7258	0.3967	0.101*
H37C	0.1348	0.6359	0.5204	0.101*
C38	0.7597 (6)	0.1903 (4)	0.5347 (4)	0.0572(12)
H38A	0.8398	0.1878	0.4679	0.069*
H38B	0.7265	0.1196	0.5488	0.069*
C39	0.8075 (4)	0.1791 (4)	0.6409 (3)	0.0493 (9)
H39	0.8245	0.2583	0.6299	0.059*
C40	0.6991 (4)	0.1575 (5)	0.7543(3)	0.0792(12)
H40A	0.6114	0.2253	0.7501	0.119*
H40B	0.7347	0.1544	0.8164	0.119*
H40C	0.6825	0.0791	0.7682	0.119*
C41	0.9714 (5)	-0.0457 (4)	0.6204 (4)	0.0507 (11)
H41A	0.9543	-0.0271	0.5443	0.061*
H41B	0.9021	-0.0853	0.6769	0.061*
C42	1.1161 (5)	-0.1357 (4)	0.6235 (4)	0.0511 (11)
H42A	1.1306	-0.2037	0.5912	0.061*
H42B	1.1864	-0.0930	0.5763	0.061*

C43	1.2695 (4)	-0.2615 (4)	0.7532 (3)	0.0371 (9)
C44	1.3831 (5)	-0.3016 (5)	0.6684 (4)	0.0568 (12)
H44	1.3726	-0.2762	0.5925	0.068*
C45	1.5136 (6)	-0.3792 (5)	0.6927 (5)	0.0672 (14)
H45	1.5899	-0.4063	0.6339	0.081*
C46	1.5293 (5)	-0.4158 (5)	0.8044 (5)	0.0631 (14)
H46	1.6169	-0.4678	0.8213	0.076*
C47	1.4161 (5)	-0.3761 (4)	0.8921 (4)	0.0490 (11)
H47	1.4284	-0.4007	0.9673	0.059*
C48	1.2845 (4)	-0.2999 (4)	0.8685 (3)	0.0366 (9)
C49	1.1750 (6)	-0.2944 (5)	1.0684 (4)	0.0579 (12)
H49A	1.2399	-0.2585	1.0751	0.069*
H49B	1.2115	-0.3855	1.0947	0.069*
C50	1.0326 (6)	-0.2480 (5)	1.1399 (4)	0.0661 (14)
H50A	0.9915	-0.1599	1.1066	0.099*
H50B	1.0400	-0.2598	1.2170	0.099*
H50C	0.9732	-0.2939	1.1429	0.099*
O1W	0.9470 (4)	-0.0136 (3)	0.8819 (3)	0.0628 (9)
H1WA	1.0223	-0.0842	0.8889	0.075*
H1WB	0.9329	0.0289	0.9381	0.075*
O2W	0.9007 (4)	0.0962 (4)	0.0550 (4)	0.0800 (12)
H2WA	0.8489	0.1829	0.0462	0.096*
H2WB	0.9253	0.0837	0.1285	0.096*
O3W	-0.1434 (3)	0.6917 (3)	-0.3570 (2)	0.0537 (8)
H3WA	-0.2261	0.7583	-0.3650	0.064*
H3WB	-0.1390	0.6378	-0.4008	0.064*
O4W	0.8976 (5)	0.5726 (4)	0.4780 (4)	0.0810 (12)
H4WA	0.9473	0.4914	0.4931	0.097*
H4WB	0.8304	0.5939	0.4364	0.097*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.071 (2)	0.0392 (17)	0.0538 (17)	-0.0240 (15)	-0.0103 (16)	-0.0007 (13)
O2	0.094 (3)	0.074 (2)	0.061 (2)	-0.009 (2)	0.022 (2)	-0.0241 (19)
O3	0.0575 (19)	0.0375 (16)	0.0513 (17)	-0.0196 (13)	0.0034 (14)	-0.0085 (13)
O4	0.092 (3)	0.0450 (18)	0.065 (2)	-0.0189 (18)	0.017 (2)	-0.0141 (16)
C1	0.040 (2)	0.041 (2)	0.043 (2)	-0.0135 (18)	-0.0062 (18)	-0.0028 (18)
C2	0.045 (2)	0.040 (2)	0.048 (2)	-0.0135 (18)	-0.0098 (19)	0.0000 (18)
C3	0.050 (2)	0.045 (2)	0.0354 (19)	-0.0199 (19)	-0.0083 (19)	-0.0006 (17)
C4	0.043 (2)	0.039 (2)	0.041 (2)	-0.0177 (17)	-0.0077 (18)	-0.0022 (16)
C5	0.049 (2)	0.043 (2)	0.042 (2)	-0.0194 (19)	-0.0081 (19)	-0.0012 (17)
C6	0.038 (2)	0.039 (2)	0.044 (2)	-0.0129 (17)	-0.0075 (18)	-0.0079 (17)
S1	0.0410 (5)	0.0356 (5)	0.0466 (5)	-0.0139 (4)	-0.0112 (4)	-0.0002 (4)
N1	0.060(2)	0.0373 (18)	0.0337 (16)	-0.0069 (17)	-0.0119 (16)	-0.0062 (14)
N2	0.0378 (16)	0.0348 (16)	0.0356 (15)	-0.0108 (12)	-0.0094 (13)	-0.0033 (12)
O11	0.066 (2)	0.0427 (17)	0.0592 (19)	-0.0194 (15)	-0.0197 (16)	-0.0119 (14)
012	0.0371 (16)	0.054 (2)	0.077 (2)	-0.0167 (14)	-0.0107 (16)	0.0087 (17)

013	0.0329 (14)	0.0435 (16)	0.0583 (18)	-0.0065 (12)	-0.0152 (13)	-0.0050 (14)
014	0.0394 (14)	0.0420 (15)	0.0323 (13)	-0.0041 (11)	-0.0127 (11)	-0.0020 (11)
015	0.0473 (16)	0.0453 (16)	0.0314 (13)	-0.0067 (13)	-0.0115 (12)	-0.0056 (11)
C11	0.0317 (18)	0.036 (2)	0.040(2)	-0.0109 (15)	-0.0142 (16)	-0.0031 (16)
C12	0.0328 (19)	0.036 (2)	0.042 (2)	-0.0086 (16)	-0.0108 (16)	-0.0096 (16)
C13	0.044 (2)	0.054 (3)	0.046 (2)	-0.020(2)	-0.0089(19)	-0.010 (2)
C14	0.053 (2)	0.038 (2)	0.052 (2)	-0.0177(18)	-0.013 (2)	0.0005 (18)
C15	0.040(2)	0.033 (2)	0.049 (2)	-0.0054(16)	-0.0217(17)	-0.0062(16)
C16	0.0336 (18)	0.036 (2)	0.0388 (19)	-0.0081(15)	-0.0153 (16)	-0.0036(16)
C17	0.034 (2)	0.062 (3)	0.072 (3)	-0.010(2)	-0.020(2)	-0.017(2)
C18	0.051 (2)	0.0293 (18)	0.0402 (19)	0.0022 (15)	-0.0186(17)	-0.0080(14)
C19	0.0359 (16)	0.0335 (16)	0.0447(18)	-0.0057(12)	-0.0111(14)	-0.0008(13)
C20	0.066 (2)	0.0532 (19)	0.0473 (17)	-0.0068(15)	-0.0165(15)	-0.0152(14)
C21	0.053(2)	0.032(2)	0.049(2)	-0.0128(18)	-0.0212(19)	-0.0034(17)
C22	0.048(2)	0.040(2)	0.0321(17)	-0.0098(16)	-0.0143(16)	-0.0025(15)
C23	0.039(2)	0.030(2)	0.044(2)	-0.0072(16)	-0.0103(18)	-0.0079(16)
C24	0.039(2) 0.048(2)	0.050(2) 0.051(2)	0.042(2)	-0.0109(19)	-0.0050(19)	-0.0169(19)
C25	0.037(2)	0.062(3)	0.068(3)	-0.001(2)	-0.005(2)	-0.029(2)
C26	0.037(2)	0.002(3)	0.000(3)	-0.0033(19)	-0.025(2)	-0.017(2)
C27	0.039(2)	0.021(3)	0.057(3)	-0.0086(19)	-0.032(2)	-0.0053(19)
C28	0.039(2)	0.033(2)	0.045(2)	-0.0127(16)	-0.0081(17)	-0.0096(16)
C29	0.064(3)	0.055(3)	0.046(2)	-0.013(2)	-0.029(2)	0.000 (2)
C30	0.076 (4)	0.094(4)	0.035(2)	-0.035(3)	-0.012(2)	-0.009(2)
S2	0.0419(5)	0.0370(5)	0.0497(5)	-0.0132(4)	-0.012(2)	-0.0019(4)
N11	0.054(2)	0.048(2)	0.048(2)	-0.0023(18)	-0.0148(18)	-0.0086(17)
N12	0.0408 (17)	0.0409 (18)	0.0382 (16)	-0.0153(13)	-0.0134(14)	0.0070 (13)
021	0.070(2)	0.0360 (16)	0.0600(19)	-0.0175(14)	-0.0262(16)	-0.0055(14)
022	0.0437(18)	0.062 (2)	0.089 (3)	-0.0227(16)	-0.0130(18)	0.0038 (19)
023	0.0337 (15)	0.0454 (17)	0.068 (2)	-0.0036(13)	-0.0168(15)	-0.0101(15)
O24	0.0474 (16)	0.0428 (15)	0.0312 (13)	-0.0080(12)	-0.0127(12)	-0.0033 (11)
025	0.0465 (16)	0.0501 (17)	0.0330 (14)	-0.0111 (13)	-0.0126(13)	-0.0042(12)
C31	0.043 (2)	0.033 (2)	0.043 (2)	-0.0136 (17)	-0.0135 (18)	-0.0036(17)
C32	0.042 (2)	0.039 (2)	0.049 (2)	-0.0100 (18)	-0.0181 (19)	-0.0093(18)
C33	0.036 (2)	0.047 (3)	0.073 (3)	-0.018 (2)	-0.008(2)	-0.009(2)
C34	0.061 (3)	0.048 (3)	0.062 (3)	-0.030(2)	-0.023(2)	0.002 (2)
C35	0.061 (3)	0.044 (2)	0.046 (2)	-0.021(2)	-0.018(2)	-0.0040 (18)
C36	0.045 (2)	0.046 (2)	0.059 (3)	-0.018(2)	-0.019(2)	-0.004 (2)
C37	0.038 (2)	0.067 (3)	0.100 (4)	-0.004(2)	-0.022(3)	-0.031(3)
C38	0.068 (3)	0.048 (3)	0.068 (3)	-0.025(2)	-0.032(2)	-0.005(2)
C39	0.053 (2)	0.055 (2)	0.0369 (17)	-0.0219 (16)	-0.0107 (15)	-0.0023(15)
C40	0.054 (2)	0.101 (3)	0.052 (2)	-0.009(2)	-0.0073 (17)	-0.0058(19)
C41	0.063 (3)	0.054 (3)	0.038 (2)	-0.023(2)	-0.025 (2)	0.0040 (18)
C42	0.072 (3)	0.040 (2)	0.0343 (19)	-0.0095 (19)	-0.0176 (19)	-0.0043 (16)
C43	0.040 (2)	0.035 (2)	0.036 (2)	-0.0128 (16)	-0.0113 (17)	-0.0062 (15)
C44	0.056 (3)	0.056 (3)	0.052 (3)	-0.009 (2)	-0.012 (2)	-0.015 (2)
C45	0.052 (3)	0.074 (3)	0.071 (3)	-0.013 (3)	-0.006 (3)	-0.027 (3)
C46	0.046 (3)	0.064 (3)	0.077 (3)	-0.008 (2)	-0.018 (3)	-0.021 (3)
C47	0.049 (2)	0.048 (3)	0.053 (2)	-0.020 (2)	-0.016 (2)	-0.006 (2)
	• /	. /	. /			× /

supporting information

C48	0.043 (2)	0.033 (2)	0.0358 (19)	-0.0150 (16)	-0.0149 (16)	-0.0015 (15)
C49	0.067 (3)	0.080 (3)	0.034 (2)	-0.030 (3)	-0.010 (2)	-0.014 (2)
C50	0.075 (4)	0.075 (4)	0.038 (2)	-0.023 (3)	-0.006 (2)	-0.010 (2)
O1W	0.0567 (19)	0.063 (2)	0.0516 (17)	0.0036 (15)	-0.0139 (15)	-0.0181 (15)
O2W	0.081 (3)	0.067 (2)	0.108 (3)	0.0004 (19)	-0.042 (2)	-0.048 (2)
O3W	0.0537 (17)	0.0573 (17)	0.0391 (14)	0.0001 (14)	-0.0165 (13)	-0.0134 (12)
O4W	0.083 (3)	0.065 (2)	0.106 (3)	-0.001 (2)	-0.044 (2)	-0.039 (2)

Geometric parameters (Å, °)

01—C1	1.251 (5)	С29—Н29В	0.9700
O2—C1	1.222 (5)	C30—H30A	0.9600
O3—C6	1.243 (5)	C30—H30B	0.9600
O4—C6	1.255 (5)	С30—Н30С	0.9600
C1—C2	1.505 (5)	S2—O21	1.430 (3)
C2—C3	1.530 (6)	S2—O22	1.433 (3)
C2—H2A	0.9700	S2—N11	1.590 (4)
C2—H2B	0.9700	S2—C31	1.771 (4)
C3—C4	1.522 (3)	N11—H11A	0.7839
С3—НЗА	0.9700	N11—H11B	0.8609
С3—Н3В	0.9700	N12—C41	1.477 (6)
C4—C5	1.515 (6)	N12—C39	1.524 (6)
C4—H4A	0.9700	N12—H12A	0.9601
C4—H4B	0.9700	N12—H12B	0.9601
C5—C6	1.519 (5)	O23—C32	1.363 (5)
C5—H5A	0.9700	O23—C37	1.412 (6)
С5—Н5В	0.9700	O24—C43	1.373 (5)
S1—O12	1.429 (3)	O24—C42	1.427 (5)
S1—O11	1.440 (3)	O25—C48	1.367 (5)
S1—N1	1.602 (4)	O25—C49	1.445 (5)
S1—C11	1.760 (4)	C31—C36	1.368 (6)
N1—H1A	0.9540	C31—C32	1.399 (6)
N1—H1B	0.9575	C32—C33	1.377 (6)
N2—C21	1.492 (5)	C33—C34	1.369 (7)
N2—C19	1.511 (5)	С33—Н33	0.9300
N2—H2C	0.9564	C34—C35	1.406 (6)
N2—H2D	0.9564	С34—Н34	0.9300
O13—C12	1.351 (5)	C35—C36	1.383 (6)
O13—C17	1.431 (5)	C35—C38	1.523 (7)
O14—C23	1.388 (5)	С36—Н36	0.9300
O14—C22	1.427 (4)	С37—Н37А	0.9600
O15—C28	1.379 (5)	С37—Н37В	0.9600
O15—C29	1.430 (5)	С37—Н37С	0.9600
C11—C16	1.401 (5)	C38—C39	1.531 (6)
C11—C12	1.403 (5)	C38—H38A	0.9700
C12—C13	1.389 (5)	C38—H38B	0.9700
C13—C14	1.405 (6)	C39—C40	1.512 (5)
C13—H13	0.9300	С39—Н39	0.9800

C14—C15	1.359 (6)	C40—H40A	0.9600
C14—H14	0.9300	C40—H40B	0.9600
C15—C16	1.396 (5)	C40—H40C	0.9600
C15—C18	1.513 (5)	C41—C42	1.478 (7)
C16—H16	0.9300	C41—H41A	0.9700
С17—Н17А	0.9600	C41—H41B	0.9700
C17—H17B	0.9600	C42—H42A	0.9700
С17—Н17С	0.9600	C42—H42B	0.9700
C18—C19	1.537 (5)	C43—C44	1.362 (6)
C18—H18A	0.9700	C43—C48	1.410 (5)
C18—H18B	0.9700	C44—C45	1.381 (8)
C19—C20	1.509 (5)	C44—H44	0.9300
С19—Н19	0.9800	C45—C46	1.371 (8)
С20—Н20А	0.9600	C45—H45	0.9300
C20—H20B	0.9600	C46—C47	1.381 (7)
C20—H20C	0.9600	C46—H46	0.9300
C21—C22	1.526 (6)	C47—C48	1.385 (6)
C21—H21A	0.9700	С47—Н47	0.9300
C21—H21B	0.9700	C49—C50	1.466 (7)
C22—H22A	0.9700	C49—H49A	0.9700
C22—H22B	0.9700	C49—H49B	0.9700
C23—C24	1.394 (6)	С50—Н50А	0.9600
C23—C28	1.394 (6)	С50—Н50В	0.9600
C24—C25	1.400 (7)	С50—Н50С	0.9600
C24—H24	0.9300	O1W—H1WA	0.9011
C25—C26	1.364 (7)	O1W—H1WB	0.9531
C25—H25	0.9300	O2W—H2WA	0.9461
C26—C27	1.388 (7)	O2W—H2WB	0.9924
C26—H26	0.9300	O3W—H3WA	0.9248
C27—C28	1.379 (6)	O3W—H3WB	0.9642
C27—H27	0.9300	O4W—H4WA	0.8873
C29—C30	1.491 (7)	O4W—H4WB	0.9218
C29—H29A	0.9700		
O2—C1—O1	121.4 (4)	C27—C28—C23	120.0 (4)
O2—C1—C2	119.5 (4)	O15—C29—C30	108.9 (4)
O1—C1—C2	119.1 (4)	O15—C29—H29A	109.9
C1—C2—C3	112.8 (3)	С30—С29—Н29А	109.9
C1—C2—H2A	109.0	O15—C29—H29B	109.9
C3—C2—H2A	109.0	С30—С29—Н29В	109.9
C1—C2—H2B	109.0	H29A—C29—H29B	108.3
С3—С2—Н2В	109.0	С29—С30—Н30А	109.5
H2A—C2—H2B	107.8	С29—С30—Н30В	109.5
C4—C3—C2	113.2 (2)	H30A—C30—H30B	109.5
С4—С3—НЗА	108.9	С29—С30—Н30С	109.5
С2—С3—НЗА	108.9	H30A—C30—H30C	109.5
С4—С3—Н3В	108.9	H30B—C30—H30C	109.5
С2—С3—Н3В	108.9	O21—S2—O22	118.1 (2)

НЗА—СЗ—НЗВ	107.8	O21—S2—N11	107.1 (2)
C5—C4—C3	113.0 (2)	O22—S2—N11	108.6 (2)
C5—C4—H4A	109.0	O21—S2—C31	109.55 (19)
C3—C4—H4A	109.0	O22—S2—C31	105.57 (19)
C5—C4—H4B	109.0	N11—S2—C31	107.5 (2)
C3—C4—H4B	109.0	S2—N11—H11A	122.6
H4A—C4—H4B	107.8	S2—N11—H11B	105.4
C4—C5—C6	111.9 (3)	H11A—N11—H11B	116.1
С4—С5—Н5А	109.2	C41—N12—C39	120.4 (3)
С6—С5—Н5А	109.2	C41—N12—H12A	107.3
C4—C5—H5B	109.2	C39—N12—H12A	107.2
С6—С5—Н5В	109.2	C41—N12—H12B	107.2
H5A—C5—H5B	107.9	C39—N12—H12B	107.3
O3—C6—O4	122.0 (4)	H12A—N12—H12B	106.8
O3—C6—C5	118.8 (4)	C32—O23—C37	117.7 (4)
O4—C6—C5	119.1 (4)	C43—O24—C42	116.5 (3)
O12—S1—O11	117.8 (2)	C48—O25—C49	118.2 (4)
O12—S1—N1	107.7 (2)	C36—C31—C32	120.8 (4)
O11—S1—N1	107.7 (2)	C36—C31—S2	118.2 (3)
O12—S1—C11	105.73 (17)	C32—C31—S2	120.8 (3)
O11—S1—C11	109.37 (18)	O23—C32—C33	125.5 (4)
N1—S1—C11	108.19 (18)	O23—C32—C31	116.2 (4)
S1—N1—H1A	112.9	C33—C32—C31	118.3 (4)
S1—N1—H1B	110.6	C34—C33—C32	119.9 (4)
H1A—N1—H1B	123.5	С34—С33—Н33	120.0
C21—N2—C19	114.6 (3)	С32—С33—Н33	120.0
C21—N2—H2C	108.7	C33—C34—C35	122.8 (4)
C19—N2—H2C	108.6	С33—С34—Н34	118.6
C21—N2—H2D	108.6	С35—С34—Н34	118.6
C19—N2—H2D	108.6	C36—C35—C34	115.9 (4)
H2C—N2—H2D	107.6	C36—C35—C38	122.1 (4)
C12—O13—C17	118.7 (3)	C34—C35—C38	121.9 (4)
C23—O14—C22	116.0 (3)	C31—C36—C35	122.0 (4)
C28—O15—C29	117.1 (3)	С31—С36—Н36	119.0
C16—C11—C12	120.2 (3)	С35—С36—Н36	119.0
C16—C11—S1	119.5 (3)	О23—С37—Н37А	109.5
C12—C11—S1	120.2 (3)	О23—С37—Н37В	109.5
O13—C12—C13	124.9 (4)	Н37А—С37—Н37В	109.5
O13—C12—C11	116.0 (3)	О23—С37—Н37С	109.5
C13—C12—C11	119.1 (4)	Н37А—С37—Н37С	109.5
C12—C13—C14	119.3 (4)	Н37В—С37—Н37С	109.5
C12—C13—H13	120.4	C35—C38—C39	110.2 (4)
C14—C13—H13	120.4	С35—С38—Н38А	109.6
C15—C14—C13	122.1 (4)	C39—C38—H38A	109.6
C15—C14—H14	118.9	C35—C38—H38B	109.6
C13—C14—H14	118.9	C39—C38—H38B	109.6
C14—C15—C16	119.0 (4)	H38A—C38—H38B	108.1
C14—C15—C18	124.0 (4)	C40—C39—N12	110.8 (3)

C1(C15 C10	117.0 (4)	C10 C20 C20	1140(4)
C16—C15—C18	117.0 (4)	C40—C39—C38	114.0 (4)
C15—C16—C11	120.2 (4)	N12—C39—C38	108.4 (4)
C15—C16—H16	119.9	С40—С39—Н39	107.8
C11—C16—H16	119.9	N12—C39—H39	107.8
O13—C17—H17A	109.5	С38—С39—Н39	107.8
O13—C17—H17B	109.5	C39—C40—H40A	109.5
H17A—C17—H17B	109.5	C39—C40—H40B	109.5
O13—C17—H17C	109.5	H40A—C40—H40B	109.5
H17A—C17—H17C	109.5	C39—C40—H40C	109.5
H17B—C17—H17C	109.5	H40A—C40—H40C	109.5
C_{15} C_{18} C_{19}	116.2 (3)	H40B—C40—H40C	109.5
C_{15} C_{18} H_{18A}	108.2	N12_C41_C42	109.5 113 5 (4)
	108.2	N12 C41 H41A	108.0
C_{15} C_{16} H_{10}	108.2	R_{12} C_{41} H_{41A}	108.9
$C_{10} = C_{10} = H_{10}$	108.2	C42—C41—H41A	108.9
	108.2	N12-C41-H41B	108.9
HI8A—CI8—HI8B	107.4	C42—C41—H41B	108.9
N2—C19—C20	108.8 (3)	H41A—C41—H41B	107.7
N2—C19—C18	107.8 (3)	O24—C42—C41	110.8 (4)
C20—C19—C18	114.0 (3)	O24—C42—H42A	109.5
N2—C19—H19	108.7	C41—C42—H42A	109.5
С20—С19—Н19	108.7	O24—C42—H42B	109.5
С18—С19—Н19	108.7	C41—C42—H42B	109.5
C19—C20—H20A	109.5	H42A—C42—H42B	108.1
C19—C20—H20B	109.5	O24—C43—C44	126.5 (4)
H20A-C20-H20B	109.5	O24—C43—C48	113.9 (3)
C19—C20—H20C	109.5	C44—C43—C48	119.6 (4)
H20A—C20—H20C	109.5	C45—C44—C43	1214(5)
H_{20B} C_{20} H_{20C}	109.5	C_{45} C_{44} H_{44}	1193
N_{2} C_{21} C_{22}	110.9 (4)	C_{43} C_{44} H_{44}	119.3
N2 C21 H21A	100.5	C_{44} C_{45} C_{46}	119.3 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5	$C_{44} = C_{45} = C_{40}$	119.5 (5)
N2 C21 H21D	109.5	$C_{44} = C_{45} = 1145$	120.4
$N_2 = C_2 I = H_2 I B$	109.5	C40 - C43 - H43	120.4
	109.5		120.5 (5)
H2IA—C2I—H2IB	108.0	C45—C46—H46	119.7
014	107.7 (3)	С47—С46—Н46	119.7
O14—C22—H22A	110.2	C48—C47—C46	120.4 (5)
C21—C22—H22A	110.2	C48—C47—H47	119.8
O14—C22—H22B	110.2	C46—C47—H47	119.8
C21—C22—H22B	110.2	O25—C48—C47	125.2 (4)
H22A—C22—H22B	108.5	O25—C48—C43	116.1 (4)
C24—C23—C28	120.5 (4)	C47—C48—C43	118.7 (4)
C24—C23—O14	123.0 (4)	O25—C49—C50	108.6 (4)
C28—C23—O14	116.5 (3)	O25—C49—H49A	110.0
C23—C24—C25	118.3 (4)	C50—C49—H49A	110.0
C23—C24—H24	120.9	025—C49—H49B	110.0
$C_{25} = C_{24} = H_{24}$	120.9	C50_C49_H49B	110.0
$C_{25} = C_{25} = C_{24}$	120.9 120.9(4)	$H_{40} \Delta (C_{40} H_{40} B)$	108.3
$C_{20} = C_{20} = C$	120.9 (+)	$C_{40} = C_{50} = U_{50}$	100.5
$U_{20} - U_{23} - \Pi_{23}$	117.J	$U + y - U J U - \Pi J U A$	107.3

C24—C25—H25	119.5	C49—C50—H50B	109.5
C25—C26—C27	120.7 (4)	H50A-C50-H50B	109.5
С25—С26—Н26	119.7	С49—С50—Н50С	109.5
С27—С26—Н26	119.7	H50A-C50-H50C	109.5
C26—C27—C28	119.6 (5)	H50B-C50-H50C	109.5
С26—С27—Н27	120.2	H1WA—O1W—H1WB	109.4
С28—С27—Н27	120.2	H2WA—O2W—H2WB	95.9
O15—C28—C27	124.7 (4)	H3WA—O3W—H3WB	105.2
O15—C28—C23	115.2 (4)	H4WA—O4W—H4WB	114.1
O2—C1—C2—C3	-115.3 (5)	C24—C23—C28—C27	0.4 (6)
O1—C1—C2—C3	62.3 (6)	O14—C23—C28—C27	-178.5 (4)
C1—C2—C3—C4	170.3 (3)	C28—O15—C29—C30	176.5 (4)
C2—C3—C4—C5	179.6 (5)	O21—S2—C31—C36	-128.8(4)
C3—C4—C5—C6	-170.0 (3)	O22—S2—C31—C36	-0.7 (5)
C4—C5—C6—O3	-63.9 (5)	N11—S2—C31—C36	115.1 (4)
C4—C5—C6—O4	115.3 (5)	O21—S2—C31—C32	55.6 (4)
O12—S1—C11—C16	-0.6 (4)	O22—S2—C31—C32	-176.3 (4)
O11—S1—C11—C16	127.2 (4)	N11—S2—C31—C32	-60.5 (4)
N1—S1—C11—C16	-115.8 (3)	C37—O23—C32—C33	-12.6(7)
O12—S1—C11—C12	175.4 (4)	C37—O23—C32—C31	166.9 (4)
O11—S1—C11—C12	-56.8 (4)	C36—C31—C32—O23	-176.0 (4)
N1—S1—C11—C12	60.2 (4)	S2—C31—C32—O23	-0.5 (6)
C17—O13—C12—C13	13.7 (6)	C36—C31—C32—C33	3.5 (7)
C17—O13—C12—C11	-165.5 (4)	S2—C31—C32—C33	179.0 (4)
C16—C11—C12—O13	177.9 (4)	O23—C32—C33—C34	174.1 (5)
S1-C11-C12-O13	1.9 (5)	C31—C32—C33—C34	-5.4 (8)
C16—C11—C12—C13	-1.3 (6)	C32—C33—C34—C35	4.2 (9)
S1-C11-C12-C13	-177.3 (3)	C33—C34—C35—C36	-1.0(8)
O13—C12—C13—C14	179.7 (4)	C33—C34—C35—C38	-178.7 (5)
C11—C12—C13—C14	-1.2 (7)	C32—C31—C36—C35	-0.3 (7)
C12—C13—C14—C15	3.9 (7)	S2—C31—C36—C35	-176.0 (4)
C13—C14—C15—C16	-3.9 (7)	C34—C35—C36—C31	-1.0(7)
C13—C14—C15—C18	174.3 (4)	C38—C35—C36—C31	176.7 (5)
C14—C15—C16—C11	1.3 (6)	C36—C35—C38—C39	89.2 (6)
C18—C15—C16—C11	-177.1 (4)	C34—C35—C38—C39	-93.3 (5)
C12—C11—C16—C15	1.3 (6)	C41—N12—C39—C40	83.6 (5)
S1-C11-C16-C15	177.3 (3)	C41—N12—C39—C38	-42.3 (5)
C14—C15—C18—C19	69.6 (6)	C35—C38—C39—C40	70.1 (5)
C16—C15—C18—C19	-112.1 (4)	C35—C38—C39—N12	-165.9 (3)
C21—N2—C19—C20	-174.1 (3)	C39—N12—C41—C42	177.6 (3)
C21—N2—C19—C18	61.7 (4)	C43—O24—C42—C41	-173.6 (4)
C15—C18—C19—N2	159.5 (3)	N12-C41-C42-O24	71.0 (5)
C15—C18—C19—C20	38.6 (5)	C42—O24—C43—C44	-6.5 (6)
C19—N2—C21—C22	178.4 (3)	C42—O24—C43—C48	174.9 (4)
C23—O14—C22—C21	179.9 (3)	O24—C43—C44—C45	-178.8 (5)
N2-C21-C22-O14	-69.4 (4)	C48—C43—C44—C45	-0.2 (7)
C22—O14—C23—C24	9.0 (6)	C43—C44—C45—C46	-0.5 (9)

C22—O14—C23—C28	-172.1 (4)	C44—C45—C46—C47	0.2 (8)	
C28—C23—C24—C25	-0.6 (7)	C45—C46—C47—C48	0.8 (8)	
O14—C23—C24—C25	178.2 (4)	C49—O25—C48—C47	0.8 (6)	
C23—C24—C25—C26	-0.2 (8)	C49—O25—C48—C43	-179.5 (4)	
C24—C25—C26—C27	1.1 (8)	C46—C47—C48—O25	178.1 (4)	
C25—C26—C27—C28	-1.3 (7)	C46—C47—C48—C43	-1.5 (7)	
C29—O15—C28—C27	-0.2 (6)	O24—C43—C48—O25	0.3 (5)	
C29—O15—C28—C23	-178.1 (4)	C44—C43—C48—O25	-178.5 (4)	
C26—C27—C28—O15	-177.3 (4)	O24—C43—C48—C47	180.0 (4)	
C26—C27—C28—C23	0.5 (7)	C44—C43—C48—C47	1.2 (6)	
C24—C23—C28—O15	178.5 (4)	C48—O25—C49—C50	-175.5 (4)	
O14—C23—C28—O15	-0.4 (5)			

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N1—H1 <i>B</i> ···O21 ⁱ	0.96	2.11	3.028 (5)	160
N11—H11 <i>B</i> …O11 ⁱⁱ	0.86	2.23	3.029 (5)	155
N2—H2 <i>C</i> ···O3 <i>W</i>	0.96	1.84	2.755 (4)	160
N12—H12 <i>B</i> ···O1 <i>W</i>	0.96	1.87	2.797 (4)	160
N2—H2D…O1 ⁱⁱⁱ	0.96	1.98	2.854 (4)	151
N12—H12A····O3 ^{iv}	0.96	1.83	2.746 (4)	159
N1—H1 <i>A</i> ···O3	0.95	1.84	2.790 (5)	173
N11—H11A…O1	0.78	2.03	2.798 (6)	169
$O1W$ — $H1WB$ ··· $O2W^{\vee}$	0.95	1.80	2.746 (5)	174
$O3W$ — $H3WB$ ···· $O4W^{vi}$	0.96	1.82	2.747 (5)	161
O2 <i>W</i> —H2 <i>WA</i> ···O2	0.95	1.75	2.690 (6)	175
O4W— $H4WA$ ···O4 ^{iv}	0.89	1.77	2.658 (5)	175
O1 <i>W</i> —H1 <i>WA</i> ···O24	0.90	2.33	2.899 (4)	121
O1 <i>W</i> —H1 <i>WA</i> ···O25	0.90	2.08	2.963 (4)	165
O3 <i>W</i> —H3 <i>WA</i> ···O14	0.92	2.39	2.920 (4)	116
O3 <i>W</i> —H3 <i>WA</i> ···O15	0.92	2.03	2.935 (4)	166

Symmetry codes: (i) *x*, *y*-1, *z*; (ii) *x*, *y*+1, *z*; (iii) *x*-1, *y*, *z*; (iv) *x*+1, *y*, *z*; (v) *x*, *y*, *z*+1; (vi) *x*-1, *y*, *z*-1.